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Cyclophilin A is an inflammatory mediator
that promotes atherosclerosis
in apolipoprotein E—~deficient mice
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Cyclophilin A (CyPA; encoded by Ppia) is a ubiquitously expressed protein secreted in
response to inflammatory stimuli. CyPA stimulates vascular smooth muscle cell migration
and proliferation, endothelial cell adhesion molecule expression, and inflammatory cell
chemotaxis. Given these activities, we hypothesized that CyPA would promote athero-
sclerosis. Apolipoprotein E-deficient (Apoe=/~) mice fed a high-cholesterol diet for 16 wk
developed more severe atherosclerosis compared with Apoe~/~Ppia~/~ mice. Moreover,
CyPA deficiency was associated with decreased low-density lipoprotein uptake, VCAM-1
(vascular cell adhesion molecule 1) expression, apoptosis, and increased eNOS (endothelial
nitric oxide synthase) expression. To understand the vascular role of CyPA in atherosclerosis
development, bone marrow (BM) cell transplantation was performed. Atherosclerosis was
greater in Apoe™/~ mice compared with Apoe~/~Ppia—/~ mice after reconstitution with
CyPA+* BM cells, indicating that vascular-derived CyPA plays a crucial role in the progres-
sion of atherosclerosis. These data define a role for CyPA in atherosclerosis and suggest

CyPA as a target for cardiovascular therapies.

Atherosclerosis is a disease of the vasculature
that is characterized by chronic inflammation
of the arterial wall (Hansson and Libby, 2006).
The development of atherosclerosis is initiated
by the activation of endothelial cells (ECs)
leading to expression of adhesion molecules for
mflammatory cells (Berk, 2008). In addition,
these activated ECs facilitate the passage of
lipid components in the plasma, such as low-
density lipoproteins (LDLs; Hansson, 2005).
A critical element in the progression of athero-
sclerosis is the development of an oxidizing
environment caused by the activation of mac-
rophages that become loaded with oxidized
LDL and other lipids. These macrophages
produce reactive oxygen species (ROS) and
secrete cytokines and growth factors that con-
tribute to the progression of atherosclerotic
plaques and promote vulnerable lesions (Weber
et al., 2008).

P. Nigro and K. Satoh contributed equally wo this paper.

Cyclophilin A (CyPA) is a ubiquitously
distributed protein belonging to the immuno-
philin family recognized as the intracellular re-
ceptor for the potent immunosuppressive drug
cyclosporine A {(CsA; Handschumacher et al.,
1984). CyPA possesses peptidyl-prolyl isom-
erase activity and plays an important role in
protein folding and trafficking (e.g., nuclear
translocation of ERK1/2 [Pan et al., 2008] and
AlF [apoptosis-inducing factor; Zhu et al,,
2007]). Interestingly, it has been shown that
CyPA is a part of a cytosolic trafficking com-
plex consisting of caveolin, heat-shock pro-
tein 56, cyclophilin 40, CyPA, and cholesterol
(Uittenbogaard et al., 1998). Although CyPA
was initially believed to function primarily as
an intracellular protein, recent studies have
revealed that it can be secreted by cells in
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response to inflammatory stimuli, especially ROS (Jin et al.,
2000; Suzuki et al., 2006; Satoh et al., 2009). Extracellular
CyPA is a potent leukocyte chemoattractant for human
monocytes, neutrophils, eosinophils, and T cells (Sherry et al.,
1992; Xu et al., 1992; Allain et al., 2002; Yurchenko et al.,
2002; Arora et al., 2005; Damsker et al., 2007; Pan et al., 2008),
and it stimulates inflammatory responses when injected
in vivo (Sherry et al., 1992). Most importantly, plasma CyPA
is significantly increased in patients with inflammatory dis-
eases such as rheumatoid arthritis (Kim et al., 2005) and sepsis
(Tegeder etal., 1997). We have shown that ROS promote
secretion of CyPA from vascular smooth muscle cells
(VSMCs; Jin et al., 2000; Liao et al., 2000) and that extracel-
lular CyPA stimulates EC adhesion molecule expression in
vitro (Jin et al., 2004; Suzuki et al., 2006). Furthermore, we
found that CyPA mediates vascular remodeling by promot-
ing inflammation and VSMC proliferation (Satoh et al.,
2008), and it is indispensable for the development of an-
giotensin [I-induced aortic aneurysms (Satoh et al., 2009;
Weintraub, 2009).

