Abstract

Background
Identification of the target proteins of bioactive compounds is critical for elucidating

the mode of action; however, target identification has been difficult in general, mostly
due to the low sensitivity of detection using affinity chromatography followed by
CBB staining and MS/MS analysis.

Results

We applied our protocol of predicting target proteins combining in silico screening
and experimental verification for incednine, which inhibits the anti-apoptotic function
of Bcl-xL by an unknown mechanism. One hundred eighty-two target protein
candidates were computationally predicted to bind to incednine by the statistical
prediction method, and the predictions were verified by in vitro binding of incednine
to seven proteins, whose expression can be confirmed in our cell system.

As a result, 40% accuracy of the computational predictions was achieved successfully,
and we newly found 3 incednine-binding proteins.

Conclusions

This study revealed that our proposed protocol of predicting target protein combining
in silico screening and experimental verification is useful, and provides new insight

into a strategy for identifying target proteins of small molecules.

Background

To understand complex cell systems, functional analysis of proteins has become the
main focus of growing research fields of biology in the post-genome era; however, the
roles of many proteins in cellular events remain to be elucidated. Among various

methods to elucidate protein functions, the approach of chemical genetics is notable,
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with small molecular compounds used as probes to elucidate protein functions within
signal pathways [l, 2]. Indeed, several bioactive compounds have led to
breakthroughs in understanding the functional roles of proteins [3-11]; however, one
significant hurdle to developing new chemical probes of biological systems is
identifying the target proteins of bioactive compounds, discovered using cell-based
small-molecule screening.

A variety of methods and technologies for identifying target proteins have been
reported [12]. Among them, affinity chromatography is often used for identifying
biological targets of multiple small molecules of interest; however, it is usually very
difficult to identify compound-targeted protein with low expression because of the
low sensitivity of detection using coomassie brilliant blue (CBB) staining and MS/MS
analysis. Thus, target identification of small molecules using affinity chromatography
is severely limited. To overcome the limitations of affinity chromatography, we
propose a new protocol combining in silico screening and experimental verification
for identification of target proteins.

In our previous work, we developed an in-silico screening system, called
“COPICAT” (Comprehensive Predictor of Interactions between Chemical compounds
And Target proteins), to predict the comprehensive interaction between small
moleculesl and target proteins [13]. If a target protein is input in the system, a list of
chemical compounds which are likely to interact with the protein is predicted. In our
previous work, several potential ligands for the androgen receptor were predicted by
this system, these predictions were experimentally verified, and a novel aﬁtagonist
was found [14]. On the other hand, if a chemical compound is input in the system, a
list of proteins which are likely to interact with the compound is predicted by the

system.



Previously, we isolated the natural product incednine from the fermentation broth of
Streptomyces sp. ML694-90F3, which consists of a novel skeletal structure, enol-ether
amide in the 24-membered macrolactam core, with two aminosugars. In addition, it
was reported that incednine induced apoptosis in Bel-xL-overexpressing human small
cell lung carcinoma Ms-1 cells when combined with several anti-tumor drugs
mcluding adriamycin, camptothecin, cisplatin, inostamycin, taxol, and vinblastine
[15]. Because this compound inhibits the anti-apoptotic function of Bcl-2/Bcl-xL
without affecting its binding to pro-apoptotic Bcl-2 family proteins, it may target
other proteins associated with the Bcl-2/Bcl-xL-regulated apoptotic pathway. To
address the mode of action of incednine underlying its interesting function, we first
synthesized affinity-tagged incednine which is biologically active (data not shown),
and proteins bound to incednine were separated by SDS-PAGE followed by CBB
staining, and each protein band was directly identified using liquid chromatography-
tandem mass (LC-MS/MS) spectrometry analysis. Fifty-three proteins were identified
as listed in Table 1, and some of which, such as eukaryotic initiation factor
4A3(elF4A3), prolyl 4-hydroxylase, beta subunit (PDI), heat shock protein 70
(HSP70), and protein phosphatase 2A (PP2A) were reported to relate to cancer cell
survival[16-19]. Therefore these were knocked down by siRNA or inhibited by a
specific inhibitor, and assessed for their ability to modulate Bel-2/Bel-xL anti-
apoptotic function, as does incednine. However, the candidate proteins tested did not
appear to be the target responsible for modulating Becl-2/Bcl-xL anti-apdptotic
function (Additional file 1). Therefore, the target protein of incednine responsible for
modulating Bcl-2/Bcel-xL anti-apoptotic function has not yet been determined, and

further candidate proteins as targets of incednine are expected to emerge.



