was shown to stimulate melanogenesis by upregulating the
extracellular signal-regulated kinase (ERK) pathway, which
induces the expression of tyrosinase via the activation of CREB.
In addition to this pathway, nobiletin inhibits phosphodiesterase
leading to an elevation of intracellular cAMP levels [14], which
bypasses the alpha-MSH pathways.

We previously found that the CREB-specific coactivator
TORCI (transducer of CREB activity, also called CRTCI) and
its repressor, salt-inducible-kinase 2 (SIK2) [15,16,17], are
fundamental determinants of the melanogenic program in mice
[18]. Exposure of B16F10 melanoma cells to UV light results in
the immediate nuclear translocation of TORC1, which is inhibited
by SIK2. Overexpression of dominant negative TORCI also
inhibits UV-induced Mitf gene expression and melanogenesis.
alpha-MSH signaling regulates hair pigmentation, and a decrease
in alpha-MSH activity in hair follicle melanocytes switches the
synthesis of melanin from eumelanin (black) to pheomelanin
(yellow). Mice with the lethal yellow allele of agout (4/a) have
yellow hair due to the impaired activation of the alpha-MSH
receptor. #'/a mice with S$ik2~/™ have brown hair, indicating that
SIK2 represses eumnelanogenesis in mice.

Here we report that flavonoids with an O-methyl group at their 4’
position efficiently inhibit SIK2 action in cultured melanoma cells
and promote the melanogenic program in a TORC1-dependent
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manner. Diosmetin (4'-O-methylluteolin) and fisetin (after its
conversion into 4’-O-methylfisetin # vivo) enhance eumelanogenesis
in #/a mice whose CREB-cascades were sensitized by the Sik2
heterozygous (Sik2* ~) background.

Results

SIK2 inhibitory activity of the flavonoids

To identify SIK2 inhibitory substances, we employed an
enzyme-linked immunosorbent assay (ELISA) system and screened
the compounds using a kinase inhibitor library (BioMol). Most
candidates, e.g., staurosporine, hypericin, etc. [19], were nonspe-
cific kinase inhibitors and were considered difficult to utilize in
structure-activity-related studies. However, quercetin, a flavonoid,
has a number of derivatives despite its weak inhibitory activity
(IC50=500 nM); therefore, we decided to examine the SIK2-
inhibitory activity of quercetin derivatives.

The structures of flavonoids (Figure 1A) and their SIK2-
inhibitory activity (Figure 1B) are shown. Fisetin was found to
inhibit SIK2 even at a low concentration (50 nM). Some of the O-
methylated derivatives, such as diosmetin, inhibited SIK2 at
medium concentrations (50-500 nM).

To monitor the SIK2-inhibitory activity in cultured cells
(HEK293), we employed the CRE-reporter assay. As shown in

Residual activity (%) (in vitro kinase assay)
Flavonoid 50 nM 500 nM 5000 nM
DMSO 100 N.T. N.T.
Fisetin 43312 12.8%1.2 3.75+0
Luteolin 51.9%2.3 21127 1240
Qercetin 96.6 £ 13.0 441 £ 1.3 7780
Diosmetin 61.3+0.4 24.6 + 3.1 143£0
Tamarixetin  104.0 £ 13.4 418+ 1.6 41.6 5.8
Isorhamnetin N.T. N.T. 103.5+ 6.9
Rhamnetin 77.0 £ 18.2 62.3+3.2 47418
c -
L) (-)7+SIK2, [ +Fsk/(-). BB +Fsk/+SIK2

CRE reporter activity ( fLuc/rLuc)

Figure 1. Inhibition of SIK2 by flavonoids. (A) Structure of the flavonoids used in this study. (B) In vitro kinase assay of SIK2. GST-SIK2 expressed
in COS-7 cells was used as the enzyme, while GST-TORC2 peptide [42], expressed in Escherichia coli, was used as the substrate for the ELISA. The
optical density (OD) value in the absence of a flavonoid was set as 100%. n=2, means and differences are shown. (C) HEK293 cells transformed with
the CRE-Luc firefly luciferase plasmid (200 ng) and pRL-Tk Int- (internal Renilla luciferase: 30 ng) in the presence or absence of pTarget-SIK2 (50 ng)
were treated with forskolin (Fsk: 20 M) in the presence of the indicated dose of flavonoids. The ratio of firefly luciferase to Renilla luciferase is shown.

n=2, means and differences are shown.
doi:10.1371/journal.pone.0026148.g001
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Figure 1C, 25 pM fisetin inhibited the SIK2-mediated suppression
of CRE activity that had been upregulated by the cAMP-agonist
forskolin. However, a low dose of fisetin (10 pM) failed to inhibit
SIK?2 activity in cultured cells, while diosmetin was able to inhibit
SIK2 even at a low dose (10 uM), suggesting that other
parameters, such as cell permeability, may affect their SIK2-
inhibitory activity in cultured cells. On the other hand, it is also
important that the O-methyl group at the 4'-position of the B-ring
more increased their SIK2-inhibitory activity in cultured cells than
the O-methyl group at the 3'-position or at the 7- position.

