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Figure 2.

Effects of NOEV on human skin fibroblasts from patients with $-galactosidase deficiency. A: Cells were incubated in the absence

or presence of NOEV for 96 hr and the B-gal activity in lysates were measured (I51T/Y316C; patient #24 and G190D/G190D; patient #18).
B: Fibroblasts from patient with R201C/R201C were cultured with or without NOEV for 96 hr and cell lysates were subjected to Opti-prep
fractionation as described in Materials and Methods. Each fraction was assessed for B-gal activity. Each bar represents the mean4 SEM of
three determinations each done in triplicate. *P<0.05, statistically different from the values in the absence of NOEV. C: Cells were cultured with
or without NOEV for 96 hr and subjected to BODIPY-Cer and anti-golgin97 labeling. Representative images were obtained under confocal

microscope. Bar = 20 um.

Moreover, upregulation of ubiquitinated proteins in lysate from
R201C astrocyte was significantly ameliorated after NOEV
treatment (Fig. 5E).

Discussion

To date, more than 130 mutations in GLBI have been identified
as disease causing [Brunetti-Pierri and Scaglia, 2008; Hofer et al,,
2009, 2010; Suzuki et al., 2008], of which approximately 75%
cause amino acid substitutions. Some of the mutant proteins have
normal or near-normal activity, but they are unstable at neutral
pH in the ER/Golgi apparatus because of inappropriate molecular
folding, and are rapidly degraded by intracellular quality control
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systems [Fan et al., 1999; Suzuki et al., 2009]. Because most of the
novel mutations (except for S541, E131K, and L608P) identified in
this study caused premature termination or frame shift, they
showed no response to NOEV.

In our initial study, we identified NOEV as a potent inhibitor of
human B-gal, and confirmed its chaperone effect [Iwasaki et al.,
2006; Matsuda et al., 2003; Suzuki et al., 2007]. In this study, we
characterized the effect of NOEV on lysosomal trafficking of
mutant R201C protein and on lipid trafficking in patients’
fibroblasts. A novel compound, DLHex-DGJ, which is an
N-alkaylated derivative of 1-deoxygalactonojirimycin, was recently
reported to act as a chaperone for mutant B-gal at much higher
concentrations than NOEV [Fantur et al., 2010].
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Figure 3. Screening of NOEV effects on human mutant p-galactosidase. p-Gal-deficient mouse fibroblasts were transiently transfected with
human normal or mutant B-gal cDNA and incubated with or without NOEV for 48hr. Cell lysates were assessed for B-gal activity. Mock
tranfection was used as a control. Each bar represents the mean -+ SEM of three determinations each done in triplicate. *P<0.05, statistically
different from the values in the absence of NOEV.

To evaluate NOEV effects on different mutations, we performed Gy -gangliosidosis. We estimate that NOEV therapy would be
transient transfection experiments and found that 23% of the effective in approximately 30-40% of the patients. Although
mutants examined were responsive to NOEV. Many of these several mutants (D214Y, W273R, N318H, Y347C, and R590H)
mutations were found in juvenile and infantile form of showed relatively high residual activities, this is most likely
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Figure 4. Structural model of human B-galactosidase protein
and its interaction with NOEV. The tertiary structure of human B-gal
protein and its interaction with NOEV were predicted by computa-
tional analyses as described in Materials and Methods. NOEV is
colored in yellow. Red circles represent location of residues
responsive to NOEV. A blue region represents a typical TIM barrel
including the active site.

because of the overexpression of the mutant proteins. Both human
skin fibroblasts and transfected cells will be necessary for future
screening of chaperone effects [Iwasaki et al., 2006].

The structure of lysosomal enzyme proteins has been
determined either by crystal diffraction analysis or homology
modeling [Dvir et al., 2003; Garman and Garboczi, 2004; Kang
and Stevens, 2009; Lemieux et al., 2006; Rempel et al., 2005].
Molecular interaction of some lysosomal enzymes with their
respective chaperones has been resolved [Flanagan et al., 2009; Jo
et al., 2010; Lieberman et al., 2009]. These studies revealed that
chaperone compounds bind and restore protein conformation of
N370S mutant B-glu protein [Lieberman et al.,, 2009; Lin et al.,
2004; Sawkar et al., 2002]. In the current study, we used a
predicted structural model and thus we have not obtained the
statistical significance. A crystal structure of the P-gal protein
would be warranted for further study.

Various pathophysiological changes including impaired calcium
homeostasis, elevated levels of inducible nitric oxide synthase,
activation of inflammation cascades, accumulation of undegraded
proteins, and elevation of ER stress have been shown in the brain
of Gy -gangliosidosis model mouse [Jeyakumar et al., 2003; Sano
et al., 2009; Tessitore et al, 2004], and alteration in lipid
trafficking has been shown in fibroblasts from Gy, -gangliosidosis
patients [Marks and Pagano, 2002; Puri et al,, 1999]. Then we
examined the relevance of NOEV on the pathophysiology at the
cellular level, and found that NOEV clearly reduced Gy
accumulation in R201C astrocytes. Besides, accumulations of
p62 and ubiquitinated proteins in R201C astrocytes were
effectively suppressed by NOEV providing further evidence on
the efficacy of NOEV.