In this context, we propose a new protocol combining in silico screening and
experimental verification for the identification of target proteins. We first predicted
the candidate proteins likely binding to the input compound by applying the
COPICAT system, and then employed western blotting to detect the binding of
predicted proteins to the input compound. This method solves the problem of the low

sensitivity of the traditional method (as illustrated in Figure 1).

Results

Computational Prediction of Target Proteins for Incednine
We set the chemical compound “incednine” as the binding ligand, and candidate

proteins for the targets of incednine were computationally predicted from the KEGG
database by using the statistical prediction method for protein-chemical interaction.
The training dataset of protein-chemical interactions to construct the SVM-based
statistical learning model was collected from the approved DrugCards data in the
DrugBank database [20], and 53 interactions with incednine obtained from our
previous binding experiments using affinity chromatography (see Table 1 and
Methods) because the prediction accuracy was increased when more training samples
of protein-chemical interactions were given to the SVM-based statistical learning
model. Among 24,245 human proteins in the KEGG repository, 182 proteins were
newly predicted as positive, that is, to interact with incednine with high probability

greater than the 0.5 threshold (the default threshold value).

Clustering of Computationally Predicted Proteins
The 182 proteins that were computationally predicted to bind to incednine were

clustered by the hierarchical clustering method using 199-dimentional feature vector
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that was used for encoding amino acid sequences to construct the SVM-based
statistical learning model (See Methods section for the details). Note that the
similarity based on this 199-dimentional feature vector is different from the sequence
similarity, and this similarity measure based on the 199-dimentional vector was
proven to work well for protein-chemical interaction predictions in our previous work
[13]. For example, SHTT and AR o-1A showed only about 10% sequence similarity
although both were reported to interact with the MDMA drug and successfully
predicted by our SVM-based statistical learning method. A cutoff threshold on the
constructed clustering tree was determined so that the proteins were clustered into 11
clusters and each cluster had a statistically significant number of members. The

proteins predicted to bind to incednine are listed in Additional file 2.

Experimental Verification
Next, to examine whether incednine can bind to the proteins, an ir vitro biotinylated

incednine pull-down assay using the lysate of Bcl-xL expressing Ms-1 cells was
performed. We tested 16 proteins as pilot experiments, which are selected from each
cluster by one or two based on antibody availability. Nergative candidates that were
predicted not to bind to incednine were extracted for experimental verification. These
proteins, positive candidates and negative candidates, are listed in Table 2. Among
positive candidate proteins, 2 positive candidates PIK3CG and ACACA were found to
bind to incednine, and 5 positive candidates DAPK1, PIK3C2B, PIP5K3, CHD4,
GTF2IRD?2 did not bind to incednine. Among negative candidate proteins, 2 negative
candidates BECN1 and KIF5B did not bind to incednine, and 1 negative candidate
PARP1 did bind to incednine (Figure 2). On the other hand, ITPR1, PARP14, PLCBI1,

KIF1A, KIF21B, and RGPD3, listed as positive candidates in Table 2, were not well



expressed and were not detected in Bel-xL-expressing Ms-1 cells; therefore, accuracy

of 40% (4/10), sensitivity of 66.7% (2/3) and precision of 28.6% (2/7) were achieved.

Discussion
For target identification using affinity chromatography, conventional method requires

multiple steps as follows; SDS-PAGE, CBB staining, excision of gel, destaining,
reduction, trypsinization, and application to LC-MS/MS system (7 steps); these steps
can be cumbersome, time-consuming and require expensive installation. Furthermore,
CBB staining used in conventional method can detect proteins over nanogram order.
In contrast, our proposed protocol for predicting target protein allows us to use
western blotting to detect proteins in picogram order. Indeed, we found two
incednine-binding proteins by this prediction. Additionally, we can enhance the
precision of COPICAT by feeding back the experimental results to the system.

In this work, PIK3CG, PARP1, and ACACA were revealed to bind to incednine by
applying our protocol to identify potential target proteins of chemical compounds.
These proteins are potential targets of incednine because it has been reported that
these proteins are related to cancer survival and drug resistance, as follows.

