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Fig. 4. In vitro bioactivity assay of TNF mutants via TNFR1 or TNFR2. The bicactivity of mutant TNFs via TNFR1 or TNER2 were measured by cytotoxicity assay against HEp-2 cells (A
and B) or hTNFR2/mFas-PA (C and D), respectively. Each point represents the mean + S.D. of triplicate measurements.

3.2. Selection of TNFR2-selective TNF mutants by one-step
competitive panning

To concentrate TNFR2-selective mutant TNFs, the TNF struc-
tural mutant displaying phage library was subjected to two
rounds of conventional panning or competitive panning against
TNFR2 using the BlAcore biosensor. After the second round of
panning, Escherichia coli (TG1) supernatants of 54 randomly
picked clones from each panning procedure were further
screened by capture ELISA to analyze their binding specificities
for each TNFR (Fig. 3). Consequently, we obtained numerous
clones with high-affinity for TNFR2 under all panning conditions.
Binding avidities of these clones for TNFR1 tended to decrease
depending on the concentration of TNFR1-Fc used for premixing.

However, binding avidity of a TNFR2-selective clone, which binds
only to TNFR2 (Fig. 3, black bar), tended to increase depending on
the concentration of TNFR1-Fc used for premixing. Almost all
clones obtained from the conventional and competitive panning
with 0.1 pmol of TNFR1-Fc (Fig. 3A and B, respectively) bound to
TNFR1, and the panning efficiency for isolating the TNFR2-
selective TNF mutants was <2%. In contrast, clones obtained
from the subtracted panning with 1 or 10 pmol of TNFR1-Fc
(Fig. 3C and D, respectively) contained many TNFR2-selective
TNF mutants (>20%). From these panned clones, we eventually
identified eight candidate agonists that selectively and strongly
bound to the TNFR2. Amino acid sequences of these eight
candidate TNER2-selective TNF mutants are shown in Table 1.
TNFR2-slective mutants were mutated near residue 145 and

Table 3
In vitro bioactivities of TNF mutants via TNFR1 or TNFR2.
TNFR1? TNFR2® TNFR2/TNFR1°
EC50° (ng/ml) Relative Activity® (%) EC50¢ (ng/ml) Relative activity® (%)
WETNF 0.6 100 0.56 100 1.0
R2-6 8.1 x 10° 73 %1072 0.39 144 2.0 x 10*
R2-7 >1.0 x 10° <60 x 1074 051 110 1.8 x 10°
R2-8 46 x 10° 12 x 1072 0.67 84 7.0 x 10°
R2-9 2.1 x 10° 2.8 x 1072 0.21 267 9.5 x 10°
R2-10 1.1 x 10* 5.4 x 1073 0.72 78 14 x 10*
R2-11 6.7 x 10* 8.9 x 107* 0.95 59 6.6 x 10*
R2-12 26 x 104 22 %1073 0.23 243 1.1 x 10°
R2-13 >1.0 x 10° <60 x 1074 0.63 89 1.5 x 10°

P BN T

Relative activities were calculated from the EC50 (wtTNF)/EC50 (TNF mutants).

Bioactivities of the wtTNF and TNF mutants via TNFR1 were measured by determining the TNF-induced cytotoxicity in HEp-2 cells.
Bioactivities of the wtTNF and TNF mutants via TNFR2 were measured by determining the TNE-induced cytotoxicity in hTNFR2/ mFas-PA.
Experimental data were analyzed by a logistic regression model to calculate the mean effective concentration (EC50).

Selectivity for TNFR2 was calculated from the ratio of the relative activity (via TNFR2)/relative activity (via TNFR1).
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conserved near residue 30. These findings indicate that the amino
acid residues near position 30 are an essential for TNFR2 binding.

3.3. Binding kinetics of TNFR2-selective TNF mutants

To investigate the properties of eight TNFR2-selective TNF mutants
in detail, we prepared recombinant protein using the previously
described methods [30,31]. TNF mutants expressed as an inclusion
body in E. coli (BL21A\DE3) were denatured and refolded. Then, active
TNF mutants were purified by ion—exchange and gel—filtration chro-
matography. TNF mutant purity was greater than 90% in sodium
dodecyl sulfate—polyacrylamide gel electrophoresis, and all mutants
were confirmed to form homotrimers in the same manner as the WETNF
by gel-filtration analysis (data not shown). To analyze the binding
properties of these TNFR2-selective TNF mutants, we determined their
binding dissociation constants (kinetic on- and off-rates) for TNFR1 and
TNFR2, respectively, in detail using the surface plasmon resonance
technique (Table 2). Our analysis showed that all eight mutant TNFs
bound to the TNFR2 with high affinity; in contrast, they bound to the
TNFR1 with greatly reduced affinity (typically between 1 and 7% of the
WtTNF affinity). The dissociation constants (Kp) of these mutants for
TNFR2 were between 2.1-3.6 x 10~ "%, and their relative affinities for
TNFR2 were between 169 and 291% of that of the WtTNE. Thus, using the
competitive panning technique we successfully obtained a large
repertoire of TNFR2-selective TNF mutants with different binding
parameters (on- and off-rates and dissociation constants).