In summary, we found 22 missense mutations responsive to
NOEYV chaperone effects. We also confirmed that NOEV restored
several of cellular functions in the affected cells. These results
provide further evidence that NOEV is a promising chaperone
compound for B-gal deficiency.
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Figure 5. NOEV reduces Gy; and ubiquitin accumulation in primary
astrocyte from R201C mouse brain. A: Chaperone effect of NOEV on
R201C primary astrocytes. Each point represents means of triplicates
obtained in at least three independent experiments. *P<0.05,
statistically different from the value in the absence of NOEV.
B: Immunostaining with anti-Gy;. Cytoplasmic lysosomal accumulation
of Gy was observed in R201C astrocytes and it was diminished
by NOEV. C: Immunostining with anti-p62. Bar=20pum. D and E:
Immunoblotting with anti-p62 and tubulin (D), and with anti-ubiquitin (E).
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Use of Sample Mixtures for Standard Curve Creation
in Quantitative Western Blots
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Laboratory of Animal Models for Human Diseases, National Institute of Biomedical Innovation,
7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan

Abstract: For accurate protein quantification when using quantitative western blot analysis
with chemiluminescence reagents, standard curves are needed because of the narrow
quantifiable ranges. However, they are often difficult to obtain because authentic proteins
are not always available. Here we present our original and convenient method using a sample
mixture as a scale to create standard curves. This method allowed us to determine the
quantifiable range of target and loading control proteins, making quantitative comparisons
among independent blots more reproducible. Our results indicate that using a sample mixture
to create standard curves is a practical method that guarantees the accuracy and reproducibility

of quantitative western blot analysis.

Key words: chemiluminescence, quantitative western blots, standard curve

Quantitative western blot analysis with chemilumi-
nescence is often used to compare protein expressions
in various biological samples [2]. For precise protein
quantification by western blot, linear ranges, i.e., ranges
of protein levels linearly related to signals on western
blots, have to be confirmed in advance by creating stan-
dard/calibration curves because the linear ranges quanti-
fied by chemiluminescence are quite narrow [1, 3].
However, authentic proteins for making such curves are
not always available. Therefore, it is important to find
alternative materials with which to generate the standard
curve. In this paper, we propose our original and con-
venient method using a sample mixture as a scale for
creating standard curves for comparative protein quan-
tification using western blots. To the best of our knowl-
edge, sample mixtures have not been utilized for standard

curve creation in quantitative western blotting.
Luteinizing hormone receptors (LHR) and a-tubulin
in mouse ovaries were used as target and loading control
proteins, respectively. Ovarian proteins were extracted
from ovaries of 4-week-old A/J females using a Ready-
Prep® sequential extraction kit (Bio-rad, Hercules, CA,
USA). Protein fraction #2 from each ovary was used for
western blots. The protein concentration of each sample
was measured using an EZQ® protein quantification kit
(Invitrogen, Carlsbad, CA, USA). All of the ovarian
protein aliquots from each female (a total of 36 females)
were mixed and the sample mixture was used to create
a standard curve. Protein samples and various volumes
of the sample mixture were separated using SDS-PAGE
with NuPAGE® 4-12% Bis-Tris gels and NuPAGE®
MES SDS Running Buffer (Invitrogen). The proteins
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Fig. 1. Determination of linear ranges in quantitative western blots with chemi-
luminescence using a sample mixture. Linear ranges of band chemilumi-
nescence for LHR and o-tubulin were determined with various volumes
of sample mixture (~1.5 pg/ul): A)1,2.5,5,and 10 x1,B) 0.1,0.5,1, and
2 pl. Band intensity of o-tubulin reached a plateau at 2.5 pl (~3.8 ug
protein) of the sample mixture (A). Plots of band intensities versus applied
volumes for two molecules indicate that linear ranges for both proteins
were less than 2 pl (~3 pg protein). High correlation coefficients (R?)
confirmed good linearities for both proteins (B). At 10 yl (~15 pg protein)
of the sample mixture, the a-tubulin band was a so-called “ghost” band

due to an excess of target protein.

were transferred onto polyvinylidene fluoride (PVDF)
membranes (Pall, Ann Arbor, MI, USA). LHR (~60 kDa)
and a-tubulin (~55 kDa) proteins were visualized by
immunoblot analysis using a SNAP i.d. Protein Detection
System (Millipore, Billerica, MA, USA) with primary
antibodies against mouse LHR (sc-26343, goat antibod-
ies, Santa Cruz Biotechnology, Santa Cruz, CA, USA),
a-tubulin (rabbit antibodies, Rockland Immunochemi-
cals, Gilbertsville, PA, USA), and horse radish peroxi-

dase (HRP)-conjugated secondary antibodies against
goat and rabbit IgG (Jackson ImmunoResearch Labora-
tories, West Grove, PA, USA). Antibody-bound bands
were visualized by chemiluminescence (ECL-plus, GE
Healthcare, Buckinghamshire, UK) and images were
captured with a charge-coupled device (CCD) camera
(LAS-3000, Fujifilm, Tokyo, Japan). The densitometry
of each band was performed using Multigauge V1.0
software (Fujifilm). The linear ranges for LHR and
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Fig. 2. High reproducibility of comparative protein quantification based on standard curves
created with a sample mixture. (A and B) Standard curves from chemiluminescence
intensities using various volumes of sample mixture for a-tubulin () and LHR (
W) were created for two independent western blots with the same sample set (three
samples per set). (C) Comparison of LHR/a-tubulin ratios for two blots (mean +
SD). Higher similarity was achieved in LHR/a-tubulin ratios between blots (A
and B) when the ratios were calculated using relative sample mixture volumes
converted by standard curves (Calibrated) than directly with chemiluminescence

intensities (Raw).

a-tubulin proteins were determined by creating a stan-
dard curve based on various volumes of sample mixture
(Fig. 1). The correlation coefficients were calculated
once good linearities (R? values) were found. To ensure
reproducibility, two independent assays were performed
using the standard curves made from the same sample
mixture (Fig. 2). A set of three samples was measured
using two separate quantitative western blots. Standard
curves for both proteins were obtained as linear ap-

proximations for each blot, using various volumes of the
The concentrations of LHR and
a-tubulin protein were calculated as relative amounts of

sample mixture.

the corresponding proteins in the standard mixture using
linear approximations for each blot (1 unit=amount of
the corresponding protein in 1 y1 of the sample mixture).
LHR protein levels were normalized with those of
a-tubulin proteins. Aliquots from the same tubes of the
sample mixture were used for creating standard curves
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for all blots in Figs. 1 and 2.