O-methyl-flavonoids promote melanogenesis in B16F10

cells

Because one of the representative phenomena of SIK2
inhibition is the promotion of melanogenesis, we employed a
melanogenesis assay using B16F10 melanoma cells to evaluate
SIK2-inhibitory flavonoids. As shown in Figure 2, non-methylated
flavonoids did not induce melanogenesis. In contrast, the 4'-O-
methyl flavonoids diosmetin and tamarixetin efficiently induced
melanogenesis, while the 3’-O-methyl flavonoid isorhamnetin had
a modest effect. A small induction of melanogenesis was observed
when the 7-O-methyl flavonoid rhamnetin was added into the
cultured medium.

The requirement of the methyl group at the 4'-position of the B-
ring for melanogenesis in B16F10 melanoma cells was similar to
that for the inhibition of the SIK2-mediated suppression of CREB
activity in HEK293 cells, suggesting that 4’-O-methyl flavonoids
may induce melanogenesis mainly due to the inhibition of SIK2.
The effect of fisetin on melanogenesis was not affected by other
factors, such as cell-permeability and stability, which are different
between cell types, because fisetin did not affect CREB activity in
B16F10 melanoma cells (shown later).

Flavonoids promote eumelanogenesis in vivo

CREB activity determines the ratio of eumelanogenesis to
pheomelanogenesis in hair follicle melanocytes i wvivo, and
inhibition of SIK2 facilitates eumelanogenesis due to the
constitutive activation of CREB. Mice with the lihal yellow allele
of agouti (4) have yellow hair due to the impaired activation of the
alpha-MSH receptor followed by the inactivation of the cAMP-
CREB cascade. The $ik2™ /" genetic background reactivates the
CREB cascade in #/a mice, which restores the yellow hair color
to wild-type mice (brown).

The S$ik2 heterozygous (Sik2*'”) background partially re-
stored hair color, but Sik2*'~; #'/a mice were highly sensitive to
CREB agonists, such as UV irradiation, which appeared as a
hair color change (Figure 3A). Therefore, we decided to use
Sik2™'": #/a mice to evaluate the effect of flavonoids on
melanogenesis @ wviwo. We assessed the activity of fisetin,
quercetin, and diosmetin because their low cost would facilitate
their use as dietary supplements. As shown in Figure 3B, fisetin
and diosmetin changed the hair color of $i%2*~; #/a mice,
while quercetin had a modest effect. This hair color change was
reversible. The difference between fisetin and quercetin could
be explained by their inhibitory efficiency toward SIK2 in
HEK293 cells (Figure 1C); however, the fact that fisetin
promoted eumelanogenesis at the same level as diosmetin
disagreed with the results observed in B6F10 melanoma cells
(Figure 2). Therefore, we surmised that some of the metabolites,
probably O-methylfisetin, might promote eumelanogenesis in
mice consuming fisetin. To confirm this hypothesis, we analyzed
fisetin metabolites in feces and identified mono-methylfisetin in
the metabolites (Figure 3C).

@ PLoS ONE | www.plosone.org
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Fisetin Luteolin  Quercetin
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tin Isorhametin Rhamnetin
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Figure 2. Induction of melanogenesis by flavonoids in B16F10
melanoma cells. (A) B16F10 melanoma cells were treated with 10 uM
flavonoids for 3 d with a medium change at day 2. (B) The cells were
recovered in test tubes. (C) Melanin was extracted with an alkaline
method. After normalization of the melanin content to the protein
amount in each sample, the melanin level was expressed as fold of
control (DMSO-treated cells). n=3, means and standard deviations
(S.D.) are shown.

doi:10.1371/journal.pone.0026148.g002

4'-0O-methylfisetin strongly promotes melanogenesis in
B16F10 melanoma cells

The LC system is not able to separate 4'-O-methyl flavonoids
from their 3'-O-methyl isomers, and 4'-O-methylfisetin is not
commercially available, while 3'-O-methyl fisetin is available as
geraldol. Therefore, we decided to synthesize 4'-O-methylfisetin
using CHj3l to confirm its potential as a promoter of melanogenesis
(Figure 4A). The 4'-OH group of fisetin might more actively
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Figure 3. Induction of melanogenesis by flavonoids in vivo. (A) 1.5-week-old A’/a male mice with different Sik2 backgrounds (Sik2™ ™ or Sik2™7)
exposed to a black lamp (15 W at 20 cm distance) for 30 min twice daily for 10 d. (B) 4-week-old male mice were fed with a diet supplemented with 0.2%
flavonoids. After 1 week, the diet was changed to a normal diet (flavonoid free), and the mice were fed for an additional week until all of their hair was
replaced by newly grown hair. After a photograph was taken under anesthesia, the mice were fed for a further 3 months until the next set of hair grew.
The photographs show a representative mouse from each group (n=4). (C) Flavonoids in feces derived from fisetin-treated mice were extracted with
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ethyl acetate and detected by LC-MS with a scan range of ms 285-299, as described in the Materials and Methods. The positions of authentic flavonoids

are also shown in left panels.
doi:10.1371/journal.pone.0026148.g003

accept the methyl group than the 3'-OH group did because the
yield of 4'-O-methylfisetin (5.3%, 5.9 mg) was higher than the 3'-
O-isomer (<<1.0%). The identity of 4'-O-methylfisetin was
confirmed by '"H NMR, '*C NMR, and ESI-MS [20] (Figure S1).

