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form of CXCR4. The first mechanism comprises a shift in coreceptor
usage from CXCR4 to CCRS5, which is induced by selective pressure
from CXCR4 antagonists. However, this is unlikely to occur frequently
because coreceptor switching from CCR5 to CXCR4, and vice versa,
requires multiple mutations throughout gp160 via transitional inter-
mediates with poor replication fitness [77].

There is an evolutionary gap in viral fitness between viruses using
CXCR4 and those using CCR5. However, an R5X4 dual-tropic virus
can shift from X4-dominated tropism to R5-dominated tropism [83],
The R5X4 dual-tropic 89.6 mainly uses CXCR4 as a coreceptor, but af-
ter selection with the CXCR4 antagonist T140, coreceptor usage shifted
from a phenotype that mainly used CXCR4 to one mainly using CCR5
due to a single amino acid substitution (R308S) in the V3 loop in vitro.
These results indicated that the R5X4 virus could shift its main corecep-
tor usage due to a low genetic barrier to the development of resistance.
In contrast, an outgrowth of the pre-existing minority of the R5 virus
caused by CXCR4 antagonists, is expected to lead to virologic failure.
AMD3100 is a small molecule compound called a bicyclam that has
potent antiviral activity against a variety of X4-tropic strains [94-99].
However, it is not clinically available because of low oral bioavailability
[100]. After treatment of clinical isolates in vitro with AM3100 for 28
days, the major population of viruses using CXCR4 was promptly re-
placed by the pre-existing minor population using CCR5 with multiple
mutations in the V3 loop in vitro [101].

The third possible pathway results from accumulation of mutations
in the viral envelope that allow interaction between gp120 and the co-
receptor in the presence of the inhibitor. AMD3100-resistant viruses
selected in vitro from NL4-3 strain still used CXCR4 as a coreceptor
and contained several mutations in the V3 loop and showed poor fit-
ness [102]. In contrast, other viruses resistant to POL3026, a specific
B-hairpin mimetic CXCR4 antagonist, did not show any fitness cost
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and contained four mutations (Q310H, I320T, N325D, and A329T)
in the gp120 V3 loop [70]. These four mutations were shared by viral
strains resistant to SDF-1a [103] and T134 [104], indicating that the
V3 loop is a crucial region for the acquisition of CXCR4 antagonist
resistance.

The fourth possible mechanism involves acquisition of the abil-
ity to utilize the inhibitor-bound form as well as the drug-free form
of CXCR4 for viral entry. Several clinical isolates demonstrate infec-
tion through the AMD3100-bound form of CXCR4, indicating a non-
competitive mode of drug resistance [99]. The V1/V2 region of one
of the isolates is responsible for this property, suggesting that baseline
resistance to this kind of CXCR4 antagonist should be considered while
developing CXCR4 antagonists. Recent advances have led to the de-
velopment of orally-active CXCR4 antagonists, including AMD11070
[105], KRH-3955 [106], and GSK81297 [107]. Therefore, to prevent the
possible emergence of pre-existing forms of the CCR5 virus, it is likely
that CXCR4 antagonists will be effective only in combination with a
CCRS5 antagonist or other antiviral drugs.

Fusion inhibitory peptides and their mechanisms of action

Fusion inhibitors: Enfuvirtide (T-20) was approved by the FDA in
2003 as the first fusion inhibitor that efficiently suppresses the replica-
tion of HIV-1 resistant to available classes of anti-HIV-1 drugs (Fig-
ure 1), such as reverse transcriptase inhibitors (RTIs) and protease in-
hibitors (PIs). Hence, it has been widely used for treatment of HIV-1
infected patients where treatment with other antiretroviral drugs has
failed [108]. T-20 comprises a 36 amino acid peptide derived from the
gp41 HIV-1 C-terminal heptad repeat (C-HR), as shown in Figure 7.