This method allowed us to determine linear ranges for
both target and internal control proteins in quantitative
western blots (Fig. 1). The linear ranges may be differ-
ent between the two proteins due to the different affini-
ties of the antibodies. With standard curves, reaction
conditions can be adjusted so that both target and load-
ing control proteins show similar linear ranges. In ad-
dition, out-of-range errors (i.e., saturated immunoreac-
tions) can be determined through standard curve
analysis. For instance, the band intensity of a-tubulin
in 5 pl of the sample mixture was almost the same as
that in 2.5 pl even though the actual amount of a-tubulin
in the former lane was twice as much as that in the latter
lane (Fig. 1A). In this study, various amounts of the
sample mixture using the same immunoblot conditions
were analyzed to determine the linear ranges. Alterna-
tively, the linear range common to both proteins can be
found by adjusting immunoblot conditions such as anti-
body concentrations. The level of target and loading
control proteins in the sample mixture can be interpret-
ed as the average protein content of each sample. There-
fore, the appropriate volume (i.e., total protein content)
of sample for each gel lane for electrophoresis can be
estimated so that all of the samples fit within the linear
ranges. In practice, however, the volume of each sample
should be adjusted to fit within the linear ranges through
preliminary experiments prior to performing quantitative
western blot analysis.

The protein content of multiple blots can be quantita-
tively compared by creating standard curves using the
same sample mixture for each blot (Fig. 2). Precise
comparisons of protein content among blots are difficult
when the content is calculated directly by band inten-
sity without generating a standard curve. This irrepro-
ducibility is mainly due to variation in chemilumines-
cence reactions across blots (Raw in Fig. 2C). On the
other hand, samples can be compared among different
blots because the difference in the chemiluminescence
reaction is corrected when the values are calculated

based on the standard curve for each blot (Calibrated in
Fig. 2C). When the supply of sample mixture is de-
pleted, a newly prepared sample mixture can be used in
the same experiment if the results are compared and
normalized by generating a new standard curve. Thus,
the standard mixture is a useful tool for generating an
accurate standard curve for measuring protein expres-
sion.

Although a standard curve based on a sample mixture
cannot determine absolute protein concentration as can
a standard curve based on authentic proteins, it is a prac-
tical tool for comparing the protein expressions of mul-
tiple samples via western blot analysis. Moreover,
generating a standard curve based on a sample mixture
is uncomplicated because authentic/standard proteins are
not needed. Thus, we propose that sample mixtures can
be used as an alternative to authentic/standard proteins
to determine the linear range of standard curves for west-
ern blot quantification. In experiments using laboratory
animals, researchers are required to obtain comparable
amounts of information from fewer animals. With our
method described here, protein quantification in animal
samples would be more accurate and reproducible, re-
sulting in better data acquisition with reduced animal
testing.
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Abstract: Diabetes mellitus (DM) is one of the major non-genetic risk factors for Alzheimer disease (AD). However, the
mechanism by which DM increases the risk of AD has not been elucidated. Here, we summarize recent findings to ad-
dress this question. Whereas neuropathological studies in humans suggest that DM does not increase AP accumulation in
the brain (a major hallmark of AD), earlier works in animal models show that ABdoes accumulate. Therefore, alternate
mechanisms might exist. Recent studies using the human brain indicate that insulin signaling is impaired in the AD brain.
In neurons, this insulin signaling plays a key role in modulating synaptic function and neuronal senescence besides regu-
lating tau phosphorylation, another hallmark of AD. On the other hand, in cerebrovessels, DM causes vascular remodel-
ing, which involves increased RAGE (receptor for advanced glycation endproducts) expression, and AD is associated with
cerebrovascular amyloid angiopathy (CAA). Our recent study involving AD mice with DM has revealed that a vicious
circle underlies the interaction between AD and DM. Interestingly, in our mouse model, AD increased RAGE expression,
and DM worsened CAA. The contribution of vascular factors such as RAGE expression and CAA to the impairment of
insulin signaling will be discussed. This impaired insulin signaling might be a possible link between AD and DM.

Moreover, insulin signaling is also involved in the mechanism of aging, decreasing with an increase in age. An identifica-
tion of the mechanism whereby DM modifies the pathological condition of AD through the modulation of insulin signal-

ing is required to develop potential therapeutics for AD not only with but also without DM.

Keywords: Alzheimer disease, diabetes mellitus, insulin signaling, AP, vascular factor.