PI3KCG encodes p110 catalytic subunit isoform pl10y, and heterodimerizes with
regulatory subunit p101, composing class IB PI3K in the PI3K family [21, 22].
Although PIK3CG and PIK3C2B are distant homologous with 20% sequence identity,
incednine selectively binds to PIK3CG but not PIK3C2B (Figure 2). In contrast to
class IA, class IB PI3K acts downstream of G-protein coupled receptors (GPCR). It
has been reported that p110y was upregulated and activated by the chimeric oncogene
Ber-Abl expression to contribute to cell proliferation and drug resistance in chronic

myelogenous leukemia [23], and was found to be highly and specifically expressed

-8-



among the PI3K family in human pancreatic cancer [24], suggesting that class IB
PI3K might relate to cell survival and drug resistance. Product of enzymatic activation
of class IB PI3K as class IA, phosphatidylinositol-3,4,5-trisphosphate, makes BAD
dissociate from Bcl-xL and promotes cell survival via Akt activation [22]. Therefore
class IB PI3K might contribute cell survival in Bcl-xL-overexpressing cells.

PARPI is a member of the PARP protein superfamily that catalyzes the
polymerization of ADP-ribose moieties onto target proteins, using NAD' as a
substrate and releasing nicotine amide in the process [25]. PARPI activity is
important for the regulation of homeostasis and the maintenance of genomic stability,
participating in DNA repair, the regulation of transcription, DNA replication, cell
differentiation, proliferation and cell death [26-28]. Many in vifro and in vivo
experiments demonstrated that inhibition of PARP1 potentiates the cytotoxicity of
anti-cancer drugs and ionizing radiation [29-32]. Therefore, incednine could bind to
PARP1 and could function as antagonist of anti-apoptotic PARPI protein.
Alternatively, PARP1 is emerging as an important activator of caspase-independent
cell death. It has been previously reported that PARP1 mediates the release of
apoptosis-inducing factor (AIF), one of the initiators of caspase-independent cell
death, possibly due to enzymatic over-activation [33-35]. We also observed that co-
treatment of Bcl-xL-overexpressing Ms-1 cells with incednine and ant-tumor drugs
induced AIF release and subsequent caspase-independent cell death (unpublished
data); therefore, we can not exclude the possibility that incednine binds to PARP1 and
functions as PARP1 agonist by accerelating AIF release.

However, the most likely candidate of an incednine target protein is ACACA
(acetyl-CoA carboxylase-at), which was classified in cluster 9. ACACA is the rate-

limiting enzyme for long-chain fatty acid synthesis that catalyzes the ATP-dependent
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carboxylation of acetyl-CoA to malonyl-CoA, playing a critical role in cellular energy
storage and lipid synthesis [36]. There is strong evidence that cancer cell proliferation
and survival are dependent on de novo fatty acid synthesis [37-40]. Additionally,
ACACA is upregulated in multiple types of human cancers [41, 42]; therefore,
ACACA may also contribute to cell survival in Bcl-xL-overexpressing tumor cells.
Indeed, our preliminary experiments suggested that chemical inhibition of ACACA
using TOFA (5-tetradecyloxy-2-furoic acid, ACACA antagonist) or small interfering
RNA-mediated ACACA silencing results in the induction of apoptosis in Bcl-xL-
overexpressing human small cell lung carcinoma Ms-1 cells when combined with
anti-tumor drugs as does incednine (unpublished observation), suggesting that
ACACA might be a molecular target of incednine. The possibility that incednine
targets ACACA is being actively investigated.

While our experimental verification implied the relatively low precision value
28.6% (2/7), new detections of two incednine-binding proteins in addition to
previously identified 53 proteins are significant. On the other hand, while we selected
7 candidates by clustering 182 predicted proteins for experimental verification, more
comprehensive verification experiments for the 182 predicted proteins are needed.
The application of our method to incednine resulted in 28.6% (2/7) precision
according to in vitro pull-down assay. However, this relatively low precision value
does not represent the true statistical significance of the method and is not comparable
to the benchmark performances (including 98.4% precision) by 10-fold cross-
validation for COPICAT system.

This 28.6% precision can be evaluated by using the following P-value.