When 4’-O-methylfisetin was added into the culture medium of
B16F10 melanoma cells, the SIK2-mediated suppression of CREB
activity was weakened (Figure 4B) and melanogenesis was strongly
promoted (Figure 4C), suggesting that eumelanogenesis in fisetin-
treated mice might be induced by 4'-O-methylfisetin.

4'-O-methylfisetin promotes melanogenesis dependent
on TORC1 and independent of cAMP

To examine the molecular mechanisms underlying 4'-0-
methylfisetin-induced melanogenesis, we monitored the mRINA
expression of the melanogenic genes, M-type Miif, A-type Mtf,
and Tyrosinase. As shown in Figure 5A, 4'-O-methylfisetin induced
these mRNAs in B16F10 melanoma cells. The Tyrosinase protein
level (Tyr) was also elevated in 4’-O-methylfisetin-treated cells
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(Figure 5B), which was observed from 3 uM. Geraldol was also
able to induce Tyrosinase expression, but its efficiency was less
than one-third of 4’-O-methylfisetin.

When we examined CREB phosphorylation levels (Figure 5B),
we noticed that 4'-O-methylfisetin induced melanogenesis without
elevating the phosphorylation of CREB at Ser133. This was
confirmed by an assay indicating that these flavonoids had little
effect on intracellular cAMP levels in B16F10 melanoma cells
(Figure 5C). In addition to cAMP/PKA cascade, 4'-O-methylfi-
setin did not alter the phosphorylation levels of Erk and GSK-
3beta, while fisetin and geraldol enhanced pGSK-3 beta signals
(Figure S2).

Since the loss of SIK2 induces melanogenesis by activating
TORCI1, we monitored the activation of TORCI by its
intracellular distribution. As shown in Figure 5D, 4’-O-methylfi-
setin induced the nuclear accumulation of TORCI, but other
flavonoids did not. We then examined whether 4’-O-methylfisetin
was able to activate CREB, and if so, whether this activation was

c

DMSOJ Fisetin 4’MF Geraldol

DMSO Fisetin 4'MF Geraldol

[+ ]

[«}

N

Melanin / protein
(fold of DMSO)
E-S

DMSO Fisetin 4°MF Geraldol

o

Figure 4. 4’-O-methylfisetin (4’ MF) inhibits SIK2-mediated CRE suppression and induces melanogenesis in B16F10 melanoma celis.
(A) Synthesis of 4’MF. (B) B16F10 melanoma cells transformed with CRE-Luc firefly luciferase plasmid (200 ng) with pRL-Tk Int- (internal Renilla
luciferase: 30 ng) in the presence or absence of pTarget-SIK2 (50 ng) were treated with forskolin (Fsk: 20 pM) in the presence of the indicated dose of
flavonoids. The relative units of firefly luciferase were normalized to Renilla luciferase, and expressed as % of control (without flavonoid or SIK2). n=3,
means and S.D. are shown. **, p<0.01. (C) B16F10 melanoma cells were treated with 10 uM flavonoids for 3 d, with a medium change at day 2, and
melanin was measured. n=3, means and S.D. are shown. ¥, p<<0.05.

doi:10.1371/journal.pone.0026148.g004
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Figure 5. 4'MF induces melanogenesis by activating TORC1 without enhancing the cAMP level in B16F10 melanoma cells. (A)
Quantitative PCR analyses were performed with total RNA prepared from flavonoid-treated B16F10 melanoma cells (10 uM for 3 d, with a medium
change at day 2). The mRNA levels are shown as fold of control. n=3, means and S.D. are shown. 4'MF: 4’-O-methylfisetin. * and **, p<0.05 and
<0.01, respectively. (B) Tyrosinase (Tyr) protein was detected by western blot analysis. 4 MF was added at the indicated concentration. pCREB
(pSer133) and total CREB were also examined using the same cell lysate. The panels represent the findings from one of the duplicated experiments.
(C) B16F10 cells transformed with the cAMP-indicator plasmid pGloSensor-22F were treated with 10 pM flavonoid or forskolin (Fsk: 20 pM) in the
presence of luciferin. The relative light units are shown as relative cAMP levels. (D) B16F10 cells were treated with 10 uM flavonoids for 72 h and then
fixed with 4% paraformaldehyde. TORC1 was detected with the anti-TORC1/3 antibody. Nuclei were stained with DAPI. (E) B16F10 melanoma cells
transfected with the dominant negative TORC1 (DN-TORC1) adenovirus or empty adenovirus (Vector) were transformed with the CRE-Luc firefly
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luciferase plasmid (200 ng) and pRL-Tk Int- (internal Renilla luciferase: 30 ng). After 24 h, the cells were treated with 10 uM 4'MF for an additional
24 h. CRE activity was expressed as fold of control (the cells were transfected with the empty adenovirus and not treated with 4'MF). n=3, means and
S.D. are shown. Bars indicate 10 pm. (F) B16F10 melanoma cells transfected with the adenoviruses as in (E) were treated with 10 pM 4'MF for 3 d with
a medium change at day 2, and the melanin content was measured. n=3, means and S.D. are shown. (G) Tyrosinase protein levels in B16F10
melanoma cells (the same sample as in F) were examined by western blot analyses. SIK2 was detected as a loading control.

doi:10.1371/journal.pone.0026148.g005

dependent on TORC1. Expectedly, 4'-O-methylfisetin upregu-
lated CRE-reporter activity, which was inhibited by the overex-
pression of DN-TORCI.

