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Foster City, CA, USA). Editing and assembly of sequences
were performed using SEQUENCHER (Gene Codes, Ann
Arbor, MI, USA). The CD3E and CD3G sequences
determined in this study were deposited in DNA Data Bank
of Japan under the following accession numbers:
AB583139-AB583171 (ESM Table 2).

Statistical analyses

In this study, we used both Bn-Bs program and PAML
program to reduce the chance of false-positive findings. A
criterion for the gene under positive selection pressure was
that the p values obtained by both the Bn-Bs and PAML
programs were less than 0.05. The first screening of IgSF
genes under the selection pressure was performed by using
the Bn-Bs program. The genes showing p values less than
0.05 in the first screening were further analyzed by using the
PAML program.

The Bn-Bs program estimates the values of non-
synonymous substitution rate (dn) and synonymous substi-
tution rate (ds) based on the modified Nei-Gojobori method
(Nei and Gojobori 1986), where a phylogenetic tree is
given (Zhang et al. 1998). The value of w, an abbrevi-
ation for the value of dn/ds, is a criterion of natural
selective pressure acting on the gene. Statistical signif-
icance of the difference between dn and ds were
examined by Z test (Chatterjee et al. 2009). An ordinary
least-squares method was used to estimate the branch
lengths and variances for the evolutionary distances
between two sequences (Rzhetsky and Nei 1993).

Investigation on the presence of branch-specific positive
selection (the branch model) and site-specific positive
selection (the site model) were performed by using
CODEML, an application from PAML version 4.7 (Yang
2007). The branch model is used for evaluation of
difference in the value of w for each branch, and it is
useful for detecting a positive selection acting on particular
branch by using the likelihood ratio tests (Yang and Nielsen
2000). The site model treats w allowing the variance
among codons (Yang 2005; Yang and Nielsen 2000). Bayes
empirical Bayes (BEB) method was used to detect the sites
under the positive selection (Yang and Nielsen 2000; Wong
et al. 2004; Yang et al. 2005; Yang 2005, 2007).

Results
Non-synonymous/synonymous substitution ratio of IgSF genes
Four hundred sixty-one IgSF genes were selected from the

human genome, based on the Conserved Domain Database
v2.22 at NCBI (http://www.ncbi.nlm.nih.gov/Structure/cdd/

cdd.shtml). Among them, 47 genes composed of MHC,
KIR, and PSG genes (ESM Table 3) were excluded from
the phylogenetic analysis, because there are many paralo-
gous genes with high similarity in the sequences, which
may lead to uncertainty to identify the reliable orthologous
genes. Thus, a total of 414 IgSF genes were subjected to the
following analysis. By using the UCSC Genome Browser
(http://genome.ucsc.edu/), we attempted to identify orthol-
ogous genes for these 414 human IgSF genes in genomes
from chimpanzee, orangutan, rthesus macaque, and common
marmoset. We were unable to identify orthologs for 53, 55,
52, and 81 genes from the genome of chimpanzee,
orangutan, rhesus macaque, and common marmoset, respec-
tively, due to the alignment incompleteness (sequence identity
of less than 80%), insertion/deletions accompanied by
frameshift, or nucleotide substitutions resulting in a premature
stop codon. After removing the IgSF genes of which the
reliable orthologous genes were not identified in the non-
human primates, remaining 249 IgSF genes were used in the
study of positive selection.

The Bn-Bs program was applied to evaluate the non-
synonymous/synonymous substitution ratio (Larkin et al.
2007), and the value of Xdn and Xds, which were the sum
values of dn and ds, respectively, in seven primate
lineages, human, chimpanzee, human-chimpanzee ances-
tor, orangutan, human-chimpanzee—orangutan ancestor,
rhesus macaque, and common marmoset were calculated.
The IgSF genes were classified into 11 functional
categories based on the Gene Ontology database (http://
www.geneontology.org/); G0O:0002376: immune system
process, GO:0006952: defense response, GO:0051704:
multi-organism process, GO:0007166: cell surface recep-
tor linked signaling pathway, GO:0007155: cell adhesion,
GO:0007165: signal transduction, GO:0008219: cell
death, GO:0030154 : cell differentiation, GO:0008283:
cell proliferation, GO:0019222: regulation of metabolic
process and GO:0050794: regulation of cellular process.
When the Xdn/Xds ratios were calculated for the entire
coding sequences, there was no evidence to support the
presence of positive natural selection. The Xdn/>ds ratios
from the analyzed genes, except for LAIRI (Xdn/2ds ratio=
1.00, statistically not significant), were lower than 1.0,
implying that most of the IgSF genes had been under the
pressure of negative selection in the course of primate
evolution. Among the functional categories, GO:0002376:
immune system process (median Xdn/Xds ratio=0.407,;
interquartile range (IQR), 0.285-0.632, p=1.40x107%),
GO:0006952: defense response (median Xdn/Xds ratio=
0.394; IQR, 0.287-0.506, p=6.73x107%), and GO:0051704:
multi-organism process (median >dn/>ds ratio=0.400, IQR,
0.302-0.475, p=2.46x10"%) showed much higher values of
2dn/Xds ratio than the tested IgSF genes (median Xdn/>ds
ratio=0.208, IQR, 0.107-0.440; Fig. la).
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Fig. 1 Xdn/¥Xds ratio of IgSF genes. a The IgSF genes were
categorized by gene ontology. b 2dn/>ds ratios for the entire coding
region, Ig domain, and non-Ig domain. The Xdn/2ds ratios were
calculated by Bn-Bs program. Bars indicate median values of Xdn/