S G X Comy
C

t

P —value=
x=p N
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Here, N is the number of human proteins, M is the number of proteins potentially
binding to the incednine, # is the number of tested proteins, and p is the number of true
positives. With N =24,245, which is the number of human proteins in the KEGG

repository, and M = N x1%=243, which is based on the overestimated assumption

that 1% of all proteins could be regarded as potential binding proteins for the
incednine. This P-value defines the probability that the prediction precision can be
obtained by random selection of proteins. Then, P-value of 0.002 was obtained for the
prediction precision 28.6%. This small P-value means that 28.6% (2/7) precision can
be obtained with very small chance by random selection, and therefore, this small P-

value proves the validity of our method.

Conclusions
Although further study is required for complete determination of the target protein of

incednine, this study demonstrated that our proposed protocol of predicting target
protein combining in silico screening and experimental verification is useful, and

provides new insight into a strategy for identifying target proteins of small molecules.

Methods

Training Datasets
The DrugBank dataset was constructed from Approved DrugCards data, which were

downloaded from the DrugBank database [20]. These data consist of 964 approved
drugs and their 456 associated target proteins, constituting 1,731 interacting pairs or
positives. Additional data about 53 interactions with incednine, listed in Table 1, were

obtained from our previous binding experiments.
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Feature Vectors
An amino acid sequence of protein is divided into trimers (three amino acid residues),

and all of the 8,000 trimers are clustered into 199 groups according to physical-
chemical properties. Then, an amino acid sequence is converted to a 199-dimensional
feature vector based on the frequencies of 199 clusters (See for [13] the details of this
procedure). A chemical compound is also converted to aﬁother feature vector of 199
dimension representing substructure statistics extractéd from the structural formula of
a chemical compound. The size of the dimensions, that is, 199 dimensions, was
determined based on the variance of each dimension. The top 199 dimensions with

significantly diverse variances in statistical classification were selected.

Statistical Prediction Method for Protein-Chemical Interaction
We developed a comprehensively applicable statistical prediction method for

interactions between any proteins and chemical compounds, which requires only
protein sequence data and chemical structure data and utilizes the statistical learning
method of Support Vector Machines (SVM)[13, 14].

We consider the problem as the binary classification of protein-chemical péirs
whose abstractive identities are represented numerically by the 199 dimensional
feature vectors defined above. We obtained a “positive” sample set, i.e., a set of
protein-chemical pairs that have been proven to interact with each other via biological
assays, from the DrugBank database [20]. Along with the positive sample set, SVM-
based classifiers require a “negative” sample set, i.e., a set of protein-chemical pairs
that do not interact with each other. Such a negative sample set can be extracted
randomly from the whole complement set of the positive sample set. Though we used
random pairs of drugs and proteins as negative samples in constructing a model, the

lack of reliable negative samples is always a problem when applying the statistical

-12 -



learning methods. In our current study, it is assumed that drugs in the DrugBank
dataset rarely interact with proteins other than their known targets because they are
approved drugs. Using the resultant positive and negative protein-chemical pair sets,
we trained two-layer SVMs. First, we trained each multiple first-layer SVM with
small sample sets designed with different criteria. Next, using another larger sample
set, we trained a second-layer SVM whose input is a set of probabilities output from
the firstlayer SVMs. The prediction performances were evaluated by 10-fold cross-
validation using the DrugBank dataset. The sensitivity, specificity, precision, and
accuracy were 0.954, 0.999, 0.984, and 0.997, respectively, in cross-validation. The
details of the algorithms and their prediction accuracy are described in our previous

reports [13, 14].

Support Vector Machines
Given n samples, each of which has an m-dimensional feature vector
(x; = (x},-,x™)) and one of two classes, such as binding and non-binding
(y € {1,—1}), an SVM produces the classifier

n
f() = sign (Z @ YK (2, ) + b),

i=1

where x is any new object which needs to be classified, K (-,) is a kernel function

which indicates that the similarity between two vectors and (aq,,a,) are the
learned parameters. The RBF kernel K(S;, S,) = exp(—v||S; — S, 1|?) was utilized for
the SVM classifier. In our study, the LIBSVM program [43] was employed to

construct the SVM model.
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Cell Culture
Bcl-xL-overexpressing human SCLC Ms-1 cells [15] were maintained in Rosewell

Park Memorial Institute media (Nissui, Japan) supplemented with 5% fetal bovine
serum, 100 U/ml penicillin G, and 0.1 mg/mL kanamycin at 37°C in a humidified 5%

CO; atmosphere.

