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Microscope Model LSM510 (Carl Zeiss, Oberkochen, Germany) belonging to Central

Research Laboratory, Okayama University Medical School.

Biotin labeled CCN2 protein derived from HeLa cells
CCN2 protein derived from HeLa cells was biotin-labeled by a commercially available
kit, following the manufacturer's instructions (Biotin Labeling Kit-NH,; Dojindo

Molecular Technologies, Inc, Kamimashiki-Gun, Japan).

RNA extraction and ¢cDNA synthesis

Cells were collected, and total RNA was extracted by following the manufacturer's
instructions (RNeasy kit, Qiagen). Total RNA (500 ng) was reverse-transcribed by
AMV Reverse Transcriptase (Takara, Ohtsu, Japan) at 42°C for 30 min, according to the

manufacturer’s protocol.

Real-time PCR

Real-time PCR was performed by using TOYOBO SYBR Green PCR Master Mix
(TOYOBO, Osaka, Japan) in a LightCycler™ system (Roche, Basel, Switzerland).
Reactions were performed in a 10-u1 reaction mixture containing 1 ul of cDNA, 0.4 ul
of each primer (5 uM), and 5 ul of 1x SYBR Green master mix. Primer sets and
optimized conditions for the PCR of each target are listed in Table 1. Absence of
non-specific PCR products was checked by melting curve and electrophoresis analyses.
Relative copy numbers were computed based on data obtained with a serial dilution of a

representative sample for each target gene.

Antisense oligonucleotides
To inhibit the expression of HIFlo, we prepared an antisense phosphorothioate

oligonucleotide (AS-HIF) and a sense oligonucleotide (S-HIF: control) according to the
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nucleotide sequence of the human HIF1a gene (Caniggia et al., 2000). The nucleotide
sequences of the AS-HIF and S-HIF were 5-GCCGGCGCCCTCCAT-3" and
5'-ATGGAGGGCGCCGGC-3', respectively.  These oligonucleotides were added

directly to medium in HCS-2/8 cells culture at a concentration of 10 M.

Animals and preparation of tissue

After Balbc/j mice (2 weeks of age) had been anesthetized with sodium pentobarbital
(Nembutal, Abbott laboratories, North Chicago, IL; 25 mg/kg), proximal tibiae were
harvested and immersed in 4% paraformaldehyde (w/v) in phosphate buffer (PB: 0.1 M
NaH,POs4, 0.1 M Na,HPOy; pH 74) at 4°C overnight. After having been rinsed in
PBS, the tibiae were decalcified in 0.5 M EDTA, pH 7.4, at 4°C and then embedded in
paraffin wax. The sections were prepared at a thickness of 7 pm and mounted on
silane-coated slides. The Animal Committee of Okayama University approved all of

the procedures.

Immunohistochemistry

Tibial sections were dewaxed in xylene and rehydrated through a graded series of
ethanol to water, blocked in a blocking buffer (5% dry non-fat milk in Tris-buffered
saline), and incubated overnight at 4°C with the primary anti-LRPAP1 antibody (1:100)
and subsequently with an HRP-conjugated anti-rabbit IgG (1:1000) for 1 h at room
temperature. Color development was performed by using 3, 3'-diaminobenzidine
tetrachloride (Dojindo, Tokyo, Japan). The sections were also counterstained with
hematoxylin and mounted. Control samples were processed with the omission of the

primary antibody.

Statistics

Data were presented as means + standard deviations, and the statistical significance
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of differences in mean values was assessed by performing Student's unpaired r-test.

Differences among the mean values were considered significant at a P value of <0.05.

All experiments were repeated at least twice, and similar results were obtained.
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Figure Legends

Fig. 1. Effect of LRP1 knockdown on CCN2 association with chondrocytic cells.
Recombinant CCN2 was designed to possess a Flag tag, which was captured or
internalized by LRP1 (left panel). Dual-tagged recombinant CCN2 was added to
control or LRPI knockdown HCS-2/8 cells, the medium was removed after 1 h, and the
cellular protein was collected. Immunoblotting was performed by using anti-Flag or
His tag antibody. Positions of molecular weight markers (35, 75 kDa) are shown at the
right of the images (right panel). NC, non-silencing siRNA as a negative control;
si-1163, LRP1 siRNA (target sequence position 1163); si-13157, LRP1 siRNA (target

sequence position 13157).