1. INTRODUCTION

Alzheimer disease (AD) is a progressive neurodegenera-
tive disorder. Although the global prevalence of AD is set to
rise to more than 35 million people [1], current clinical ther-
apy for AD is limited to choline esterase inhibitors and N-
methyl-D-aspartate activated (NMDA) receptor antagonists.
Recently, the AR cascade hypothesis that modifies the dis-
ease, has been exploited for its therapeutic potential how-
ever, this is not yet available for use in clinical settings. To
enable the future society care for large numbers of the eld-
erly, alternative strategies to treat the disease should be en-
couraged. It is well known that a specific set of genetic and
non-genetic risk factors contributes to the onset of AD [2].
Non-genetic risk factors include age, duration of education,
DM (3], and hypertension [4]. Numerous epidemiological
studies have demonstrated that patients with DM have a sig-
nificantly higher risk of developing AD [3, 5]. As 285 mil-
lion people battle DM worldwide [6], the mechanism by
which DM increases the risk of AD should be understood in
order to improve public health, but progress in this regard
has been slow.
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Cognitive dysfunction is the major symptom observed in
AD patients. It is reported that raising plasma insulin levels
through intravenous infusion and keeping plasma glucose at
a fasting baseline levels improves cognitive function in pa-
tients with AD [7]. Furthermore, taking advantage of the fact
that insulin receptors are also localized in olfactory areas [8],
it is reported that intranasal insulin improved cognitive func-
tion in AD [9] and healthy adults [10]. These findings are
also supported by the results from animal models [11,12].
On the other hand, two clinical studies demonstrate that an
anti-DM drug, pioglitazone (a member of thiazolidinediones
{TZD}), which are peroxisome proliferator activated recep-
tor (PPAR) v agonists [13], improves cognitive function in
patients with AD and mild cognitive impairment (MCI) with
DM [14, 15]. Consistent with these findings, in AD model
mice, pioglitazone normalized the cerebral glicose utiliza-
tion response to increase neuronal activity [16]. Although
larger double-blind, randomized and placebo-controlled
studies are required, it is now becoming clear that a thera-
peutic potential might emerge if the missing link between
AD and DM is explored.

In our recent studies, novel animal models mirroring the
pathologic conditions of AD and DM helped us investigate
the pathophysiological interaction between these two dis-
eases. AD transgenic mice (APP23) were crossed with two
types of DM mice (ob/odb and Nagoya-Shibata-Yasuda
(NSY) mice), and their metabolic and brain pathological
characteristics analyzed [17]. Ob/ob mice are leptin-deficient

© 2011 Bentham Science Publishers Ltd.
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mice exhibiting obesity and DM, whereas NSY mice are
established as an inbred animal model with spontaneously
developing DM [18, 19]. Novel AD mouse models with DM
manifesting early onset of cognitive dysfunction were devel-
oped [17]. The results of this study will be adopted in this
review to discuss the relationship among insulin signaling,
AD, and DM.

In addition to DM, aging is an important non-genetic risk
factor for AD [20, 21]. Many of the central nervous system
(CNS) changes observed in patients with DM and animal
models of DM are reminiscent of the changes seen during
normal aging [22]. Furthermore, insulin signaling is involved
in the mechanism of aging, and insulin resistance is associ-
ated with aging [23-25]. Therefore, an identification of the
mechanism by which DM modifies the pathological condi-
tion of AD might help develop potential therapeutics for AD
not only with but also without DM. In this review, recent
findings are summarized to clarify the role of insulin signal-
ing in the relationship between AD and DM. In the future,
this can prove beneficial for the identification of potential
therapy for AD.

2. DIABETES MELLITUS AND ALZHEIMER DIS-
EASE

Numerous epidemiological studies have shown that pa-
tients with DM have a significantly higher risk of developing
AD [3, 5, 26]. In the Rotterdam study, DM almost doubled
the risk of dementia and AD [3]. However, neuropathologi-
cal studies in patients with AD suggested that DM did not
increase AD pathological changes always [27], though ear-
lier work using animal models suggests that it does [28, 29].
This suggests alternate mechanisms might exist. Consistent
with clinical observations, it was recently found that the on-
set of DM exacerbates AD-like cognitive dysfunction with-
out an increase in brain AB burden in APP*-0b/ob mice [17].
Furthermore, feeding a high-fat diet caused severe memory
deficit in APP™-NSY mice, without any increase in brain AB
loads [17].

APP"-0b/ob mice also showed an accelerated DM pheno-
type as compared to ob/ob mice, suggesting that the patho-
logical amyloid in AD might aggravate the DM phenotype.
Similarly, APP*-NSY fusion mice also showed a more se-
vere glucose intolerance as compared to NSY mice [17].
These findings suggest that a link underlying the association
between AD and DM. In these mice, it was also found that
brain insulin signaling is impaired [17]. Therefore, in the
following sections, we summarize the physiological function
of insulin signaling in the brain, in order to consider the role
of impairment of insulin signaling in this crosstalk.

3. ROLE OF INSULIN SIGNALING IN CNS
3.1. Introduction

Insulin signaling plays significant roles in glucose
metabolism in the periphery as also in brain function. It is
presumed that insulin-related signaling systems evolved
millions of years ago, predating the appearance of
vertebrates [30]. In vertebrates, insulin-related signaling in-
cludes insulin-like growth factor (IGF) I and II. To fulfill its
function, insulin binds to the « subunit of the insulin recep-
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tor, which activates tyrosine kinase in the B subunit. Subse-
quently, IRS-1 protein undergoes tyrosine phosphorylation
and binds phosphatidylinositol 3-kinase (PI3K), acting as a
multisite docking protein to bind signal-transducing mole-
cules [31]. Insulin signal transduction also involves the
PI3K-AKT pathway, with downstream involvement of gly-
cogen-synthase kinase-3 (GSK3)B [32-34]. GSK3} is recog-
nized as an integrator of many signaling pathways [35] and
has been implicated in AD [36]. IRS-1 and IRS-2 exhibit a
high degree of structural homology, are expressed in the
brain, and are thought to be responsible for transmitting the
insulin signal from the insulin receptor to the intracellular
effectors. Phosphorylation of serine residues on IRS proteins
is a key step in the negative feedback control of insulin sig-
naling under both physiological and pathological conditions
[37]. However, both IRS-1 and IRS-2 function in a distinct
manner to regulate glucose homeostasis [38]. Indeed, in IRS-
1-deficient mice, IRS-2 provides signal transduction to major
pathways of insulin signaling [39]. On the other hand, dis-
ruption of IRS-2 causes DM owing to insulin resistance [40,
41], without a compensatory mechanism via IRS-I. How-
ever, cross-breeding of IGF-I transgenic mice with IRS-1-
deficient mice reduces IGF-1-stimulated brain growth [42],
suggesting a significant role of IRS-1 in IGF-1 signaling.