During HIV-1 entry, binding of gp120 to CD4 and either CCR5
or CXCR4 initiates penetration of the hydrophobic fusion peptide do-
main at the N-terminal heptad repeat (N-HR) of gp41 into the target
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Figure 7: Schematic view of HIV-1 gp41 functional domains and mutation map for T-20. Putative hydrophobic pocket region of the N-HR is shown (green) and
may form a leucine-zipper-like domain. In the C-HR, two tryptophan-rich domains (TRD; pink) are located at the N- and C-terminal regions (N-TRD and C-TRD,
respectively). The N-TRD binds to the hydrophobic pocket in the N-HR, whereas the C-TRD plays a key role in membrane association. FP; fusion peptide domain,
which penetrates into the target cell membrane. TM; transmembrane region. The amino acid sequence of the HXB2 clone is shown as a representative HIV-1 se-
quence. Only mutations located in the extracellular domain of gp41 are shown. Mutations observed in in vitro and in vivo selections are indicated by an asterisk (*).
137T was only selected in vitro. Primary and secondary mutations were most frequently associated with T-20 resistance (red and biue, respectively). In addition,
T25S/A, S35AT, R46K, L55F, QS6R/K, V72L, A1011/T/V/G, L108Q, N109D, D113G/N, E119Q, L130V, 1135L, N1401, and L158W were selected in patients under
T-20 containing regimens, but observed in some drug-naive HIV-1 strains (Los Alamos HIV Sequence Data Bank, http://www.hiv.lanl.gov/content/index (natural
polymorphisms). Corresponding regions of T-20, SC34EK, and T2635 are shown. T-20 is comprised of the original sequence but others are extensively modified.
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cell membrane [6]. In the gp41 extra-cellular domain, the a-helical re-
gion at the C-HR begins to fold and interact with a trimeric form of the
N-HR in an anti-parallel manner. This intramolecular folding forms a
stable six-helix bundle and facilitates the fusion of the virus envelope
and cellular membranes. During the fusion step of HIV-1 replication,
T-20 can interfere with the formation of the six-helix bundle consisting
of a trimeric N-HR/C-HR complex.

In the C-HR, two tryptophan-rich domains (TRDs) are located in
close proximity to the connection loop (N-TRD) and the membrane-
spanning or transmembrane region (C-TRD). Both TRDs resemble a
leucine zipper structure and are believed to be important for interac-
tions of the N-HR and the C-HR. T-20 contains the amino acid se-
quence of the C-TRD, whereas C34-based peptides, such as SC34EK
and T2635, contain the N-TRD. T-20 is believed to bind to the N-HR
as a decoy and prevents the formation of the six-helix bundle [109],
resulting in the inhibition of HIV-1 entry. This mode of action has been
well documented with another fusion inhibitory peptide, C34, and re-
mains controversial whether the mechanisms of action of T-20 and
C34 are in fact the same.

Primary and secondary mutations for fusion inhibitors: Although
some fusion peptides, such as N36 [110] and IQN17 [111], are designed
using the N-HR sequence, most have been designed using the C-HR se-
quence. Primary mutations for a representative C-HR derived peptide,
T-20, are generally introduced within the N-HR, a putative binding site
of T-20 [112,113]. Mutations frequently reported in vivo are located
at amino acid positions 36-45 of the gp4l, including G36D/S/E/V,
V38A/M/E, Q40H, N42T, and N43D/K (Figure 7) [114]. Using circu-
lar dichroism analysis, others and we clearly demonstrated that these
primary mutations reduce the binding affinity of C-peptides with the
N-HR [112,115]. This mutation also impairs physiological intra-molec-
ular binding of the C-HR with the N-HR, providing a replication cost
[116]. Therefore, HIV-1 develops secondary or compensatory muta-
tions in the C-HR to restore the reduced stabilities of the six-helix bun-
dle by the introduction of primary mutations. N126K, E137K/Q, and
S138A [115,117] have been reported in vivo, usually in combination
with N-HR mutations. Mutations in the C-HR restore the intra-mo-
lecular folding/interaction of the C-HR with the N-HR. The enhanced
binding affinity by the secondary mutations can be applied to peptide
design, such as C34 with N126K and T-20 with S138A, which maintain
anti-HIV-1 activity, even to drug-resistant HIV-1 [115].