Finally, we tested whether DN-TORCI was able to inhibit 4'-
O-methylfisetin-induced melanogenesis. As shown in Figure 5E,
DN-TORC]1 inhibited melanin synthesis (Figure 5F), which was
accompanied by the suppression of Tyrosinase expression
(Figure 5G). These results suggest that 4'-O-flavonoids, especially
4’-O-methylfisetin, are potent inhibitors of SIK2 and capable of
activating TORC]1 followed by the induction of the melanogenic
program in mice.

Discussion

We have shown that 4'-O-methyl flavones can inhibit SIK2
activity and promote melanogenesis via the activation of TORCI
in B16F10 melanoma cells [18]. However, first, we have to discuss
about the discrepancy found between the i vitro and cultured cell
assays for structure activity correlation. The  vitro kinase assay
using the TORC peptide suggested that non-methylated flavones
more potently inhibited SIK2 than their methylated derivatives.
However, in HEK293 cells and B16F10 melanoma cells, 4’-0-
methylflavone inhibited SIK2 more efficiently, suggesting several
mechanisms exist by which flavones can inhibit SIK2 in cultured
cells. This hypothesis is also supported by the observation that 3'-
O-methylflavones, such as isorhamnetin and geraldol, do not
inhibit SIK2 i vitro, while they weakly induce melanogenesis in
BI6F10 melanoma cells. These results suggested that methylated
flavonoids induce the melanogenic program by several mecha-
nisms, such as enhanced cell permeability and SIK2-independent
signaling pathways.

Meanwhile, it was also true that the efficiency of SIK2
inhibition and the potency of melanogenic promotion by 4'-O-
methylflavones in cultured cells (4'-O-methylfisetin > diosmetin >
tamarixetin) correlated well with the efficiency of SIK2-kinase
inhibition in vitro by their non-methylated cognates (fisetin >
luteolin > quercetin). Moreover, fisetin promoted eumelanogen-
esis in #'/a; Sik2"'™ mice more potently than quercetin, suggesting
that a synergistic effect between the direct inhibition of SIK2 by a
structural dependence of flavones and an indirect effect via a
mechanism depending on their 4'-O-methoxy groups may
efficiently promote melanogenesis in mice.

A number of factors and related compounds have been
reported to intricately modulate the melanogenic program. For
example, tyrosine kinases and glycogen synthase kinase 3 beta
(GSK-3 beta) play opposing roles in the regulation of melano-
genesis in melanocytes [21]. The transcriptional activity of the
MITF protein is modulated by protein kinase cascades that are
induced by the stemn cell factor and its receptor kinase c-KIT.
The activation of ¢-KIT invokes two opposing pathways: the
RAS-RAF-MEK and PI3K-AKT pathways. The RAS-RAF-
MEK pathway activates ERK-p90RSK, which phosphorylates
CREB at Ser133 and MITF at Ser73 and Ser409 [22] and
promotes melanogenesis, whereas AKT inhibits the MITF-
activating kinase GSK-3 beta and downregulates melanogenesis
[23]. The plant steroid diosgenin also inhibits melanogenesis by
activating PI3K signaling [24].

@ PLoS ONE | www.plosone.org

However, the action of GSK-3 beta in the regulation of
melanogenesis is complicated and paradoxical. The promoter
activity of the Miyf gene is upregulated by the beta-catenin-TCF/
LEF complex [25], and the phosphorylation of beta-catenin by
GSK-3 beta [26] destabilizes beta-catenin and leads to the
suppression of MITF-induced melanogenesis [27]. The observa-
tion that indirubin derivatives, potent inhibitors of GSK-3 beta
[27,28], stabilize the beta-catenin-TCF/LEF complex and
promote melanogenesis in BI6F10 melanoma cells suggests that
Miif expression, rather than the phosphorylation-dependent
activation of MITF, is the rate-limiting step of the melanogenic
program [29].

The GSK-3 beta-mediated regulation of melanogenesis is often
accompanied by the activation of the cAMP-PKA-CREB
pathway. The plant steroid glycyrrhizin inhibits GSK-3 beta
activity, while stimulating CREB-mediated transcription by
activating PKA, which results in the promotion of melanogenesis
[30]. Meanwhile, we reported that the GSK-3 beta inhibitor
indirubin induces the degradation of SIK1 and SIK2 proteins in
COS-7 cells [31] and in differentiating CG2C12 myocytes [32].
GSK-3 beta is capable of phosphorylating (activating) sites in the
activation loop of SIK1/2, and the activated SIK1/2 proteins are
stable [31], suggesting that BI6F10 melanoma cells that have been
treated with GSK-3 beta inhibitors have low levels of SIK2, which
would promote melanogenesis. Meanwhile, 4’-O-methylfisetin did
not modulate the AKT-GSK-3 beta and MEK cascades,
suggesting that the melanogenic programs induced by 4'-0O-
methylflavones may be different from those induced by plants
compounds modulating the AKT-GSK-3 beta and MEK
cascades.