The coding segments of IgSF genes were divided into
two segments in each gene; one was the segment
encoding the Ig domain, whereas the other was the
coding region other than the Ig domain (non-Ig domain).
The Xdn/Xds ratios were also separately calculated for
the Ig and non-Ig domains in the IgSF genes. As shown
in Fig. 1b, the X.dn/Xds ratios for the Ig domains (median
3idn/3ds ratio=0.198; IQR, 0.070-0.420) were signifi-
cantly lower than the Xdn/3ds ratios for the non-Ig
domains (median Ydn/Xds ratio=0.242; IQR, 0.125-
0.456, p=2.10x107%). Interestingly, despite the lower
levels of Xdn/Yds ratio for the Ig domains, the Xdn/>ds
ratios of Ig domains from 11 genes, LAIRI, CD3G, CD3E,
CEACAM?7, ICAM4, CD244, CD4, CD3D, CD7,
SLAMFG6, and BTLA, were over 1.0 and higher than mean
3idn/3ds of the non-Ig domains, although none of them
was statistically significant.
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3.ds ratio for each group. An asterisk indicates that there was
significant difference between two groups (¥p<0.05, **p<0.01,
**%p<0.001)

Non-synonymous/synonymous substitution ratios of IgSF
genes in primate lineages

Average values of w for different lineages, including
human, chimpanzee, orangutan, rhesus macaque, and
common marmoset lineages, were calculated. First, we
made a long sequence by connecting the coding sequences
from all IgSF genes to calculate the average w value,
because there were many IgSF genes in which the ds was 0,
which made it impossible to determine the exact value of
w. Then, the values of w at intervals of approximately
20,000 bases were calculated. The average values of w for
each branch of the five-specie phylogeny were also
calculated by using the Bn-Bs program. It was found that
the average values of w for the entire coding region was
0.241 in the human lineage, 0.277 in the chimpanzee
lineage, 0.225 in the orangutan lineage, 0.234 in the rhesus
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lineage, and 0.281 in the marmoset lineage. We also
estimated the average value for the immune-related IgSF
genes, i.e. the IgSF genes categorized into GO:0002376,
G0:0006952, and GO:0051704, and the average value for
the other IgSF genes; 0.285 and 0.225 in the human
lineage, 0.381 and 0.236 in the chimpanzee lineage, 0.307
and 0.193 in the orangutan lineage, 0.370 and 0.181 in the
rhesus lineage, and 0.473 and 0.206 in the marmoset
lineage, respectively. In addition, essentially identical
results were obtained by using the PAML program (ESM
Figs. 1 and 2).

IgSF genes under the pressure of positive natural selection

The dn and ds values for the entire coding regions of IgSF
genes in each lineage were calculated by using the Bn-Bs
program and plotted in Fig. 2, where the genes with dn values
higher than ds values were distributed in the upper diagonal
portion. We performed statistical tests by using both the Bn-
Bs and PAML programs. When a statistically significant level
(p value less than 0.05) was obtained by the Bn-Bs program,
further analyses by using the PAML program were done. As
the results, five IgSF genes were suggested to have been
under the significant positive selection; SIGLECS [Z score=
2.70 (p=0.003), chi-square value=5.32 (p=0.021)], and
SLAMF6 {Z score=1.69 (p=0.046), chi-square value=3.93
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Fig. 2 Pairwise comparison plots of dn and ds values for the entire
coding regions of IgSF genes in primate lineages. The values of dn
(vertical axis) and ds (horizontal axis) for each primate lineage and
their summation (X) were calculated by Bn-Bs program. Dotted lines
indicate the average values of dn or ds. Arrows indicate the IgSF

(p=0.048)] in the human lineage, CD33 [Z score=2.43 (p=
0.008), chi-square value=4.90 (p=0.027)] in the chimpanzee
lineage, and CD3E [Z score=2.67 (p=0.004), chi-square
value=9.04 (p=0.003)] and CEACAMS [Z score=2.08 (p=
0.019), chi-square value=6.52 (p=0.011)] in the human-
chimpanzee-orangutan ancestor lineage (Table 1). No gene
under the significant control of positive selection was
identified in the human—chimpanzee ancestor lineage, the
orangutan lineage, the rhesus lineage, or the marmoset
lineage. We also calculated the dn and ds values in the seven
lineages for the Ig and non-Ig domains in the IgSF genes. Five
genes, CD3E, CD3G, FCERIA, CD48, and CD4, and four
genes, SIGLECS, TIM4, FCGR24, and CD3E, were sug-
gested to be under the positive natural selection in the Ig and
non-Ig domains, respectively (Table 1, ESM Figs. 3 and 4).

It should be noted here that we did not perform a
multiple-test adjustment, such as a strict Bonferroni
correction, and thus the levels of statistical significance
were marginal. Nevertheless, we obtained significant results
in the analyses done by two different programs, the Bn-Bs
and PAML programs, instead of performing the multiple-
test adjustment. In the Bn-Bs program, statistical signifi-
cance of the difference between the dn and ds values were
examined by Z test. On the other hand, in the PAML
program, detection of positive selection acting on particular
branch was based on the likelihood ratio test.
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Table 1 IgSF genes suggested to be under the positive selection in the course of primate evolution

Region Gene name Accession BnBs PAML Lineage®
w (dn, ds) Z score p Value w Chi-square p Value