3.2. Existence of Insulin Signaling in CNS

Growing evidence suggests that insulin receptors are
ubiquitous in the CNS [8, 43, 44]. Staining with radioactive
insulin shows that the brain, including the cortex and the
hippocampus, is well supplied with insulin receptors [8, 44].
Circulating insulin accesses the brain by crossing the blood-
brain barrier (BBB) [45] and executes pivotal functions in
the CNS [46, 47]. In addition to insulin from the circulation,
locally synthesized insulin in the brain also exists [48],
though in small amounts [45]. These reports suggest that the
key molecules of insulin signaling exist in the brain.

3.3. Role of Insulin Signaling in Synaptic Function

The role of insulin signaling in synaptic function has re-
cently received much attention [49-52]. Importantly, the in-
sulin receptor is a component of CNS synapses in the post-
synaptic density [52]. Intranasal insulin delivery in mice
evokes a robust phosphorylation of Kv1.3, a voltage-gated
potassium channel, and its association with the insulin recep-
tor at the postsynaptic site in the olfactory bulb besides in-
creasing object memory recognition [12]. In humans, as
mentioned before, insulin improves cognition in AD {7, 9].
These data suggest that insulin can modulate cognitive func-
tion.

Among glucose transporters in the brain, glucose trans-
porter 4 (GLUT4) is an insulin-regulated glucose transporter
[53] and is also expressed by numerous neurons in the brain,
including the cortex and the hippocampus. Intracerebroven-
tricular administration of insulin stimulates a translocation of
GLUT4 to the plasma membrane in the rat hippocampus,
causing hippocampal neurons to rapidly increase glucose
utilization during increases in neuronal activity [54]. For
learning and memory, translational control at the synapse is
also an important process [55]. Translational control via the
mammalian target of rapamycin (mTOR) pathway is espe-
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cially critical for this process in neurons [56-63]. The effects
of insulin on mTOR are observed in the brain [64, 65] and
peripheral organs [66, 67]. Insulin actually stimulates post-
synaptic density-95 protein translation via the PI3K- protein
kinase B (PKBYAKT- mTOR signaling pathway in the hip-
pocampus [68].

Similarly, IGF-I and its receptor also exist in the CNS
[69-71]. IGF-1 is a well-known key regulator of energy me-
tabolism and growth [72]. In addition to functions in the pe-
riphery, its function in the CNS has emerged. IGF-1 plays a
key role in mediating environmental enrichment effects on
retinal development [73]. Interestingly, an analysis of brain-
specific insulin receptor knockout mice, with a complete loss
of insulin-mediated activation of phosphatidylinositol-3
kinase (PI3K), shows no alteration of neuronal survival,
memory in the Morris water maze test, and basal brain glu-
cose metabolism [74]. One possible explanation for this ob-
servation might be the compensation of IGF receptor signal-
ing for insulin signaling.

Conversely, memory formation is associated with chan-
ges in expression of insulin signaling molecules at a specific
site. After long-term memory consolidation following a wa-
ter maze, gene expression of the insulin receptor is up-
regulated in the CA1 [75]. It is well known that physical
activity preserves cognition in the aging brain. Physical ac-
tivity also reportedly modifies the effects of learning on the
expression of genes involved in insulin signaling [76]. Thus,
memory formation might be associated with expressional
changes of insulin signaling molecules.

Even in invertebrates, the effects of DAF-2 (insulin/IGF-
1 receptor) mutations modulate learning behavior in
Caenorhabditis elegans (C. elegans) [77]. In Drosophila, the
insulin receptor also functions in axon guidance as a guid-
ance receptor [78]. Taken together, these findings indicate
that insulin signaling exists in the CNS and plays key roles
to modulate synaptic function and memory formation.

4. LEVEL OF INSULIN SIGNALING IN AGING AND
DISEASE

4.1. Level of Insulin Signaling in Normal Aging

Clinically, in the human brain, insulin concentrations
decrease with aging, as does brain insulin receptor density
[79]. Old animals exhibit impaired in vivo insulin receptor
kinase activity in the liver [80]. In peripheral organs, old
animals show impaired insulin receptor kinase activity [80],
PI3K activity [81] and IRS-2 tyrosine phosphorylation [82].
Age-dependent impairment of insulin-insulin receptor sig-
naling system appears to be observed throughout the body,
including the brain [79].

Epigenetic modifications, such as DNA methylation and
the post-translational modification of histone proteins, regu-
late many aspects of genome function, including gene ex-
pression [83]. Disturbances within the epigenetic landscapes
during aging can potentially influence cellular function such
as memory formation [83, 84]. Thus, it might be safe to
speculate that the expressional changes in insulin signaling
molecules by age-related variations during epigenetic modi-
fication contribute to aging-associated memory impairment
[83, 85].

Sato etal.