Some methylated flavonoids, such as nobiletin {14] and ayanin
[33], inhibit phosphodiesterase, which increases the intracellular
cAMP levels [34]. In contrast to these polymethylated flavonoids,
4'-O-methylfisetin elevates neither CREB phosphorylation levels
nor cAMP-indicator luciferase activity, irrespective of the length of
treatment, suggesting that 4'-O-methylfisetin upregulates CREB
activity independently of cAMP. The mechanism of 4'-O-
methylfisetin-induced CREB activity may depend on the activity
of TORCI1 induced by SIK2 inhibition.

TORCI, or its other isoforms, plays important roles in neuronal
activity, such as memory in the hippocampus [35,36], behavior
(food intake) in the arcuate and ventromedial nuclei [37], and
corticotrophin-releasing hormone synthesis in the hypothalamus
[38]. In addition to these roles, we also found that TORCI is
essential for neuronal survival after brain ischemia [19], which is
evident in $#k27/" mice. Interestingly, fisetin was found to
enhance memory function in the brain and long term potentiation
in cultured PC12 cells via MEK-ERK-mediated CREB activation
[39]. Because 4'-O-methylfisetin did not activate ERK in B16F10
melanoma cells, the upregulation of TORC activity by SIK2
inhibition has been suggested be a beneficial strategy for the
treatment of neuronal diseases, and fisetin or 4'-O-methylfisetin
may be helpful to perform this strategy.

On the other hand, the present study also revealed that
heterozygous insufficiency of the Sit2 allele increases the sensitivity
of CREB-mediated gene expression i vivo, such as switching to
eumelanogenesis in hair melanocytes. This phenomenon may be
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helpful to screen CREB activators @ vivo. Given that the daily food
intake of #'/a mice is ~4 g on average, the present dose of fisetin,
400 mg/kg, is not extremely high. Unfortunately, fisetin intake
elevates the blood glucose levels of #’/a mice, while diosmetin did
slightly (data not shown). As there was no significant difference in
blood glucose levels between wild-type and Sik2~"" mice [18,40],
fisetin may affect blood glucose homeostasis in a SIK2-indepen-
dent manner.

In conclusion, by modulating SIK2 signaling, we were able to
identify a biologically active substance, 4'-O-methylfisetin, which
initiated CREB-mediated transcription via TORC1 activation. In
this study, we also found that the hair color of $#2*/~ mice and
the analysis of metabolites in their feces and blood may act as
beneficial indicators to develop compounds that modulate CREB
activity.

Materials and Methods

Flavonoids

Luteolin, diosmetin, quercetin, tamarixetin, isorhamnetin,
rhamnetin, and geraldol were obtained from Extrasynthese
(Genay Cedex, France). Fisetin and forskolin were purchased
from Wako Pure Chemicals Co. Ltd., (Osaka, Japan) and Sigma-
Aldrich (St. Louis, MO, USA), respectively. These compounds
were dissolved in dimethyl sulfoxide (DMSO) as %1000 stock
solutions.

Cell culture, flavonoid treatment, and melanin
measurement

B16F10 murine melanoma cells and HEK293 cells were
obtained from the American Type Culture Collection (Manassas,
VA, USA). B16F10 cells were growth at 37°C under 5% COq in
Dulbecco’s modified Eagle’s medium (DMEM; high glucose)
(Wako) supplemented with 10% fetal bovine serum (FBS),
penicillin (100 U/mL), and streptomycin (50 ug/mL). HEK293
cells were growth at 37°C under 5% COy in DMEM (low glucose)
(Wako) supplemented with 10% FBS and penicillin/streptomycin.

B16F10 were seeded in 6-well plates at a density of 3.4x10°
cells/well. After 24 h, the culture medium was replaced with fresh
medium supplemented with flavonoids, and, after 48 h, the
medium was changed again with fresh medium containing the
same flavonoids. After an additional 24 h, the cells were harvested
for the melanin or mRNA/protein assays.

To measure melanin, the cells were washed twice with
phosphate-buffered saline (PBS), suspended in PBS, and recovered
by centrifugation at 8,000 rpm for 1.5 min. The cell pellet was
suspended in 300 pL of 1 N NaOH and incubated at 45°C for
2 h, and, then, melanin was extracted with a chloroform-methanol
mixture (2:1). Melanin was detected with a spectrophotometer
(BIO-RAD Model 680 MICRO PLATE READER; Bio-Rad,
Hercules, CA, USA) at 405 nm. The standard curve was obtained
by using purified melanin (0~1000 pg/mL). The protein concen-
tration of the cell pellets was determined using the Bradford
reagent (Bio-Rad) and used for normalization of the melanin
content.