Entire coding region SIGLECS NM_003830 6.90 (0.010, 0.002) 2.70 0.003 nc 5.32 0.021 H
SLAMF6 NM_052931 4.19 (0.008, 0.002) 1.68 0.046 ne 3.93 0.048 H
FCGR34 NM_000569 nc® (0.008, 0.000) 2.56 0.005 ne 2.80 ns® C
CD33 NM_001772 8.40 (0.009, 0.001) 2.43 0.008 ne 4.90 0.027 C
TIM4 NM_138379 29.43 (0.006, 0.000) 2.12 0.017 nc 3.81 ns C
IL1IRA NM_001142784 nc (0.004, 0.000) 2.0t 0.022 nc 2.24 ns C
FCGR24 NM_021642 nc (0.004, 0.000) 1.99 0.023 nc 1.27 ns C
ICAM2 NM_000873 65.00 (0.006, 0.001>) 1.93 0.027 nc 2.16 ns C
AMICAI NM_001098526 nc (0.004, 0.000) 1.77 0.039 nc 2.33 ns C
CD244 NM_001166663 4.34 (0.009, 0.002) 1.70 0.044 3.06 1.27 ns C
CD3E NM_000733 48.67 (0.028, 0.001) 2.67 0.004 nc 9.03 0.003 HCO
CEACAMS NM_001816 8.73 (0.013, 0.001) 2.08 0.019 nc 6.52 0.011 HCO
BTLA NM_181780 5.30 (0.018, 0.003) 1.69 0.046 4.74 2.13 ns HCO

Ig domain CD244 NM_001166663 6.20 (0.022, 0.004) 1.96 0.025 nc 3.77 ns H
FCGR34 NM_000569 19.98 (0.009, 0.001>) 1.89 0.029 nc 1.98 ns H
SLAMF6 NM_001184714 49.70 (0.011, 0.001>) 1.89 0.029 ne 1.95 ns H
CD244 NM_001166663 nc (0.017, 0.000) 251 0.006 ne 2.08 ns C
FCGR34 NM_000569 nc (0.008, 0.000) 2.03 0.021 nc 1.69 ns C
BTN242 NM_006995 nc (0.007, 0.000) 1.77 0.038 nc 1.47 ns C
IGSF2 NM_004258 341.00 (0.007, 0.001>) 1.75 0.040 ne 235 ns C
VSIGIOL NM_001163922 nc (0.017, 0.000) 1.66 0.048 nc 0.63 ns C
LILRA4 NM_012276 nc (0.035, 0.000) 2.64 0.004 nc 2.50 ns HC
SLAMF6 NM_052931 nc (0.013, 0.000) 1.80 0.036 nc 2.58 ns HC
TIM4 NM_138379 206.00 (0.014, 0.000) 1.71 0.043 nc 1.1l ns HC
PECAMI NM_000442 nc (0.009, 0.000) 2.31 0.010 nc 2.10 ns 6]
CEACAM7 NM_006890 292.40 (0.015, 0.000) 1.79 0.036 nc 1.75 ns 0o
BTLA NM_181780 nc (0.025, 0.000) 243 0.008 nc 1.99 ns HCO
CD3E NM_000733 16.07 (0.055, 0.003) 2.16 0.015 nc 4.43 0.035 HCO
IGSF2 NM_004258 nc (0.009, 0.000) 1.76 0.039 nc 2.94 ns HCO
CD3G NM_000073 nc (0.068, 0.000) 3.42 0.000 nc 4.74 0.029 R
FCERIA NM_002001 77.38 (0.029, 0.000) 2.86 0.002 ne 5.35 0.021 R
ICAM4 NM_001544 nc (0.049, 0.000) 2.71 0.003 nc 2.89 ns R
CD3E NM_000733 7.77 (0.085, 0.011) 2.62 0.004 nc 5.32 0.021 R
SIGLECI] NM_052884 2.08 (0.032, 0.015) 1.70 0.044 2.70 1.73 ns R
CD48 NM_001778 2.32 (0.197, 0.085) 2.31 0.010 2.65 4.23 0.040 M
LRRC4 NM_022143 6.61 (0.051, 0.008) 1.79 0.037 3.59 1.69 ns M
CD4 NM_000616 1.92 (0.199, 0.104) 1.75 0.040 345 6.34 0.012 M

non-Ig domain SIGLECS NM_003830 9.49 (0.012, 0.001) 2.66 0.004 ne 4.82 0.028 H
TREMLI NM_178174 nc (0.005, 0.000) 1.75 0.040 ne 2.38 ns H
KAZALDI NM_030929 nc (0.007, 0.000) 1.72 0.042 nc 1.72 ns H
CD33 NM_001772 24.03 (0.009, 0.001>) 2.17 0.015 ne 2.89 ns C
TIM4 NM_138379 27.66 (0.008, 0.001>) 2.09 0.018 nc 4.01 0.045 C
ILIIRA NM_001142784 ne (0.005, 0.000) 1.79 0.037 nc 222 ns C
BTNIAl NM_001732 52.71 (0.004, 0.001>) 1.72 0.043 nc 2.19 ns C
CD3E NM_000733 154.60 (0.008, 0.001>) 1.67 0.047 nc 1.76 ns HC
SIRPB2 NM_001122962 10.29 (0.012, 0.001) 1.79 0.037 ne 2.89 ns (o}
FCGR24 NM_021642 nc (0.017, 0.000) 2.64 0.004 nc 5.00 0.025 HCO
CD3E NM_000733 nc (0.017, 0.000) 1.66 0.048 nc 3.84 0.050 HCO

“ne Not calculated (Bs=0)
® us Not significant (p>0.05)

° H human, C chimpanzee, R rthesus, M marmoset, HC human-chimpanzee ancestor, HCO human-chimpanzee—orangutan ancestor
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Natural selection of CD3E and CD3G in primates