4.2. Level of Insulin Signaling in AD

The levels of insulin and IGF-1 were significantly re-
duced in advanced AD relative to conirols [86]. On the other
hand, the insulin receptor reportedly increases in AD [79],
but decreases in advanced AD [86] relative to controls. In
contrast, the IGF-I receptor levels remain unchanged in AD
[79]. Interestingly, tyrosine kinase activity, a signal transduc-
tion mechanism common to both receptor systems like IRS-
1, IRS-2 and PI3K-AKT, is reduced in AD relative to con-
trols [79, 86]. Lowered insulin-induced PI3K activation is
also found in peripheral blood mononuciear leukocytes from
patients with AD [87]. Patients with very mild AD in whom
dementia had progressed, had marked decreases in insulin
and hyperglycemic memory facilitation [7, 88]. Taken to-
gether, these findings indicate that insulin signaling is im-
paired in the AD brain.

5. MECHANISMS OF IMPAIRED INSULIN SIGNAL-
ING IN AD AND DM

5.1. Previously Reported Mechanisms of Impaired Insu-
lin Signaling in AD and DM

Thus far, as mentioned, the mechanism by which insulin
signaling is impaired in AD, has not yet been elucidated. In
postmortem brains, insulin-degrading enzyme activity,
which also degrades AB, is higher in AD brains than in con-
trols [89]. An increase of insulin degrading enzyme (1DE)
activity may decrease insulin levels in the brain [90], and
thereby impair insulin signaling in the AD brain. This is one
possible explanation for impaired insulin signaling in the AD
brain.

Another possible explanation is based on impaired brain
insulin transport. Increased peripheral insulin is associated
with cognitive dysfunction [91, 92]. It is reported that AD
patients have lower CSF insulin, increased peripheral insu-
lin, and a reduced CSF-to-plasma insulin ratio compared
with controls [93]. Increased peripheral insulin might affect
brain insulin transport from plasma to the CNS. Higher pe-
ripheral insulin induced by a high-fat diet is associated with
reduced brain insulin transport from plasma to the CNS in
experimental animals [94]. Interestingly, in mice with in-
creased peripheral insulin from a high-fat diet, intranasal
insulin delivery is no longer effective in increasing long-term
object memory recognition [12]. This study suggests that a
high-fat diet causes brain insulin signaling dysfunction.

5.2. Another Possible Mechanism of Impaired Insulin
Signaling in AD and DM

Another possible mechanism responsible for the impair-
ment of insulin signaling in AD with DM is proposed. We
have reported that APP™-0b/ob mice show cerebrovascular
inflammation and severe amyloid angiopathy [17]. In hu-
mans, vascular changes in the brain are observed in AD and
DM [95-97]. In AD, cerebral amyloid angiopathy (CAA) is
one of the major characteristics observed in the brain. In
DM, vascular remodeling is a major feature [98-101], and
expression of receptor for advanced glycation endproducts
(RAGE) increases in such remodeled vasculature. Here, we
introduce CAA and RAGE first, and then discuss their rela-
tion to inflammation.
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Although the incidence of CAA increases with age [102,
103], being observed in one third of the brains in elderly
subjects [104], CAA is especially associated with cerebral
hemorrhage [105, 106] and AD [103, 107-110]. Electron
microscopy reveals that CAA shows extensive arteriolar
deposition of amyloid filaments with an apparent destruction
of the media and intact endothelium [111, 112]. Till date, the
source of CAA is unknown. However, APP23 mice with an
APP-null background develop similar degrees of both
plaques and CAA, providing evidence that a neuronal source
of AP is sufficient to induce CAA [113]. Exacerbation of
CAA is indeed associated with cognitive impairment in APP
mice with DM [17]. Vascular remodeling induced by DM
might contribute to the increase of CAA in these mice.

Vascular remodeling is associated with the expression of
specific proteins. Chronic hyperglycemia stimulates the for-
mation of advanced glycation endproduct (AGE). Interaction
of aldoses such as glucose and ribose with proteins initiates a
chain of nonenzymatic reactions leading to the covalent ad-
dition of AGE to proteins [114,115]. AGE accumulates in
vascular tissue at accelerated rates in diabetes [116]. RAGE
is a cell surface receptor for AGE and a member of the im-
munoglobulin superfamily of receptors [116, 117] and also
mediates amplification of inflammatory responses [118-122].
Interestingly, AP is also one of the ligands for RAGE [122,
123]. An experimental study also suggests that intracerebral
AP interaction with RAGE at the blood-brain barrier (BBB)
causes circulating T cell infiltration [118] and increases ex-
pression of proinflammatory cytokines [122]. RAGE expres-
sion and inflammation are indeed enhanced in the vascula-
ture of APP Tg mice [17] and APP/Presenilin-1 double Tg
[124] with DM at a young age.

Notably, inflammatory changes are also observed in the
AD brain. A clinical study reveals that patients with DM and
dementia have an increased cortical interleukin-6 (IL-6) con-
centration [125]. IL-6 is also an independent predictor of
DM and correlates with insulin resistance [126]. In our
ADxDM mice, IL-6 was upregulated around the cerebral
vasculature [17]. Moreover, insulin signaling is also im-
paired in these mice [17]. The cross talk between inflamma-
tory signaling and insulin signaling has been intensively in-
vestigated, especially in peripheral systems. For example,
IL-6 induces insulin resistance in adipocytes [127, 128] he-
patocytes [129, 130], skeletal muscle [131] and endothelial
cells [132, 133]. In turn, insulin antagonizes 1L-6 signaling
in adipocytes [134]and hepatocytes [135]. Another inflam-
matory cytokine, TNF-¢, also induces insulin resistance
[136]. In ADxDM mice, CAA [17] and RAGE expression
[17, 124] is enhanced. Interaction between A and RAGE
might lead to inflammation and subsequent modulation of
insulin signaling (Fig. 1). This cross talk between insulin
signaling and inflammatory signaling might also contribute
to the exacerbation of cognitive function in AD with DM.