Secondary mutations of the N-HR are not only non-synonymous,
but also synonymous. A part of the RNA coding region for the env
gene, including gp41, also encodes the Rev-responsible element (RRE),
which is an RNA secondary structure important for unspliced RNA
export from the nucleus that is required for efficient viral protein syn-
thesis and packaging of genomic RNA [118,119]. Primary mutations
at positions 36 and 38 for stem II and at 43 for stem IIT affect the RRE
structure. Synonymous and non-synonymous mutations introduced
into the gp41 compensate for RRE structure stability, such as T18A for
V38A [120] and A30V for G36D [116], and Q41 (CAG to CAA) and
144 (UUG to CUG) for N43D [121]. This association between the gp41
and RRE results in some genetic restrictions.

Impact of mutations on clinical potency: Only one or two amino
acid substitutions in gp41 appear to be sufficient for clinical treatment
failure, where after the emergence of mutations, viral load gradually
increases [122]. For example, G36E, V38A, Q40H, and N43D were
shown to confer 39.3-, 16-, 21-, and 18-fold reductions in suscepti-
bility to T-20, respectively [123]. Double or triple substitutions have
also been identified in clinical isolates from patients undergoing ther-

apy with T-20. Mutations such as N42T+N43S, V38A+N42D, and
Q40H+L45M confer 61-, 140-, and 67-fold reductions in susceptibility
to T-20, respectively [123]. Mutations at codons 36 (G36E/D/S) and 38
(V38A/G/M) seem to emerge relatively rapidly in vivo, whereas Q40H
and N43D emerge more slowly [122]. After prolonged therapy, HIV-1
has been shown to develop secondary mutations and may confer more
apparent resistance with improved replication kinetics. Therefore,
combination regimens with other inhibitors, such as RTIs and PIs, are
indispensable for sufficient positive viral responses.

T-20 appears to inhibit replication of HIV-1 subtype independent-
ly [124-126], since T-20 has mainly been used for subtype B HIV-1
infected patients. Based on the mechanism of action of T-20, interfer-
ence of N-and C-HR interactions may be expected, where amino acid
sequences are highly conserved across all subtypes. However, in non-B
subtype HIV-1, N42S predominantly emerged as a resistance-related
mutation [124,125].

Resistance to the next generation inhibitors: Next generation inhibi-
tors have been designed using several strategies, such as the introduc-
tion of specific amino acid motifs and secondary mutations into the
sequence of the original peptide inhibitors [115] to enhance the sta-
bility of the a-helical structure between inhibitors and fusion domain
at the N-HR. In contrast to T-20, primary mutations to third genera-
tion inhibitors were not selected in vitro [127,128]; therefore, the ac-
cumulation of multiple mutations is likely necessary for the develop-
ment of resistance. In the case of SC34EK, 13 amino acid substitutions
(D36G, Q41R, N43K, A96D, N126K, E151K, H132Y, V182I, P203S,
12041, S241F, H258Q), and A312T) were introduced and single amino
acid substitutions only conferred weak resistance (<6-fold) [127]. For
another peptide, T-2635, 12 amino acids in 10 positions (A6V, L33S,
Q66R/L, K77E/N, T94N, N100D, N126K, H132Q, E136G, and E151G)
were selected, and single mutations did not confer resistance to T-2635
[128]. Interestingly, some of these mutations were located outside the
N-HR and C-HR. Cross-resistance between SC34EK and T-2635 was
only examined for the SC34EK-resistant virus and revealed little cross-
resistance [127]. Further studies of resistance profiles might be helpful
in defining new strategies for the design of fusion inhibitors that can
suppress the replication of resistant variants of HIV-1.

Conclusion

The emergence of viruses resistant to entry inhibitors, as well as
other classes of antiviral agents (reverse transcriptase or protease in-
hibitors), has been reported in vitro and in vivo. Resistance to entry
inhibitors, including attachment inhibitors and coreceptor antagonists,
is mainly conferred as a result of missense mutations within the gp120
subunit of the env gene, which differ from one inhibitor to another.
Alternatively, treatment failure can occur through the expansion of
pre-existing CXCR4-using virus for CCR5 antagonists, and vice versa.
Agents that target gp4l-dependent fusion select for HIV-1 variants
with mutationswithin the gp41 envelope gene. These results indicate
the incredible flexibility of the HIV-1 genome to escape from a variety
of entry inhibitors. Therefore, the development of novel entry inhibi-
tors for clinical use is needed to limit escape mutants by effective com-
bination therapy.
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