Animal experiments and liquid chromatography-mass
spectrometry (LC-MS) analysis of flavonoids -

The experimental protocols for mice were approved by the
committee at the National Institute of Biomedical Innovation
(approval ID: DS20-55). Sik2*'~; # mice (4-week-old male mice;
the mice were gifts from ProteinExpress Co. Ltd., Chiba, Japan)
were housed under standard light (08:00-20:00) and temperature
(23°C/60% humidity) conditions.
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Mice feces (3.0 g dry weight) were soaked in water : ethyl
acetate (1:1), and the flavonoids were recovered from the organic
phase. Ethyl acetate was evaporated under Ny gas, and the dried
residues were dissolved in 25% acetonitrile/water and subjected to
LC-MS analysis (API 3000 mass spectrometer; Applied Biosys-
tems, Foster City, CA, USA). To separate the flavonoids, a Cg
column (2.0x50 mm id., particle size 5 pm) (Nacalai tesque,
Kyoto, Japan) was used. A linear gradient was prepared with 0.1%
formic acid in water (solvent A) and acetonitrile (solvent B): from
20% solvent B to 100% solvent B in 25 min at 30°C. The
flavonoids were monitored by a UV detector at 255 nm.

Synthesis of 4’-O-methylfisetin

The methods for the synthesis of methylflavonids were described
in [41]. To a solution of fisetin (122.4 mg, 4.3x10™* mol) in
NN-dimethylformamide (10 ml) was added CHsl (26.4 pL,
4.3x10™* mol), and K,COj3 (71.7 mg, 5.1 10~ * mol). After being
stirred for 14 h at room temperature, the reaction mixture was
concentrated in vacuo, dissolved in ethyl acetate, washed with sat
NaCl, dried over NaySO, and evaporated. The resulting residue
was separated with preparative SiOy thin layer chromatography
(eluent: chloroform/methanol (9/1)) followed by HPLC using a gel
filtration colum, JAIGEL GS-320 (Japan Analytical Industry Co.,
Ltd, Tokyo, Japan) with an eluent methanol, and finally 4’-O-
methylfisetin was recovered as yellow crystals (5.9 mg, 5.3% yield).
The identity and structure of 4'-O-methylfisetin was confirmed with
electrospray ionization mass spectroscopy (ESI-MS) and 'H and
3C nuclear magnetic resonance (NMR) [20], respectively. 4'-O-
methylfisetin (CgH,30g): '"H NMR (399.65 MHz, CD;OD) &:
3.94 (1 H, d, ¥=3.6 Hz), 6.91 2 H, m), 7.06 (1 H, d, =8.4 Hz),
7.77 (1 H, m), 7.98 (1 H, d, 7=9.6 Hz). '*C NMR (399.65 MHz,
CD3OD): 56.35 (OCHs3) 102.98, 112.24, 115.45, 115.65, 116.08,
121.45, 127.55, 147.42, 150.61, 158.57. The spectral data of 4'-0O-
methylfisetin and its derivatives is shown in Figure S1.

ESI-MS spectra were measured on AB SCIEX API-3000 mass
spectrometer. NMR siganl was recorded on a JEOL JNM-JSX400
spectrometer using CD3OD as a solvent and tetramethylsilane
(TMS) as the internal standard.

Quantitative real-time PCR

Total RNA was isolated from BI6F10 cells by using the EZ1
RNA Universal Tissue Kit (Qiagen, Venlo Park, the Netherlands),
according to the manufacturer’s protocol. cDNA was synthesized
using the Transcriptor cDNA First Strand Synthesis Kit (Roche
Diagnostics Corp., Indianapolis, IN, USA). PCR amplification was
performed using Platinum Quantitative PCR SuperMix (Invitro-
gen). The resulting cDNA was amplified using the specific primers:
GAPDH-F, 5'-ACTCACGGCAAATTCAACGG and GAPDH-
R, 5'-GACTCCACGACATACTGAGC,; Tyrosinase-F, 5'-TGG-
GGATGAGAACTTCACTG and Tyrosinase-R, 5'-ACGTAA-
TAGTGGTCCCTCAGGT; A-Mitf-F, 5'-GGAAATGCTAGAA-
TACAGTCACTA and Pan-Mitf-R, 5'-GTCGCCAGGCTG-
GTTTGGACA; and M-Mitf-F 5-GGAAATGCTAGAATA-
CAGTCACTA and Pan-Mitf-R. The reactions were performed
for 42 cycles at 95°C for 20 s, 58°C for 20 s, 72°C for 20 s, and 31
cycles at 75°C for 10 s.

Western blot analysis .

B16F10 melanoma cells were washed with PBS and lysed with
lysis buffer (150 mM Tris (pH 6.8), 60% sodium dodecyl sulfate
(SDS), 30% glycerol, and 10% mercaptoethanol). Cell lysates were
boiled for 15 min at 95°C and subjected to 10% SDS-
polyacrylamide gel electrophoresis and transferred onto polyviny-
lidene fluoride membranes (Millipore, Bedford, MA, USA). The
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membranes were blocked with Blocking-One (Nacalai tesque,
Kyoto, Japan) and then incubated with the following primary
antibodies: anti-Tyrosinase goat polyclonal antibody (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), anti-SIK2 rabbit poly-
clonal antibody [15], and anti-CREB and anti-phospho CREB
rabbit polyclonal antibodies (Cell Signaling Technology, MA,
USA) at 4°C overnight. After washing, the membranes were
incubated with peroxidase-conjugated secondary antibody at room
temperature for 4 h. Detection was performed using the KONICA
MINOLTA immunostaining HRP-1000 Kit (KONICA MIN-
OLTA, Tokyo, Japan).