6. INSULIN SIGNALING, TAU, DM, AND AD

6.1. Tau Pathology in AD, DM, and Normal Aging Brain

In AD, paired helical filament (PHF)-tau is one of the
major pathological findings. While normal tau promotes the
assembly and stabilization of microtubules, abnormally hy-
perphosphorylated tau sequesters normal tau and disrupts
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microtubules [137, 138]. In PHF-tau, 19 phosphorylation
sites have been identified; all the phosphorylation sites ex-
cept for one site are localized in the amino- and carboxyl-
terminal flanking regions of the microtubule-binding domain
[139]. Even in nondemented patients aged over 75 years,
neurofibrillary degeneration with PHF-tau is present in vari-
able amounts in the hippocampal regions [140- 144]. Simi-
larly, age-related phosphorylation of tau is also observed in
the mouse brain [145]. In summary, these findings indicate
that tau phosphorylation increases with age.

Interestingly, phosphorylation of tau at some of the ab-
normally hyperphosphorylated sites in AD is increased in the
DM brain [146]. In experimental db/db mice, tau phosphory-
lation is also increased in the cortex and the hippocampus
compared with controls [147]. In addition, just over 16
weeks of a high-fat diet in mice significantly increased the
level of tau [148]. The mechanism by which DM promotes
hyperphosphorylation of tau is yet to be elucidated, but it
might involve impairment of insulin signaling.

6.2. Insulin Signaling in Tau Metabolism

Mounting evidence suggests a role of insulin signaling in
tau phosphorylation. Insulin signal transduction involves the
PI3K-AKT pathway, with downstream involvement of gly-
cogen-synthase kinase-3 (GSK3)B [32-34]. Insulin and IGF-
1 inhibit tau phosphorylation in neurons through the inhibi-
tion of GSK3P via the PI3K-AKT signaling pathway [149].
Conversely, loss of either insulin [150], the insulin receptor
[74], or IRS-2 [151- 153] results in the hyperphosphorylation
of tau. Together, these findings indicate that impaired insulin
signaling might increase tau phosphorylation, partly via the
activation of GSK3p. In general, protein phosphorylation is
regulated by protein kinases and phosphatases. In the case of
tau, protein phosphatase 2A (PP2A) dephosphorylates tau at
multiple sites [154]. Disruption of the IRS-2 gene also down-
regulates PP2A [154]. These findings indicate that impaired
insulin signaling might induce tau phosphorylation, mainly
via activation of GSK3Band inactivation of PP2A.

In an experimental model, streptozotocin (STZ) causes
DM via decreased autophosphorylation of the insulin recep-
tor-kinase in lower doses [155] as also by cytotoxicity result-
ing from DNA damage in the pancreatic B-cells via the glu-
cose transporter 2 in higher doses [156]. The low doses of
STZ in the brain and high doses in the periphery downregu-
late expression of insulin receptors in the brain [157, 158].
Besides genetic models, dysfunction of the brain insulin sys-
tem in both STZ-treated mice [158, 159] and rats [157] also
generates hyperphosphorylated tau protein without any for-
mation of PHF-tau. STZ exacerbates tau pathology only in a
transgenic mouse model that over-express the P301L mutant
human tau [160]. Collectively, the reduction of insulin sig-
naling increases tau phosphorylation, but this increase is not
enough to lead to the formation of PHF-tau.

7. ROLE OF INSULIN SIGNALING IN NEURONAL
SENESCENCE AND FOLDING AND ASSEMBLY OF
PROTEIN

There is a notion that insulin signaling might modulate
neuronal senescence. Insulin/IGF-like signaling is an evolu-
tionarily conserved pathway determining the life span in
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Diabetes
Mellitus

Fig. (1). Possible link among insulin signaling, diabetes mellitus (DM), and Alzheimer disease (AD)

A vicious circle underlies the interaction between AD and DM. In AD and DM, insulin signaling is reduced in the brain. Insulin signaling
also plays a pivotal role in the pathological interactions between AD and DM. Impaired insulin signaling might affect synaptic function and
neuronal senescence and increase tau phosphorylation, accelerating the predisposition to AD. Under such circumstances, AB can easily drive
the development of AD in patients at risk. DM is associated with vascular remodeling, which involves increased RAGE expression, and AD
is associated with cerebrovascular amyloid angiopathy (CAA). AD increases RAGE expression, and DM worsens CAA. Inflammation
caused by vascular factors such as RAGE expression and CAA might play significant roles in impairing insulin signaling. GSK38, glycogen-

synthase kinase-3B, PP2A, protein phosphatase 2A.

yeast, Drosophila, C. elegans and mouse [161, 162]. In C.
elegans, neuronal DAF-2, the homolog of IR/IGF-1R, con-
trols life span [163,164]. Loss of CHICO, a Drosophila IRS,
also extends life span [165]. Furthermore, a loss of IRS-2 in
only the CNS extends life span in mice [166]. These data
indicate that loss of insulin signaling in the brain extends life
span in vivo.

Moreover, loss of DAF-2 reduces AB42 toxicity, by de-
creasing soluble AP oligomers [167]. In mice, reduced IGF
signaling also protects against AB-associated behavior im-
pairment, by decreasing soluble AP oligomers, while in-
creasing APaggregates [168]. This result suggests that IGF
signaling might affect protein folding and assembly. On the
other hand, Freude et al. report that a reduction of IGF sig-
naling decreases AP deposition [153]. More notably, a loss
of IRS-2 is reported to reduce AP deposition [152, 153]. In-
sulin/IGF signaling is reportedly also involved in AP genera-
tion, clearance, and trafficking [49, 90, 169-173]. However,
ADxDM mice manifest a reduction in insulin signaling, but
unchanged brain A levels, with increased ABdeposition in
the cerebral vasculature {17]. In ADxDM mice, the reduced

insulin signaling might affect protein folding and assembly
and increase clearance from the brain through the BBB. Be-
cause DM induces vascular remodeling, AR might easily be
captured by the vasculature. Thereby, CAA might be aggra-
vated in ADxDM mice.