We further analyzed two genes, CD3E and CD3G, which
were suggested to be under the positive natural selection.
CD3G was the gene giving the lowest p value, and the Ig
domain of CD3E underwent the positive selection. CD3E
and CD3G tightly bound to each other (Xu et al. 2006).
Because it is known that interacting protein pairs, such as
receptor and its ligand, exhibit higher level of co-evolution
than non-interacting protein pairs (Goh et al. 2000; Jothi et
al. 2006; Li et al. 2005), we hypothesized that co-evolution
might occur between CD3E and CD3G. To investigate the
natural selection operated on these genes in the course of
primate evolution, we determined protein coding sequences
of CD3E and CD3G from 23 different primate species,
including eight hominoids (human, chimpanzee, bonobo,
gorilla, orangutan, black gibbon, white-handed gibbon, and

siamang), six Old World monkeys (thesus macaque, crab-
eating macaque, hamadryas baboon, black and white
colobus, silvered lutong, and dusky lutong), eight New
World monkeys (common marmoset, cotton-top tamarin,
red-handed tamarin, golden lion tamarin, common squirrel
monkey, tufted capuchin, long-haired spider monkey, and
Central American spider monkey), and one prosimian
(lesser galago). After the alignment of nucleotide sequences
and removal of alignment gaps, the values of dn and ds for
the entire region, Ig domain, and non-Ig domain were
calculated by using Bn-Bs program in each lineage of the
phylogenic tree of primates.

The dn and ds values for CD3E in each primate lineage are
indicated in Fig. 3. The dn values were larger than the ds
values in several lineages which might be underwent
positive selection pressure in the primate evolution. In
particular, the dn values for the Ig domain were significantly
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Fig. 3 Phylogenetic trees of CD3E in the primate evolution. Values
above branches indicate estimated values of dn and ds per lineage by
using Bn-Bs program. Values indicated in the upper parts are for the
entire coding region, while values in the lower parts are for the Ig

— 58

domain. Daggers indicate the value of dn higher than ds. An asterisk
indicates that there was a significant difference between the dn and ds
values (*p<0.05, **p<0.01, Z test)
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larger than the ds values in two lineages: gibbon ancestor
lineage [dn=0.061, ds=0.003, Z score=2.37 (p=0.009)] and
Old World monkey ancestor lineage [dn=0.037, ds=0.000,
Z score=1.94 (p=0.026)]. The significant positive selection
on the Ig domains in the Old World monkey ancestor lineage
[chi-square value=4.45 (p=0.035)] was confirmed by the
PAML program, whereas it was not significant in the gibbon
ancestor lineage [chi-square value=0.58 (p=0.446)]. Amino
acid (AA) sequence alignment of CD3E in the primates is
shown in Fig. 4. We identified three alignment gaps, all of
which were in the Ig domain. Of 53 AAs of the Ig domain,
approximately 30% (16/53) were evolutionary conserved
among the primate species. On the other hand, approximately
70% (97/143) of AAs were conserved in the non-Ig domain,
demonstrating that significantly more AA substitutions were
distributed in the Ig domain (p=2.16x107°). In addition, five
AA sites in the Ig domain (positions at 51, 53, 72, 80, and

105 in the human sequence) were identified as possible
target sites for the positive selection by the BEB method
using the PAML program.

The dn and ds values for CD3G in each primate lineage
were also measured by using the Bn-Bs program (ESM
Fig. 5). The dn values for the Ig domain were significantly
larger than the ds values in two lineages; Old World monkey
ancestor lineage [dn=0.060, ds=0.000, Z score=3.30 (p=
0.0005)] and hominoid and Old World monkey ancestor
lineage [dn=0.042, ds=0.007, Z score=1.65 (p=0.049)].
The positive selection was confirmed by the PAML program
in both lineages; Old World monkey ancestor lineage [chi-
square value=5.32 (p=0.021)] and hominoid and Old World
monkey ancestor lineage [chi-square value=4.17 (p=0.041)].
The AA alignment of CD3G from 23 primate species is
shown in Fig. 4. Approximately 40% (25/56) of AAs in the
Ig domain were conserved in the primate evolution, whereas
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Fig. 4 Alignments of CD3E (a) and CD3G (b) amino acid sequences
from 23 primate species. Dots indicate the identities to the human
reference sequence, while hyphens indicate alignment gaps. TCR
indicates amino acid sites at which the CD3 molecules interact with T
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cell receptor. ITAM represents the immune-tyrosine activation motif.
Arrows indicated under the amino acid sequences are 3-strand structures
modeled by the SWISS-MODEL program. Asterisks indicate AA sites
identified as being under the significant positive selection (p<0.05)
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Fig. 4 (continued)

approximately 60% (81/128) of AAs in the non-Ig domain
were conserved, demonstrating that the AA changes were
significantly more frequent in the Ig domain (p=0.019). Two
AA sites in the Ig domain (positions at 47 and 51 in the
human sequence) were identified as significant target sites
for the positive selection. These lines of evidence suggested
that the pressure of positive Darwinian selection had shaped
the structure of Ig domains in CD3E and CD3G during the
course of primate evolution.

Discussion

Members of the IgSF have a wide variety of cellular activities
and were classified into 11 functional categories based on the
Gene Ontology database (http://www.geneontology.org/).
When the association between the IgSF functional categories
and the Xdn/Zds ratios were analyzed, three GO categories
tightly linked to the immune system, ie., GO:0002376:

immune system process, GO:0006952: defense response,
and GO:0051704: multi-organism process, showed much
higher values for the Xdn/2ds ratio than the average value of
the IgSF genes. It has been reported that the evolutionary
rate of immune-related genes is higher than the other genes
(Gibbs et al. 2007; Kosiol et al. 2008; Nielsen et al. 2005; Yu
et al. 2006). The rapid evolution of immune-related genes
might be a direct consequence of a complex selection
pressure exerted by infectious diseases, autoimmunity, and
tumors (Barreiro and Quintana-Murci 2010). On the other
hand, as shown in Fig. la, the Xdn/>ds ratios of genes
linked to three functional categories, GO:0007155: cell
adhesion, GO:0007165: signal transduction, and
GO0:0008219: cell death, were comparable to those for the
functional categories other than the immune-related genes.
Genes in these three categories have also been reported to
have a higher non-synonymous/synonymous substitution
ratio than the genes in the other categories (Clark et al.
2003; Gibbs et al. 2007; Nielsen et al. 2005).
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Fig. 5 Three-dimensional structures of CD3E and CD3G modeled by
SWISS-MODEL. Arrows indicate amino acid sites identified as being
under positive selection by using the BEB method in the PAML
program. a Human CD3E. An arrowhead indicates a (3-strand which