Fig. 2. Effect of chlorpromazine on the CCN2 association with chondrocytic cells.
Dual-tagged CCN2 was added to control or chlorpromazine (A) / MBCD (B) -treated
HCS-2/8 cells and the cellular protein was collected after 1 h. Immunoblotting was
performed by using anti-Flag or anti-His tag antibody. As a result, the
bound/incorporated CCN2 was decreased in the chlorpromazine-treated HCS-2/8 cells
(A), while it was not in MBCD-treated ones (B). Positions of molecular weight
markers (35,75 kDa) are shown at the right of the images. (C, D) Internalization of the
exogenously added rhCCN2 into HCS-2/8 cells and intracellular co-localization with
endogenous LRP1. The Flag-tagged CCN2 was added and analyzed by laser-scanning
confocal microscopy after 15 minutes. The distribution of LRP1 in HCS-2/8 cells was
visualized with an antibody for LRP1 (H-80 for o-subunit). The intracellular CCN2
uptake and co-localization with LRP1 was evident. (E-L) Intracellular delivery of
exogenously added rhCCN2 into certain organelle of HCS-2/8 cells. Staining of
clathrin (E, F), EEA1 (G, H; a marker of early endosomes) or Rab11 (I, J; a marker of
recycling endosomes) is shown. The squares in panels C, E, G and I indicate the areas

enlarged in the panels D, F, H and J, respectively. Incorporated rhCCN2 was partially
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targeted to clathrin (C, D) and early endosomes (E, F). Interestingly, exogenously
added thCCN2 and, particularly, the recycling endosome marker were predominantly
co-localized in HCS-2/8 cells (I, J). Merge: merged images of hCCN2 with LRP1 (C,
D), clathrin (E, F), EEA1 (G, H), or Rab11 (I, J) staining. Scale bars, 5 pm.

Fig. 3. Effect of LRPAP1 on CCN2 transcytosis in chondrocytes. (A) Schemaic
representation of the sampling strategy is shown. E. coli-derived dual-tagged CCN2
(B, C) was added to control or LRPAP1-treated HCS-2/8 cells in the upper chamber of a
Transwell, the medium in the upper chamber was removed after 1 h; and the cellular
protein (B) and the medium in the lower chamber (C) were collected as illustrated.
Immunoblotting was performed by using anti-Flag or His tag antibody. As a result, the
bound/ incorporated (B) and transcytosed (C) amount of CCN2 was decreased in the
LRPAPI-treated HCS-2/8 cells. Comparable results were obtained with Hela
cell-derived biotinylated recombinant CCN2 detected by the Streptavidin conjugate (D,
E). Positions of molecular weight markers (35, 75 kDa) are shown at the right of the
images. NC, the mixture of anti-FLAG® M2 affinity gel or Ni-NTA-agarose gel and

serum-free D-MEM without Flag or His-fusion protein as a negative control.

Fig. 4. Effect of hypoxia on levels of LRP1 mRNA and protein in HCS-2/8 cells.
(A) The LRPI mRNA level in HCS-2/8 cells under hypoxia. The level of mRNA was
standardized to that of /8s mRNA. Exposure to hypoxia resulted in a time-dependent
increase in the LRP/ mRNA level. The values represent the means + SD. *P < 0.05.
(B) LRP1, CCN2 and HIFla protein level in HCS-2/8 cells under hypoxia for 48 h.
Immunoblotting was carried out with anti-LRP1, CCN2 and HIF10 antibody. ~Stronger
signals for the LRP1 subunit, CCN2 and HIFlo were detected under hypoxia. (C)
Effect of antisense HIFlo oligonucleotides on HIF1o, LRP1 and CCN2 production

under hypoxic condition for 48 h. Treating the cells in 5% O, with antisense
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oligonucleotides to HIFla (AS-HIF) for 48 h abolished LRP1, CCN2 and HIFla
production. S-HIF: control experiments with the sense oligonucleotide. The position

of the molecular weight marker used (35 and 75 kDa) is shown at the left of the images.