Given these functions of CyPA, we hypothesized that
CyPA would contribute to the development of atherosclero-
sis. In this study, we report that CyPA is atherogenic by
enhancing LDL uptake, adhesion molecule expression, and
inflammatory cell migration. Our data suggest that CyPA
and its signaling pathways are novel targets for atheroscle-
rosis therapy.
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RESULTS

Atherosclerosis development is dependent on CyPA

To study the functional role of CyPA in atherogenesis, we
used the Apoe™'~ mouse, a well-known model of atheroscle-
rosis (Nakashima et al., 1994). We generated Apoe™/~Ppia=/~
(double knockout) mice, and fed them a high-cholesterol diet
for 16 wk. To visualize lipid-rich atherosclerotic plaques,
aortas were stained with Oil red O. As shown in Fig. 1 A,
Apoe™/~ Ppia=/~ mice compared with Apee™’~ mice exhibited
significantly less atherosclerosis: aortic coverage of 7.5 + 2% in
Apoe=/~Ppia=/~ versus 19.3 * 8.2% in Apoe~/~ (Fig. 1 B).

In another cohort of mice, we quantified plaque area in
hematoxylin- and eosin (H&E)-stained cross sections of the
aortic arch and thoracic aorta. Lesion area was significantly
decreased in both the aortic arch (Fig. 1, C and D) and tho-
racic aorta (Fig. 1, C and E) of Apoe™/~Ppia~’~ mice com-
pared with Apoe™/~ mice. As expected, the elastic lamina was
frequently degraded with large regions exhibiting disruption
in Apoe™'~ mice compared with Apoe™’~Ppia~’~ mice (Fig. S1).
These results demonstrate a remarkable reduction in athero-
sclerosis in CyPA-deficient mice and strongly support our
hypothesis that CyPA contributes to atherosclerosis.

The absence of CyPA decreases the lesion area

and the migration of macrophages in the aortic sinus

The aortic sinus is particularly prone to intimal lesion develop-
ment, and the cusps of the valves provide a useful positional cue
in comparative experiments of sectioned tissues
(Tangirala et al., 1995). As shown in Fig. 2
(A and B), Apoe™/~Ppia~'~ mice compared with
Apoe™’~ mice exhibited significantly less athero-
sclerosis measured by plaque area (H&E staining).
There was also significantly less lipid deposition
and cholesterol clefts in Apoe™/~Ppia™/~ mice
(Fig. 2 A, Masson and Trichrome and Oil red
0). Both H&E and Masson and Trichrome
showed a significant reduction in intima forma-

W Apoe~
[ Apoe~Ppia™

Tolal acrta
tion in Apoe™/~ Ppia=/~ mice (Fig. 2 A).

A crucial step in atherogenesis is the infil-
tration of monocytes into the subendothelial
space of large arteries where they differentiate

*

Figure 1. CyPA deficiency limits atherosclerosis
formation. (A) Representative photographs showing
Qil red O staining of aortas from Apoe~/~ and
Apoe~/=FPpia~~ mice fed a high-cholesterol diet for
16 wk. (B) Lesion area was significantly decreased in
Apoe=/-Ppia—/~ mice (n = 15) compared with Apoe=/~
mice (n = 21). (C) Longitudinal cross sections from the
aortic arch and thoracic aorta stained with H&E. Bars:
(left) 25 pm; (right) 200 um. (D and E) Quantification of
plague area showed that Apoe~/~FPpia~/~ mice (n=7)
exhibited decreased atherosclerosis compared with
Apoe~/=mice (n=9) in both the aortic arch (D) and
thoracic aorta (E). (B, D, and E) Results are mean + SD;
* P <0.01 compared with Apoe~/~ mice. Results in A-E
show pooled data from two experiments.

Aortic arch

Thoracic aorta
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into macrophages and become functionally active (Galkina and
Ley, 2009). As shown in Fig. 2 (A and D), the Apoe™/~ Ppia=/~
mice fed high-cholesterol diet for 16 wk showed significantly
fewer Mac3-positive macrophages compared with the Apoe™/~
mice. All these data suggest that CyPA is a key protein in-
volved in the atherosclerosis progression and migration of in-
flammatory cells in the lesion area.