It has been reported that the average value of w in the
human lineage is higher than that in the other primate
lineages (Ellegren 2008; Gibbs et al. 2007; Kosiol et al.
2008). The differences in the w among the primate lineages
may be attributable to the differences in the effective
population size during the course of evolution (Bakewell et
al. 2007). Interestingly, in our study, the average value of w
for immune-related genes in the human lineage was the
lowest among the primate lineages. Because previous
studies suggest that the rapid evolution of the immune-
related genes may be due to a direct consequence of
complex selection pressure exerted by infectious reagents
including microbes and viruses (Barreiro and Quintana-
Murci 2010), the observation in our study led us to a
hypothesis that in the course of human evolution there
might be fewer challenges from pathogens than the other
primates, in part due to a shorter course of human
evolution. In support of this, it was reported that humans
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is unique to human CD3E. b rhesus macaque CD3E, ¢ marmoset
CD3E, d human CD3G, e rhesus macaque CD3G. Arrowheads
indicate short strands of -strand which are unique to rhesus CD3G.
f marmoset CD3G

had faced relatively fewer challenges from retroviruses and
that humans were consequently at present more susceptible
to retrovirus infections than the other primates (Sawyer et
al. 2006). However, such a slow evolution of human
lineage might also be caused by other factors such as long
generation time and small population size.

We identified 11 genes possibly having undergone positive
selective pressure (Table 1). Among them, SIGLECS, CD33,
CD4, and CD3FE have been reported to be genes under the
pressure of positive selection in the primate evolution
(Angata et al. 2004; Gibbs et al. 2007; Zhang et al. 2008).
These genes play crucial roles in the innate and adaptive
immune systems, and infectious pathogens might have
exerted selective pressure on them (Angata 2006; Crocker
et al. 2007), because SIGLECS, CD33 (SIGLEC3), and CD4
are cell surface receptors for microorganisms.

CD3E and CD3G encode the components of T cell
antigen receptor (TCR) complex, TCR—-CD3 complex. The
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TCR~CD3 complex plays a key role in the regulation of
immune system through the recognition of antigenic
peptides presented by MHC molecules, and mutations in
either CD3E or CD3G are known to cause primary
immunodeficiency in humans (Buckley 2004; de Saint et
al. 2004; Recio et al. 2007; Sun et al. 2001). Furthermore,
previous studies have revealed the role of Ig domains of
CD3E and CD3G. For example, cell surface expression of
the stable TCR on mature T cell, assembly of the
components of T cell antigen receptor complex and T cell
activity are regulated by the Ig domains of CD3E and
CD3G (Dietrich et al. 1996; Guy and Vignali 2009; Sun et
al. 2001).

Because we hypothesized that co-evolution might occur
between CD3E and CD3G, protein coding sequences of
these CD3 genes from 23 primate species were determined,
and it was suggested that the Ig domains of both CD3E and
CD3G have undergone positive Darwinian selection pres-
sure in the primate evolution, especially in the Old World
monkey ancestor lineage. However, the role of Ig domains
in the direct interaction of CD3E and CD3G has not been
reported. Although the direct demonstration of functional
interaction are needed to clarify the impacts of AA
substitutions on the function of CD3E and CD3G, we
modeled three-dimensional structures of the Ig domains of
CD3E using SWISS-MODEL, an Automated Comparative
Protein Modeling Server (http:/swissmodel.expasy.org/
SWISS-MODEL.html; Bordoli et al. 2009). As shown in
Fig. 5, eight, seven, and seven (3-strands were found in the
Ig domains of CD3E from human, rhesus macaque, and
common marmoset, respectively, and the three AA inser-
tion/deletion observed in the Ig domain appeared to have a
strong impact on the modeled structure. In addition, it was
possible that five AA sites in the Ig domain, which were
identified as target sites for the positive selection, would
change the Ig domain structure. It has been reported that
highly conserved CXXCXEXXX motifs in the CD3 family
play an important role in the molecular interactions among
components of the TCR-CD3 complex (Borroto et al.
1998; Xu et al. 2006). Because the Ig domains are localized
just upstream of the N-terminal of CXXCXEXXX motifs,
drastic structural changes in the Ig domains might affect the
functional properties of CD3E and CD3G. It is likely that
such structural changes would affect the stability of the
TCR-CD3 complex and the expression level in mature T
cells (Call and Wucherpfennig 2004; Guy and Vignali
2009; Wang et al. 1998).

What was the extent of selective pressure exerted on
CD3E and CD3G in the course of primate evolution? Given
that the TCR-CD3 complex plays a crucial role in the
regulation of immune system, infectious diseases and

_autoimmunity have been postulated to be the strongest
selective pressures (Robins et al. 2009; Sun et al. 2001). It

is widely accepted that the susceptibility to infectious
pathogens, such as Mycobacterium tuberculosis bacilli and
HIV-1, are different among primate species (Lyashchenko et
al. 2008; Song et al. 2005). Because the dn values for the Ig
domains of CD3E and CD3G are significantly greater than
the ds values in the Old World monkey ancestor lineage,
their ancestors might have been exposed to powerful
selective pressure. To clarify the selective pressure exerted
on CD3E and CD3G, further study on phenotypic differ-
ences, such as the relative susceptibilities to infectious
pathogens and/or autoimmune disease, among various
primate species is needed.