Notably, earlier work using Tg2576 on high fat diets
suggests that DM increases ABload in the brain [28, 29].
Discrepancies between those experiments and ours [17]
might be explained by the degrees of impairment of insulin
signaling, which would control AP levels in the brain [152,
153].

8. ROLE OF INSULIN SIGNALING IN WORSENING
OF DM BY AD

It was also observed that APP -0b/ob mice show an ac-
celerated DM phenotype as compared to ob/ob mice, sug-
gesting that pathological changes in amyloid in AD can ag-
gravate the DM phenotype. Similarly, APP-NSY fusion
mice showed a more severe glucose intolerance as compared
with NSY mice [17]. In patients with AD, alterations in glu-
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cose metabolism are also reported [174, 175]. Recent evi-
dence points to a crucial role of the central nervous system in
controlling glucose homeostasis [176, 177]. Alterations
within this hypothalamic/peripheral organ circuit can cause
increased plasma glucose levels [178], systemic insulin sen-
sitivity {179], and pancreatic B cell proliferation [180]. Sev-
eral hormones in the hypothalamus, including insulin, regu-
late metabolism in the liver and other peripheral tissues
[181-184]. Insulin signaling is especially involved in food
intake [183] besides being required to inhibit glucose pro-
duction [184].

There are several possibilities regarding the mechanism
by which alterations in glucose metabolism are observed in
patients with AD. One possibility is based on the presence of
amorphic AB plaques in the hypothalamus in patients with
AD [185]. It is reported that AB can inactivate the insulin
receptor substrate in neurons {186]. AP in the hypothalamus
might impair insulin signaling at the site. Another possibility
takes into account the finding that AP deposits are located in
degenerating pancreatic islets B-cells of patients with DM
[187] besides skeletal muscle [188]. Yet another likely the-
ory is that of enhanced AP accumulation in peripheral tis-
sues, which might impair insulin secretion and cause insulin
resistance in patients with AD. A final possibility is based on
our recent findings wherein plasma AP levels increase after
glucose loading in AD transgenic mice (APP23 and
APP/presenilin-1) [189]. Increased plasma A might affect
insulin signaling directly in peripheral tissues or enhance AB
accumulation in these tissues. Further investigation is war-
ranted to elucidate the mechanism of alterations in glucose
metabolism in DM with AD.

9. CONCLUSION

To conclude, insulin signaling plays a pivotal role in the
pathological interaction between AD and DM. Impaired in-
sulin signaling might affect synaptic function and neuronal
senescence besides increasing tau phosphorylation, thus ac-
celerating the predisposition to develop AD. Under such
conditions, AB can easily drive the development of AD in
patients at risk. Interestingly, the loss of insulin signaling
decreases the level of AP in the brain. The question that re-
mains is whether or not impaired insulin signaling in AD is a
compensatory mechanism to reduce the level of AB in the
CNS. If such is the case, impaired insulin signaling might
also spur the development of AD through increased tau
phosphorylation. To determine a therapeutic strategy for AD,
the role of insulin signaling in AP metabolism is an essential
issue to be resolved. Of note, a vicious cycle might underlie
the interaction between AD and DM. Insulin signaling plays
an important role in this cycle.

Moreover, insulin signaling is involved in the mechanism
of aging, decreasing with age. Identifying the mechanism
whereby DM modifies the pathological condition of AD
through the modulation of insulin signaling, might contribute
to the development of potential therapy for AD not only with
but also without DM.
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Introduction

Melanin plays an important role in animals by preventing the
cellular damage induced by ultraviolet (UV) light. When keratino-
cytes in the skin are exposed to UV irradiation, alpha-melanocyte
stimulating hormone (alpha-MSH), a peptide hormone, is processed
from the precursor peptide proopiomelanocortin and is secreted as a
paracrine factor [1,2,3,4]. Secreted alpha-MSH subsequently binds
to its receptor, the melanocortin 1 receptor, on the membrane of
melanocytes and activates adenylyl cyclase, resulting in increased
levels of intracellular cAMP. cAMP then activates protein kinase A
(PKA), which phosphorylates the transcription factor cAMP
response element (CRE)-binding protein (CREB) at Serl33,
initiating the transcriptional cascades of the melanogenic program,
e.g., the induction of microphthalmia-associated transcription factor
(Mitf) expression [5,6]. Finally, MITF induces the expression of

@ PLoS ONE | www.plosone.org

tyrosinase, which initiates the catalysis of melanin from tyrosine by
the sequential hydroxylation [7].

Flavonoids are polyphenolic compounds that are widely
distributed in vegetables and fruits and protect organisms from
damage caused by UV exposure and reactive oxygen species [8,9].
Flavonoids consist of two parts: one is a basic skeleton having three
rings (A, B, and C) with one or two oxygen molecules (¢.g., flavan
or flavone, respectively), while the other part consists of modified
side chains, ¢.g., hydroxy, methoxy, and O-glycosyl groups [10].

Based on the health-promoting effectiveness of flavonoids and
their low levels of toxicity, they are used as supplements to prevent
disease, such as cancer and metabolic syndromes. In addition,
flavonoids, ¢.g., procyanidins [11] and quercetin [12], are added to
cosmetic products to suppress melanogenesis by inhibiting
tyrosinase. However, other flavonoids have been reported to have
the opposite effect on melanogenesis. For example, nobiletin [13]
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