Immunocytochemistry

To perform immunocytochemistry, BI6F10 cells were seeded
on glass cover-slips. The medium was changed with fresh medium
supplemented with 10 uM flavonoid for 72 h. The cells were fixed
with 4% formaldehyde and stained with the anti-TORC1/3 rabbit
polyclonal antibody. To detect the TORCIl-antibody complex,
anti-rabbit IgG conjugated with Alexa Fluor-594 (Eugene, OR,
USA) was used. Nuclei were stained with 4, 6-diamino-2-
phenylindole (DAPI).

Expression vector, adenoviruses, transfection, and

luciferase/cAMP assay

The reporter plasmids and adenoviruses were previously
described [42,43]. Briefly, BI6F10 cells in a 24-well plate were
co-transfected with the pTAL-CRE vector (200 ng/well) with the
internal reporter pRL-TK (30 ng) in the presence or absence of
the SIK2 expression vector (pTarget-SIK2 50 ng) using Lipofec-
tamine2000 (Invitrogen, Carlsbad, CA, USA). After 24 h, the cells
were treated with forskolin (20 uM) and cultured for an additional
6 h. Reporter activity was monitored using the Dual Luciferase
Reporter Assay Kit (Promega, Madison, WI, USA).

The dominant negative TORC1 (DN-TORC1) adenovirus was
previously described [19]. B16F10 cells plated in 6-well dishes
were infected with adenoviruses (DN-TORCI1 or lacZ at a
multiplicity of infection of 10). After a 3 h incubation, the medium
was changed with new medium that did not contain adenoviruses,
and the cells were cultured for 72 h with a medium change after
48 h.

Fluctuation of the intracellular cAMP level was monitored by
the PKA regulatory subunit-liked luciferase reporter system, the
GloSensor ™ ¢AMP Assay kit (Promega). Briefly, BI6F10 cells
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were seeded in 96-well plate at a density of 5x10° cells/well and
incubated for 24 h and transfected with the pGloSensor ~-22F
cAMP-reporter plasmid (1 ng/well) using LipofectAMIN2000.
After 18 h, cells were incubated with GloSensor "™ cAMP reagent
for 2 h, and, then, forskolin (20 uM) or flavonoids (10 uM) was

added into the culture medium.

Statistical analysis

Student’s ttest was used to assess all experimental data in
Microsoft Excel. The mean and standard deviation (S.D.) are
shown.

Supporting Information

Figure S1 NMR analysis of 4'-O-methylfisetin and its
derivatives (authentic). The structure of 4'-O-methylfisetin
was confirmed by comparison of its '*C-NMR chemical shifts in
B-ring positions with those of other similar flavonoids owing 4'-
OH or 4'-OMe with 3’-OMe or $'-OH groups. '*C-NMR
chemical shifts of 4’-O-methylfisetin for the B-ring positions, from
C-1' to 6, are similar to those of (4'-OMe, 3'-OH)-type
tamarixetin [20] and different from those of (4’-OH, 3’-OMe)-
type isorhamnetin and geraldor.

(TIF)

Figure $2 4'-O-methylfisetin (4'MF) does not affect the
MEK or GSK-3 beta pathways. BI6F10 cells cultured in FCS-
free medium overnight were treated with fisetin, 4'MF, or geraldol
(10 mM) for 30 min. MEK/pMEK and GSK-3 beta/pGSK-3
beta were examined. The photographs indicate a representative
set from the duplicate experiments.

(TIF)
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PI3K-AKT %% 5%, TONSA7 24 DESITTHIC
12 GSK (glycogen synthase kinase) 38 &v39 ) VERL
BEIEEL, AVAV Y - YT FY Y TEINESE
HIBLCwa WY, BEELRZLIZZIOGSK3S XS
YR VBILOEELLTBY, $E, /1 YAYYT

%2 RAGE

BEOENEE, BEHY VI UBICHBERNICEAETDTEER
HUBRE(LEY (advanced glycation endproducts : AGE)
EELETD. COAGEICHTDZEHNRAGE (receptor for
AGE) THD, AL/707UY - A——T77ZU~—[CEL.
NERIES |ERTT.
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IR 2 RIBT 5 & GSK3B il s h, 5l&knT
o) VEBASHEENE®. ZZTIVOY VER
{LICEE LT3 HEHIE, AD ORBZNRFHTH LM
BERMEEMS T TOREY VBILZHEI 5 TH 2.
B, A VRY U, 4 VR VYRFED, ZOTHR
® IRS (insulin receptor substrate) -22 ~3 & R&E &
¥hHEk, FUOBRELY VEBESTIERISINS. 2
NOLDZEPLBADA VAU Y - VT FY VIO
TFTREZv0) VBRI ETALEZONS. EHIT,
oDy YEEALIZGSK3p L B VB L L KR
PP2A (protein phosphatase 2A) 12 & 2 BiY v Bk
Lo THHIWENTVS P, FIFLIRS-2 DR EIZPP2A
DEREZTITAZ L IHMESITVEY, ozt
o, ERBCIAHMADOA YAy -7 F) 0T
DIETIZGSK3p HEEALRL PP2ARELZA LT, 77
DY VEBALETTET A FEICEL LoD (B3).