In conclusion, we investigated the molecular evolution of
IgSF genes in primates. The study has demonstrated that the
immune-related IgSF genes have high non-synonymous/
synonymous substitution rates, and those 11 IgSF genes,
namely SIGLECS, SLAMF6, CD33, CD3E, CEACAMS,
CD3G, FCERIA, CD48, CD4, TIM4, and FCGR2A, may
undergo the positive selective pressure in the primate
evolution.
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Abstract Natural-killer group 2 member D (NKG2D) is an
activating receptor that plays an important role in the immune
response mediated by NK cells, v6" T cells, and CD8" T
cells. In humans, MHC class I chain-related genes and UL-
16 binding protein (ULBP)/retinoic acid early transcript 1
(REAT1) gene family encode ligands for NKG2D. The
thesus and crab-eating macaques, which belong to the Old
World monkeys, are widely used as non-human primate
models in medical researches on the immunological process.
In the present study, we investigated the polymorphisms of
ULBP4/RAETIE, a member of the ULBP/RAET] family, and
found 25 and 14 alleles from the rhesus and crab-eating
macaques, respectively, of which diversities were far more
extended than in humans. A phylogenetic study suggested
that the allelic diversification of ULBP4/RAETIE predated
the divergence of rhesus and crab-eating macaques.
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Introduction

Non-human primates, such as rhesus and crab-eating macaques,
are important animal models for the study of infectious diseases,
autoimmune diseases, and organ transplantation. These mac-
aques are members of the Old World monkeys, and it has been
reported that the genetic diversity in the thesus macaque is quite
unique, that is, more than 60% of the rhesus macaque-specific
expansions are found in the protein coding sequences (Gibbs et
al. 2007). To evaluate the results of immunological experi-
ments in the macaque models, it is essential to characterize the
genetic diversity of immune-related molecules which may
control the individual differences in the immune response
against foreign antigens and/or pathogens. It has been reported
that the gene copy number in the major histocompatibility
complex (MHC) loci in the rhesus and crab-eating macaques
is higher than that in humans (Kulski et al. 2004; Gibbs et al.
2007; Otting et al. 2007). In addition, the extent of genetic
diversity differed, in part, depending on the geographic areas,
and we have reported that the diversity of MHC class I genes
in the rhesus macaque is considerably different depending on
habitat (Naruse et al. 2010).

Because the innate immune system is involved in the
response to environmental pathogens, it is necessary to
consider the function of natural killer (NK) cells in the
experimental animal models. Natural-killer group 2 mem-
ber D (NKG2D), a C-type lectin molecule, is an activating
receptor expressed on the cell surface of NK, y&", and
CD8" T cells, which plays an important role in the immune
response (Wu et al. 1999; Raulet 2003). In humans, MHC
class I chain-related genes (MIC) and UL-16 binding
protein (ULBP)/retinoic acid early transcript 1 (REATI)
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gene family are known to encode ligands for NKG2D
(Bauer et al. 1999; Cosman et al. 2001; Chalupny et al.
2003; Bacon et al. 2004). These ligand molecules are
usually stress-inducible, and their recognition by NKG2D
can lead to the activation of NK cells, consequently killing
virus-infected and tumor cells (Pende et al. 2002; Eagle et
al. 2006; Pappworth et al. 2007; Ward et al. 2007).

The human ULBP/RAETI gene family is located on
chromosome 6q24.2, which is composed of ten members
including six functional genes, ULBPI, 2, 3, 4, 5, and 6,
corresponding to RAETII, H, N, E, G, and L, respectively
(Radosavljevic et al. 2001; Chalupny et al. 2003; Eagle et
al. 2009a, b). In addition, several sequence polymorphisms
in each ULBP gene have been identified (Romphruk et al.
2009; Antoun et al. 2010). Although it is evident that the
cell surface expression of the ligand molecules on target
cells is differentially regulated (Eagle et al. 2006), genetic
polymorphisms in the coding regions might have a
functional impact. We have previously investigated the
genetic polymorphisms of ULBP/RAET! genes and have
found that the ULBP4/RAETIE gene is the most poly-
morphic, with the allelic distribution differing among ethnic
groups (Romphruk et al. 2009).

On the other hand, rhesus macaque ULBP4/RAETIE
(GenBank: NW_001116520) is mapped on the long arm of
chromosome 4 (i.e., positions from 31, 164, 822 to 31, 175,
032 of chromosome 4 in the rhesus genome; data obtained
from the UCSC Genome Browser at hitp://genome.ucsc.edw/
cgi-bin/hgGateway; Gibbs et al. 2007). However, its genetic
polymorphisms are poorly characterized, although the MIC
gene polymorphisms are well studied in the rhesus macaque
(Seo et al. 1999, 2001; Doxiadis et al. 2007; Averdam et al.
2007). In the present study, we investigated the polymor-
phisms of ULBP4/RAETIE in rhesus and crab-eating
macaques. This is the first report demonstrating the extreme
diversity of the NKG2D ligand in the Old World monkey.

Materials and methods
Animals

A total of 38 rhesus macaques from seven lineages
previously analyzed for the MHC polymorphisms (Naruse
et al. 2010) and 24 crab-eating macaques from five lineages
were the subjects. They were maintained in the breeding
colonies in Japan. The founders of the rhesus macaque
colonies were captured in Myanmar and Laos, whereas the
founders of crab-eating macaque colonies were captured in
Indonesia, Malaysia, and the Philippines. All care, includ-
ing blood sampling of animals, were in accordance with the
guidelines for the Care and Use of Laboratory Animals
published by the National Institutes of Health (NIH
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publication 85-23, revised 1985) and were subjected to
prior approval by the local animal protection authority.