3.4. Bioactivities of TNFR2-selective TNF mutants

To examine the bioactivity of these TNF mutants via TNFR1, we
subsequently performed a cytotoxicity assay using HEp-2 cells
(Fig. 4A and B). All TNF mutants (R2-6 ~ R2-13) showed almost no
Cytotoxicity, and the bioactivity was much lower than that of the
WETNF. Next, we evaluated the TNFR2-mediated activity of TNF
mutants using the hTNFR2/mFas-PA, which were previously con-
structed in our laboratory [26]. The TNFR2-mediated bioactivities of
these 8 mutant TNF proteins were at least same or higher than that
of the wtTNF (Fig. 4C and D). As a negative control, we determined
TNF cytotoxicity in parental TNFR17/-R2-- preadipocytes and
observed no wtTNF- or mutant TNF-mediated cell death (data not
shown). Results of the cytotoxicity assay are summarized in Table 3.
R2-7, the most highly TNFR2-selective mutant, exhibited 1.8 x 10°
fold higher TNFR2-selectivity than that for the wild-type TNE.

4. Discussion

Recently, it was revealed that the two TNFRs worked together by
crosstalk signaling, which suggested that the TNF-mediated signaling
in the presence of both TNF receptors actually correlates with their
physiological functions [32—34]. To understand the mechanism as
well as to analyze the structure—function relationship of the TNFRs,
several attempts were made in the past to create TNER-specific
mutant TNFs by conventional site-directed mutagenesis methods
(such as Kunkel's method) [35—37]. However, these attempts were
not very successful in yielding a desired TNF mutant having high
receptor specificity and full bioactivity. For example, the TNFR2-
binding affinity of the double mutant D143N-A145R was about
5—10 fold less than the wtTNF [38]. To overcome these problems, we
applied phage-display technique and optimized panning method
using the BlAcore biosensor (Fig. 1). Using an adequate amount of
selective competitive inhibitor (>1 pmol TNFR1-Fc), this one-step
competitive panning is ten times more efficient for screening
TNFR2-selective TNF mutants, suggesting the competitive panning
technology described here is a simple and effective screening method
for fine-tuning TNF receptor-selectivity (Fig. 3). As a result of

screening, we obtained successfully obtained TNFR2-selective TNF
mutants with full bioactivity via TNFR2 (Table 3). Because of its high
TNFR2-selectivity and full bioactivity, the TNF mutant R2-7 would
help in elucidating the functional role of TNFR2.

One advantage of our phage-display-based technique is that it can
be used to obtain the sequence information of many mutants [39,40].
It was previously shown by site-specific mutagenesis technique that
mutations at positions 29, 31 and 32 (L29S, R31E and R32W)
remarkably reduced the TNF's affinity for binding to TNFR2
[35,37,38]. For most of the TNFR2-selective TNF mutants, amino acids
at positions 29, 31 and 32 were indeed identical (except for the R2-7
mutant which contained a conserved L to V substitution at position
29) to those of the wtTNF (Table 1), which is consistent with the
previously reported idea that these three amino acids play critical
roles in maintaining the binding between the TNF and TNFR2. The
amino acid sequence at positions 145, 146 and 147 of the TNFR2-
selective TNF mutants were, however, very different from those of
the wtTNE. For example, the amino acid residue at position 145 of the
TNF mutants R2-7, R2-12 and R2-13 contained an Asp residue in place
of the Ala residue, and all of them showed high TNFR2 selectivity.
Structural analysis and mutagenesis studies suggested that the loop
containing the residues 145—147 is involved in the receptor binding
[41-43]. Since Asp is a comparatively large residue, we speculated
that this substitution could lead to a steric hindrance disrupting the
interaction between the TNFR1 and TNFR2-selective mutants, which
may be why they are less TNFR1-selective. However, why this
replacement would increase the selectivity for TNFR2 is unclear at
this moment. Currently, we are working on determining the structure
of the TNF/TNFR2 complex by X-ray crystallography [44] so that
structure—activity relationship studies could be initiated in the near
future. Additionally, this structural information, in combination with
bicinformatics technology, will be useful for designing TNER-
selective inhibitors (peptide mimics and chemical compounds).

5. Conclusions

In this study, we optimized our phage display-based screening
using a unique competitive panning technique, which is ten times
more efficient for screening TNFR2-selective TNF mutants compared
to the conventional panning method. As a result of screening, we
have succeeded in isolating several TNER2-specific TNF mutants
with high TNFR2 affinity and full bioactivity via TNFR2. Further
analysis of the relationship between the structure and bioactivity of
the TNF mutants would offer highly valuable and useful information
regarding the TNF/TNFR biology. In conclusion, our fine-tuned
competitive panning system is a simple and effective technology
for isolating receptor-selective mutant proteins.
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