B #eBltesy ) (UHDITDE - REI
BIBAYRVY - Y ITUITORE
AVAYY - VFFY Y TEMRE LR RIET S L
WAHIRDH B, A VRV IGFREY T F Y v 7S
BERE, B, NI, TYRARBEULTCEGNERET L
EPRHONTVWA., A TOERERNI LI, TTA
BV TSR RICIRS-2 # R&E S5 & Fay
FEFL. ZOZERMIIBWTAYRY Y - Y FF
YYTMET T2 LEMPETLIERTRERTS. £
72 BB LR, YR Y -V TFY U TD
ETEBAAL BRROTIEIMEINTNEO®),
Ins0ZEds, ADOEBRBTIRESIATWS
WRDA YR ¥ - 75 v TOETIX, BB
Wt AREBRBTHETRENSRBEN TS, L
LaA6, —H T 7B LTRIEADA ¥ 2 ¥ -
YTFY Y IOBETIZHEICED) VL, ThbbR
ERITVBAL - BREZEETIHMICH. Lzl
TRHEDOA YR ¥ - 7 F ) v ZOETILAD OF
BICH LT, EEEOMAMIHVTWE LIICER
5. IO ERBHOA A Y - VT FY Y TET
S BE, RABEERET A2, BROA
YAV TPV EREETRIICCOR, BB
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mEZ{tt

IL-6, TNF-a
et 1 ‘\\

A2R) 2 FF7YL T

‘(// ?\\*
GSK3g t

T AR i
PP2A |
. 27y CB{Et
l-i—AB

Ve 2]

TIVYINA T —I%

B3 BRI - S TFU L THARBAMSEREE 2 2T A H XL (RS
HRARCEMEE(LDES, MOBICRAGENREIIL, N—% - PIOA R (AB) BBBELYPILHE>TLS.
RAGE DHEIFPMET 01 ROBINENEETERL, WRISHERTS. WEEA VAU VBRI EEERFST.
WA VAU - 2TF UV TDETEY T TREEE, BREL, 90U VBILICEBESR3. D& SIEREE
[EXR—=% - PE0OA ROBRHEDSMDODCETHEREELT. PILYI\AI—RICBLTR—% - P04 RiF1 Y
AUY 2 IFUVIDETEERL, MACVYRUY - 9+ DR FERECBVNTERREREEX G2
CAA : cerebral amyloid angiopathy (B(7 =0« RIM&RE) Lt 23 KNH2IH)

REOBZZA 2y v -
DEBROTERSRB IS (M3) 2,

WIEEE S IZIFIT RIZV VO, 2w Bk RE
T5) A THEICEETHS.

ESIHNZ$%ﬁﬁWﬁﬁ%§WﬂUBU%
AVAYUY - 2 TFU I TDEE

................................................................

TP TR LR

.................................................................

BRA YR Y - VT F Y Y ZORTREEIIBW
THERBEEASIEEI L3O BfEINTWS, F
TERENC LICbbhOBERBEEHAD Y A2
BTV bu—VOERF T AIHN, ERE
DFREHFBEL TV, Zhbnl s AD L

BRIFIC L D RAEORBERICIIENA VR
EHEZMES. UL, WAL VR VRIS
EBEMBEIETVWEOR, HLWIIRELICTT S
REBEL2OPEHL IR o TRV, X5 ICHER
I L BRAEDOREERICIZAS Y R Y ViEFREOA
253, MERFLIHEGL, 2O0BEBIVRROE
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] =it
B

21t

M4 BFHEERORE# (RS

ZEBLUERRBICKD, MEDEL, A1VAUY - YITFUVIDET. FULTENICEIERLS

FODOUVEBEREIERID. —5. BFETRFAPOEEe 41C&D, X—=5 -

FI0OA bOFE

BEOMBESNS. INSORFHEEEL > TRHERDYEA TV

HWICEY, STEFLRBEETHEEZLN, E
BOEIME HWHRE A TS, TOWREEEZRE
T53O0OEMIREZER—VIZOoDENTVE. [~
) VESRHE ISR T 5 2 EATRRE T
Bh (M4), PAEOHRBERICIBITAMAA V2
) VRGOS BLURFEEZHLMCL, Thb%
FGERELTELRLBI I, BREEE) R
ERDBAHADZE, MBIFEROBRNERREFT
b HBAEDOTY - WRERARICEMCTEHLERS
na.

HEE
ERmREA, BETEEEICIZBE, XHHMEEH
FEHRH, MEBARBEEFAOMBICC ZIEHT 5.
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