DNA extraction and sequencing analysis

Genomic DNAs from B lymphoblastoid cell lines of the rhesus
macaque (Naruse etal. 2010) and from whole blood sample of
the crab-eating macaque were extracted by using the
QuickGene DNA kit (Fujifilm, Tokyo, Japan) according to
the manufacturer’s instructions. The genomic gene for
ULBP4/RAETIE of rhesus and crab-eating macaques was
amplified by polymerase chain reaction (PCR) with a primer
pair designed for the region spanning from introns 1 to 3 of
the rhesus gene (NC007861), ULBP4F (5'-
TGGGCCTCTTCCCCTGTCC) and ULBP4R (5'-
GTGGGAGGTGGGATGGG), using FastStart Tag DNA
polymerase (Roche, Mannheim, Germany). The PCR condi-
tion was composed of the following steps: denaturation at
95°C for 4 min; 30 cycles of 95°C for 30 s, 63°C for 30 s,
and 72°C for 45 s; and additional extension at 72°C for 7 min.
The PCR products of about 1,200 bp in length were cloned into
pSTBlue-1 AccepTer vector (Novagen, WI, USA) according
to the manufacturer’s instructions and were transformed to
Nova Blue Single™ competent cells (Merck4Biosciences
Japan, Tokyo, Japan). Ten to 20 independent transformant
colonies were picked up for each sample and subjected to
sequencing on both strands by using a BigDye Terminator
cycling system and an ABI 3730 automated sequence
analyzer (Applied Biosystems, CA, USA).

Data analyses

Nucleotide sequences of ULBP4/RAETIE from cloned
DNAs were aligned using the Genetyx software package
(version 8.0, Genetyx Corp., Japan). If at least three clones
from independent PCR or from different individuals
showed identical sequences, the sequences were submitted
to the DNA Data Bank of Japan (DDBJ). Neighbor-joining
trees were constructed with Kimura’s 2-parameter method
for a phylogenetic analysis of ULBP4/RAETIE sequences
spanning from exons 2 to 3 including intron 2 by using the
Genetyx software. Bootstrap values were based on 5,000
replications. The ULBP4/RAETIE sequences from humans
(GenBank accession number AY252119), chimpanzees
(AY032638), and rhesus (NC007861) were included in
the analysis as references.

Structure model analysis

A three-dimensional (3-D) structure model of rhesus
ULBP4/RAETIE, with amino acid positions from 1 to
178, was created by a molecular visualization software
RasTop2.2 (http://sourceforge.net/projects/rastop/), and the
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human RAETI1B in complex with NKG2D (Radaev et al.  mapped on the 3-D structure model of macaque RAETIE
2001) from the Molecular Modeling Database (MMCB No. by using the Cn3D 4.1 program (http://www.ncbi.nlm.nih.
18231) was used as the reference. Polymorphic sites were  gov/Structure/CN3D/cn3d.shtml).

Table 1 Identified alleles of the ULBP4 gene in rhesus and cynomolgus

Species Allele name Accession no. Reference animal Identical
sequence
Rhesus macaque Mamu- AB568525 R228, R367
ULBP4*].1
Mamu- AB568533 R492, R396, R465
ULBP4*1.2

Mamu-ULBP4*2  ABS568526 R283, R384, R328, R337

Mamu-ULBP4*3  AB568527 R346, R361, R396, R379, R408

Mmau-ULBP4*4  AB568528 R320, R490, R321, R465, R367, R446, R328, R234, R237, R314
Mamu-ULBP4*5  AB568529 R430, R453, R325, R477, R439, R360, R379, R446, R355
Mamu-ULBP4*6  AB568530 R437, R350,

Mamu- AB568531 R325, R384, R491, R333, R337
ULBP4*7.1
Mamu- AB568544 R477
ULBP4*7.2
Mamu-ULBP4*8  AB568532 R408, R454, R241, R342, R316
Mamu- AB568534 R312, R314
ULBP4*9.1
Mamu- AB568535 R333
ULBP4*9.2

Mamu-ULBP4*10 ABS568536 R316
Mamu-ULBP4*11 AB568537 R241
Mamu-ULBP4*12 AB568538 R342
Mamu-ULBP4*13 ABS568539 R491
Mamu-ULBP4*14 AB568540 R495 Mafa-ULBP4*1.1
Mamu-ULBP4*15 AB568541 R350
Mamu-ULBP4%16 ABS568542 R492
Mamu-ULBP4%17 AB568543 R495
Mamu-ULBP4*18 ABS568545 R454
Mamu-ULBP4*19 AB568546 R321
Mamu-ULBP4*20 ABS568547 R355
Mamu-ULBP4*2]  AB571025 R437
Mamu-ULBP4*22 ABS571026 R439

Crab-eating Mafa-ULBP4*1.1 AB578934 MO1, P01, P02, C001, C003, C004, C00S, CO06 Mamu-
macaque ULBP4*14

Mafa-ULBP4*1.2 ABS578935 MO02, C004

Mafa-ULBP4*2  ABS578936 P04, M06, C010, CO11, CO13
Mafa-ULBP4*3  ABS578938 MO03, C007

Mafa-ULBP4*4  ABS578939 MO03, C006

Mafa-ULBP4*5  AB578940 P04, P0S, MO5, M0O6, C012, C013
Mafa-ULBP4*6 ~ AB578941 MOs, C010, CO11
Mafa-ULBP4*7.1 ABS578942 Mo1, C002
Mafa-ULBP4*7.2 ABS578943 P03, C008