CyPA regulates LDL infiltration and the expression

of scavenger receptors

Because it is well established that the transport of LDL cho-
lesterol into the artery wall is the initiating event that trig-
gers atherosclerosis (Glass and Witztum, 2001), we examined
the role of CyPA in this process. To measure LDL uptake
into vessels of Apoe™’~ and Apoe™'~ Ppia~/~ mice, we per-
formed ex vivo incubation with fluorescent Dil-labeled
LDLs and en face imaging of the aorta from the EC surface
to a depth of 50 pm into the intima. CyPA deficiency
caused a 43% decrease in Dil-LDL uptake in the lesser cur-
vature of the aortic arch (atherosclerosis-prone area; Fig. 3,
A and B; and Fig. S2). To strengthen this important finding,
we confirmed these data with an independent method.
Apoe™’~ and Apoe™/~Ppia~/~ aortas were incubated with
[**I]ILDL for a subsequent determination of incorporated

Article

radioactivity as measured by a gamma counter. As shown in
Fig. S3, LDL uptake was significantly reduced in aortas
from Apoe™/~ Ppia~/~compared with Apoe™'~ mice. To gain
insight into how CyPA regulates lipid uptake, we examined
expression of several scavenger receptors in aortas after
12 wk of high-cholesterol diet. The expression of lectin-
like oxidized LDL receptor (LOX-1) and CD36 were sig-
nificantly decreased in Apoe™/~ Ppia~/~ mice compared with
Apoe™'~ mice, whereas SR-BI was decreased by an equiva-
lent 40% (Fig. 3, C and D). The expression of SR-A did not
differ significantly between Apoe™’~ and Apoe™'~Ppia™/~
mice (Fig. 3, C and D). Collectively, the data demonstrate
that CyPA influences LDL uptake by regulating the expres-

sion of scavenger receptors on the vessel wall.

CyPA deficiency induces the development of a more
proatherogenic lipoprotein profile in Apoe/~ mice

Next, we performed phenotypic characterization of Apoe™/~
and Apoe™/~Ppia’~ mice fed a high-cholesterol diet for
16 wk. Body weights were similar in all the groups of mice
before and after a high-cholesterol diet (Fig. S4 A). There
were no significant differences in plasma cholesterol and tri-
glyceride levels (Fig. S4, B and C). We next examined lipo-
protein profiles by gel filtration chromatography (Fig. S4 D).
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Figure 2. CyPA deficiency reduces lesion size and inflammatory cell accumulation in the aortic sinus. (A) Representative histological analysis of
the aortic sinus stained with H&E, Masson and Trichrome, Oil red O, Mac3 (a macrophage marker), and a-smooth muscle cell actin («-SMA). Insets are
higher magnification images of the areas in the dashed boxes. Bars, 100 um. (B-D) Quantification of the plaque area (B), lipid accumulation (C), and
macrophage accumulation (D) shows a significant reduction in Apoe~/~Ppia~/= mice (n = 7) compared with Apoe~/~ (n = 9) mice. Results are mean + SD;
* P < 0.01 compared with Apoe=/~ mice. Results in A-D show pooled data from two experiments.
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Although there were no differences observed in cholesterol
and triglyceride levels, Apoe™’~Ppia~/~ mice demonstrated
increases in the VLDL (very low-density lipoprotein)- and
IDL (intermediate-density lipoprotein)/LDL-sized lipopro-
teins compared with Apoe™/~ mice. No differences were ob-
served in the HDL (high-density lipoprotein) fraction or in
the levels of plasma apoB-100 and apoB-48 (Fig. S4 E).
Collectively, these results indicate that loss of CyPA, in the
context of the Apoe™’~ genetic background, leads to the ap-
pearance of a more proatherogenic lipoprotein profile.

BM-derived CyPA does not play a significant role

in atherosclerosis formation

CyPA has important roles in the immune system and is a well-
described regulator of T lymphocyte functions (Colgan et al.,
2004). Extracellular CyPA is a potent chemoattractant for in-
flammatory cells (Xu etal., 1992; Allain et al., 2002; Yurchenko
et al.,, 2002). CyPA has also been reported to stimulate migra-
tion of BM-~derived cells in vitro (Khromykh et al., 2007).

A

Apoe-

To determine the role of BM-derived CyPA in atherosclero-
sis, BM transplantation experiments were performed.