Antibodies
Mouse monoclonal anti-DAPK1 (DAPK-55), rabbit monoclonal anti-PIK3CG (Y388),

rabbit monoclonal anti-ACACA (EP687Y), mouse monoclonal anti-PIK3C2B, rabbit
polyclonal anti-ITPR1, mouse monoclonal anti-PIPSK3, mouse monoclonal anti-
CHD4, mouse polyclonal anti-GTF2IRD2, mouse polyclonal anti-PLCB1 antibodies
were purchased from Abcam (Cambridge, MA). Rabbit polyclonal anti-KIF21B and
mouse monoclonal anti-KIF5B (clone H2) antibodies were purchased from Millipore
(Bedford, MA). Goat polyclonal anti-PARP14 and goat polyclonal anti-KIF1A were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Mouse monoclonal anti-
Beclin (clone 20) antibody was purchased from BD Transduction Laboratories (San
Diego, CA). Rabbit polyclonal anti-PARPI1 antibody was purchased from Cell
Signaling Technology (Beverly, MA). Rabbit polyclonal anti-RGPDS antibody was
purchased from Lifespan Biosciences (Seattle, WA). Mouse monoclonal anti-Flag
(M2) antibody was purchased form Sigma (St. Louis, MO).

Horseradish peroxidase-conjugated anti-mouse IgG and anti-rabbit 1gG secondary
antibodies were purchased from GE Healthcare (Little Chalfont, UK). Horseradish

peroxidase-conjugated anti-goat IgG was purchased from Santa Cruz Biotechnology.
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Western Blotting
Cell lysates were separated by SDS-PAGE and transferred to a PVDF membrane

(Millipore) by electroblotting. After the membranes had been incubated with primary
and secondary antibodies, the immune complexes were detected with an Immobilon
Western kit (Millipore), and luminescence was detected with a LAS-1000 mini

(Fujifilm, Tokyo, Japan).

Preparation of Incednine and Biotinylated Incednine
Incednine was isolated from the culture broth of Strepromyces sp. ML694-90F3 [15].

To obtain biotinylated incednine (see Additional file 3), incednine (137.0 mg) and the
amine-reactive biotin-X (100.0 mg; Invitrogen) were dissolved in 13.0 mL
CHCl;:MeOH (10:1). After stirring at 40°C for 20 h, the reaction mixture was
concentrated to dryness. The residue was resolved in 50 mL CHCl3;:MeOH:H,0
(5:6:4) and partitioned three times under basic conditions. The lower layer of
CHCl3:MeOH:H,0O (5:6:4) was evaporated in vacuo to yield a brown residue. The
residue was purified by HPLC (Senshu Pak Pegasil ODS 30 x 250 mm) and eluted

with MeOH:40 mM KH,POy aq. (70:30) to give 19.4 mg biotinylated incednine.

In vitro Biotinylated Incednine Pull-down Assay
Bcl-xL-overexpressiong Ms-1 cells were collected and sonicated twice in IP buffer

(50 mM HEPES (pH 7.5), 150 mM NaCl, 2.5 mM EGTA, 1 mM EDTA, ImM DTT,
and a protease inhibitor cocktail (Roche, Marmheim,kGermany)) for 10 s. The cell
lysates were centrifuged at 10,000 g for 15 min at 4°C. The resulting supernatants
were incubated with biotin (50 nmol) or biotinylated incednine (50 nmol) and avidin
beads at 4°C for 3 h. The beads were washed three times with phosphate-buffered
saline (PBS). The bound proteins were eluted with 2 mM biotin in PBS, and

-15 -



concentrated by a centrifugal filter device (Ultracel (YM-10); Millipore). The
resulting proteins were boiled in SDS sample buffer for 5 min and subjected to

western blotting.

Liquid Chromatography-Tandem Mass (LC-MS/MS) Spectrometry
Incednine binding proteins purified using biotinylated incednine / avidin beads, and

flag-tagged incednine (see Additional file 4) / anti-Flag antibody were anaylzed by
liquid chromatography-tandem mass spectrometry (LC-MS/MS) system as previously

described, respectively [44, 45].
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