Fig. 5. Effect of hypoxia on CCN2 transcytosis in chondrocytes. Transcytosis assay
was performed as described in the legend of Figure 2. As a result, the bound/
incorporated (A) and transcytosed (B) amount of CCN2 increased in the HCS-2/8 cells
under hypoxia, and the increase was suppressed by LRPAP1. NC, the mixture
anti-FLAG® M2 affinity gel or Ni-NTA-agarose gel and serum free D-MEM without

Flag or His-fusion protein as a negative control.

Fig. 6. LRPAP1 in HeLa, MDA-231, and HCS-2/8 cells. (A) The mRNA level of
LRP] and LRPAPI in HelLa, MDA-231, and HCS-2/8 cells. The level of each mRNA
was standardized to that of GAPDH mRNA. LRPI and LRPAP] mRNAs were highly
expressed in chondrocytic HCS-2/8 cells. The values represent the means + SD. *P <
0.05. (B) The protein level of LRPAP1 in Hela, MDA-231, and HCS-2/8 cells.
Immunoblotting was carried out with anti-LRPAP1 antibody. The strongest signal for
the LRPAP1 was detected in the HCS-2/8 cells. Positions of molecular weight

markers (35kDa) are shown at the right of the images.

Fig. 7. Difference in expression and distribution of LRPAP1 among chondrocytes
of various differentiation stages. (A) Immunohistochemical analysis of LRPAP1 in
the growth plate. Tibial sections from mice were stained with anti-LRPAP1 antibody.
The ECM in the entire growth-plate cartilage was immunopositive for LRPAP1, with
the strongest signal in the resting zone. The dark gray circles in the bottom panel
represent the cells that express Ccn2 gene. The hatched circles therein represent the

cells that accumulated CCN2 protein. Scale bars, 2 mm. (B) Change in the
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expression levels of Irpapl mRNA and other mRNAS in chicken sternum chondrocytes
of various differentiation stages. LC, USP, and USC represent resting, proliferating,
and hypertrophic chondrocytes in the growth plate, respectively. The expression of
Irpap] mRNA was the highest in the LC cells. Thus these results support the data

obtained in vivo (A). The values represent the means = SD. *P < 0.05.

Fig. 8. Schematic representation of the molecular mechanism determining the
polarity of CCN2 distribution. CCN2 protein is transported from prehypertrophic
chondrocytes, where it is produced, through transcytosis mediated by LRP1 to the
hypertrophic chondrocytes. The high levels of LRPAP1 in the resting zone interfere
with this transportation, whereas this interference is presumably attenuated by
down-regulation of LRPAP1 in the hypertrophic layer and down-regulation of LRP1 by
oxygen in the late hypertrophic layer. As a result of the down-regulation of LRP1 by

oxygen in the late hypertrophic layer, CCN2 is accumulated in the hypertrophic layer.

9]
-1
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Table 1.

Primers and experimental conditions forreal-time PCR

target Primer Length | Annealing
gene directian Sequence(5'—3) of PCR |temperature
(human) product (°C)
GAPDH S gccaaaagggtcatcatcte 215 65
AS gtcttctgggtggcagtgat
LRP1 S | 'acatatagcctccatcctaatc 152 65
AS ttccaatctccacgtteat
LRPAP1 S ctgaggctgagttcgaggag 150 65
AS gcetgettetggtagtggttyg
185 S gcgaattcctgecagtageatatgettg 140 60
AS ggaagcttagaggagcgagcgaccaaadg
Target : y P
geﬁe ,.»f/ / yd -
(chicken)| | | - |
gapdh S aggctgtggggaaagtca 202 65
AS gacaacctggtcctctgtgtat
col2at S agaaaggaatccagcccaat 236 65
AS acacctgccagattgattcec
colfoal| S acatgcatttacaaatatcgttac 160 60
| AS aaaatagtagacgttaccttgactc
alp S aacggccctggetataagat 186 60
AS tgggggatgtagttctgete |
Ipap1 S acccggtgaaagaggaagte 164 65
AS tgccatgtcccacaaatc

S.sense:AS. anti-sense.