BM cells from Apoe™’~ and Apoe™’~Ppia~/~ mice were
transplanted into 6-wk-old lethally irradiated Apoe™’~ mice.
After 4 wk of reconstitution, mice were fed with a high-
cholesterol diet for 12 wk. Surprisingly, there were no differ-
ences in atherosclerosis measured by lesion area in the entire
aorta (Fig. 4, A and B; Oil red O) or aortic root (Fig. 4,
C and D; H&E). These data demonstrate that atherosclerosis
in Apoe™/~ Ppia~/~ mice was not altered by specific CyPA de-
ficiency in BM-derived cells. Note that the atherosclerosis
lesion area was reduced by ~50% in Apoe™’~ mice after irra-
diation (compare Fig. 4 B with Fig. 1 B).

We next assessed the development of high-cholesterol—
induced atherosclerosis in Apoe™’" Ppia~’~ chimeric mice
that were transplanted with Apoe™’~ BM or Apoe™’~ Ppia~/~
BM. There was no significant difference in atherosclerosis
lesions between the chimeric mice with Apoe™’~ BM versus
Apoe™'~ Ppia~’~ BM (unpublished data).
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Figure 3. CyPA regulates LDL entry into the aortic wall and the expression of the scavenger receptors. (A] En face fluorescence images of
aortic arches from 6-wk-old Apoe™/~ and Apoe™/~Ppia~/~ mice (n = 3 each group) after incubation with Dil-labeled LDL (red) and SYTOX green nucleic
acid stain (green). (B) Quantification of Dil-LDL fluorescence intensity from the en face images. The data are quantified as fluorescence-positive area.

(C) Western blot analyses of aortic extracts from Apoe™/~ and Apoe™/~Ppia~/~ mice fed a high-cholesterol diet for 12 wk. Results for three representative
mice are shown for each genotype. (D) Densitometric analyses of the blots in C show significant decreases in LOX-1, CD36, and SR-BI scavenger receptors

in Apoe™/~Ppia~/~ mice versus Apoe™/~ mice. (B and D) Results are mean + SD; * P < 0.01 compared with Apoe™

data from two experiments.
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To investigate the chemoattractive function of CyPA in
vivo, we studied the trafficking of BM-derived cells into
atherosclerotic lesions. To analyze BM cells that migrated
into lesions, we used donor BM cells harvested from mice
constitutively expressing the GFP protein (GFP* BM which
are Ppia*’*) and performed BM transplantation in lethally
irradiated Apoe™’~ and Apoe™/~Ppia~’~ mice. There was
no significant difference in the reconstitution ratio (per-
centage of GFP* cells in the peripheral blood) in GFP* BM-
transplanted Apoe™/~Ppia~’~ mice compared with GFP*
BM-transplanted Apoe™’~ mice. However, there was still a
significant difference in the atherosclerosis lesion area in the
Apoe=’~ GFP* BM mice compared with Apoe™/~Ppia='~
GFP* BM mice (9.6 £ 1.3% vs. 2.3 £ 0.3%), and migra-
tion of GFP* BM cells into the lesser curvature region was
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much greater in the Apoe™’~ recipient mice (Fig. 4 E, left)

compared with Apoe™/~Ppia~/~ recipient mice (Fig. 4 E,
right) after high-cholesterol diet. High-magnification im-
ages (Fig. 4 G, top) showed the presence of enlarged foam
cells in the Apoe™’~ mice with GFP* BM (arrows), which
1s consistent with the concept that BM-derived cells dif-
ferentiate into foam cells upon exposure to hyperlipidemia.
Direct demonstration that the BM-derived GFP* cells
were localized beneath the ECs (and not just adherent to
the luminal surface) was obtained by examination of cross-
sectional images of z-series stacks (Fig. 4 G, bottom). These
results suggested that CyPA present in BM-derived cells
is less important for recruitment to the sites of atheroscle-
rosis lesions than CyPA present in vessels and other non-
BM cells.
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Figure 4. BM-derived CyPA is not crucial in atherosclerosis. (A Representative Oil red O staining of aortas from Apoe™~ mice transplanted
with Apoe™/~ BM (n = 7) or Apoe™/~Ppia~/~ BM (n = 8) and fed a high-cholesterol diet for 12 wk. (B) Quantification of the lesion area shows that

—_—

BM transplant of Apoe™/~Ppia~/~ cells does not decrease lesion development in Apoe~/~ mice. (C and D) Representative histological analysis of aortic
sinus stained with H&E (C) and quantification of the aortic root lesion area (D). (B and D) Results are mean + SD; P > 0.01. (E) Ppia** BM cells (GFP*)
were transplanted into irradiated Apoe™~ (n = 4) or Apoe™~Ppia™/~ (n = 4) mice as described in Materials and methods. Representative PECAM-1

en face staining {Alexa Fluor 546; red) and migration of the GFP* cells in aortic arch from Apoe™~ and Apoe™~Ppia~/~ mice with Ppia*/* BM under
high-cholesterol diet for 12 wk. (F) Number of migrating GFP+ cells was dramatically higher in the aortic wall of Apoe~/~ (n = 4) compared with
Apoe™/~Ppia~/~ mice (n = 4). Results are mean + SD; *, P < 0.01 compared with Apoe™/~ mice. (G) En face confocal microscopy of aortic arch from
Apoe™/~ mice transplanted with GFP* cells. Top panel shows foam cells, which were identified by large size and diffuse GFP pattern (arrows). Bottom
panel shows the reconstruction in z axis of the images shown in the top panel. GFP* cells are clearly present in the subendothelial space defined by the
PECAM-1 positive fluorescence above them. Results in A-G show pooled data from two experiments. Bars: (C) 100 um; (E and G) 10 pm.
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CyPA regulates endothelial nitric oxide (NO) synthase
{(eNOS) expression

The aforementioned results suggest that the athero protec-
tion observed in the Apoe™/~ Ppia~/~ was caused by decreased
inflammation mediated by the absence of CyPA. The vascu-
lar endothelium by virtue of its strategic location between the
plasma and the underlying tissue is endowed with a large
array of functions that are vital for the initiation of atheroscle-
rosis. Therefore, we performed an extensive examination of
the endothelium of aortic arch and thoracic aorta by using
PECAM-1 en face staining to visualize ECs. Apoe™/~ Ppia="~
mice showed a decreased EC disorganization in both the
aortic segments when compared with Apoe™/~ mice (Fig. S5,
A and B).

To evaluate further the mechanisms by which CyPA pro-
motes inflammation, we measured VCAM-1 (vascular cell
adhesion molecule 1) expression, which is highly expressed
in activated ECs and promotes atherosclerosis (Cybulsky and
Gimbrone, 1991; Nakashima et al., 1998; Cybulsky et al., 2001).
En face staining (Fig. 5, A and B) of aortic tissues showed
that VCAM-1 expression was significantly reduced in mice
lacking CyPA.
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eNOS function is critical for vascular homeostasis via
generation of NO, and its loss is proatherogenic (Knowles
et al., 2000; Chen et al., 2001; Kuhlencordt et al., 2001;
Kawashima and Yokoyama, 2004). Furthermore, the pro-
gression of atherosclerosis is associated with decreases in both
eNOS expression (Oemar et al., 1998; Handa et al., 2008)
and NO production (Li and Forstermann, 2009). Therefore,
we compared eNOS expression in aortas from Apce™’~ and
Apoe™/~Ppia™’~ mice by en face staining. As shown in Fig. 6 A,
eNOS protein expression was significantly higher in the
Apoe™/~ Ppia™’~ mice compared with Apoe™’~ mice. In addi-
tion, the location of eNOS differed, being predominantly
perinuclear in the Apoe™~ mice and diffuse (especially mem-
brane associated) in the Apoe™/~ Ppia~/~ mice. To define the
mechanisms responsible for decreased eNOS expression, we
studied the effect of altering CyPA levels in cultured human
umbilical vein ECs (HUVECs). To increase eNOS expression
and stimulate cellular responses that are atheroprotective,
cells were placed in a cone and plate viscometer, and steady
laminar s-flow at physiological shear stress (12 dyn/cm? termed
s-flow here) was applied. As shown in Fig. 6 (B and C), s-flow—
mediated induction of eNOS was significantly increased by

Merge

Figure 5. VCAM-1 expression is significantly down-regulated in Apoe~/~Ppia~/~ mice compared with Apoe~/~ mice. (4) Representative

en face staining for VCAM-1 expression (Alexa Fluor 546; red) in the aortic arch. EC morphology was changed in the atherosclerosis regions where ECs
are stretched and may have lost PECAM-1 staining (Alexa Fluor 488; green) at some cell junctions. Bars, 10 um. (B) Densitometric analysis of the en face
staining also shows a significant reduction in VCAM-1 expression in Apoe=/~Ppia—/~ mice compared with Apoe~~ mice (n = 4 each group). Results are
mean + SD; *, P < 0.01 compared with Apoe~/~ mice. Results in A and B show pooled data from two experiments.
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