Mafa-ULBP4*8  AB578944 P03, M04, C008, C009
Mafa-ULBP4*9  ABS578945 P01, C001, C002
Mafa-ULBP4*10  AB578946 Mo04, C009

Mafa-ULBP4*11  ABS578947 P02, C007

Mafa-ULBP4*12  AB578948 MO02, C005
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Fig. 1 Phylogenetic tree of Mamu-ULBP4*9.1
Mamu- and Mafa-ULBP4/ 79

RAETIE alleles. A phylogenetic —  Mamu-ULBP49.2
tree of ULBP4/RAETIE —  Mamu-ULBP4*10
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Results
ULBP4/RAETIE polymorphisms in the rhesus macaque

In the rhesus macaque genome (Gibbs et al. 2007), there are
two paralogous genes for ULBP4/RAETIE, one of which
appears to be functional, whereas the other is a pseudogene
because it contains a large deletion containing the most part of
exons 2, 3, and 4. Therefore, we designed primer pairs to
amplify the region containing exons 2 and 3, which encode for
ol and o2 domains of ULBP4/RAETIE molecule, respec-
tively, from the functional ULBP4/RAETIE. By using the
primer pair, we obtained ULBP4/RAETIE sequences from 38
individuals of rhesus macaque. Because one or two sequences
were obtained from each individual, the sequences were
considered to be alleles of ULBP4/RAETIE. They were
classified into 25 different alleles, designated as Mamu-
ULBP4*].1 to Mamu-ULBP4*22, submitted to DDBJ, and
given accession numbers (Table 1). The allele names with
different numbers indicate that they are different in predicted
amino acid sequences, whereas the alleles with the same
deduced amino acid sequences but different nucleotide
sequences, such as Mamu-ULBP4*1.1 and Mamu-
ULBP4*1.2, are designated as subtypes. None of the
sequences obtained in this study was identical to the reference
sequence, NC007861, which was previously deposited to the
GenBank database as the rhesus ULBP4/RAETIE. On the
- other hand, when the sequences were aligned referring the
human ULBP4/RAETIE, one thesus allele (Mamu-ULBP4*8)

was found to contain a nonsense mutation at codon 29, which
would make the ULBP4/RAET1E molecule non-functional.

ULBP4/RAETIE polymorphisms in the crab-eating
macaque

By using the primer pair designed for the rhesus ULBP4/
RAETIE, we could amplify the ULBP4/RAETIE sequences
from 24 individuals of the crab-eating macaque. Sequenc-
ing analysis revealed 14 different ULBP4/RAETIE alleles,
and inheritance of each allele was confirmed by family
studies. The identified allele sequences were submitted to
DDBJ, given accession numbers, and designated as Mafa-
ULBP4*1.1 to Mafa-ULBP4*12 (Table 1). The nucleotide
sequences from exons 2 to 3 of Mamu-ULBP4*14 were
identical to those of Mafa-ULBP4*].] and differed by only
one nucleotide in intron 2 from those of Mafa-ULBP4*1.2.
In addition, a neighbor-joining analysis performed by using
nucleotide sequences spanning from exons 2 to 3 showed
that the alleles of rhesus and crab-eating macaques were not
separately clustered from each other (Fig. 1).

Comparative analysis of ULBP4/RAETIE

The alignment of ULBP4/RAETIE sequences from rhesus
and crab-eating macaques with those from humans and
chimpanzees showed that the macaque genes were homol-
ogous to the human gene by more than 90% and were
equally diverged (Fig. 2). In addition, rhesus and crab-

50
Human :GHSLCFNFTI KSLSRPGQPW CEAQVFLNKN LFLQYNSDNN MVKPLGLLGK KVYATSTwge
Chimpanzee :---------- - L= = e Nem——m—
Rhesus macaque :A-------=- -~ W-——mmm = —m ] M-K- ----- D—8- ——mmmmm e e Ne———m— o-
Crab-eating macaque :A--------- -- W-m—mmmm — o] M--- -E---D—S8N -----==-=== -- N-=—-- o-

100
Human :ltgtlgevgr dlrmllcdIK PQIKTSDPST LQVEMFCQRE AERCTGASWQ FATNGEKSLL
Chimpanzee :---M--=--== —====- Lemm mm———— Gmmm mmmmm—m e m e e Tom e
Rhesus macaque :---K------ -—===-=L-Y- -=-===GP~~ -==-- Lmmmm = e -PI--——C——
Crab-eating macaque :---------- -IM---L-V- P----- G=-= Le===L==== =—=-—————— -Li----C--
180
Human :FDAMNMTWTV INHEAskike twkkdrglek yfrklskgdc dhwlreflgh weampEPTV
ChiMPAaNZE@E @ —=———— === e e e Q
Rhesus macaque :F----M---- ---- AS-—-- —=~ Kremomm mmmmme M-—-- N-——-—- L-- Q-A--——=— Q
Crab-eating macaque :---------- —---- S--== —-m-mmmmms e M--- N-WLR----- Q----=- TQ

Fig. 2 Alignment of deduced amino acid sequences of «l and o2
domains of ULBP4/RAETIE. Amino acid sequences were deduced
from the nucleotide sequences of ULBP4/RAETIE or MICH3 from
humans (AY252119), chimpanzees (AY032638), rhesus macaques
(NC007861), and crab-eating macaques (AY032639). Numbers above

the sequences represent the amino acid positions in mature protein.
Dashes indicate identical sequences. Sequences for the predicted «
helix structure were indicated by small italicized characters. Positions
of polymorphic sites in the Auman, rhesus macaque, and crab-eating
macaque were underlined
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Table 2 Single nucleotide polymorphisms of ULBP4 gene among human and Old World monkeys

Number of alleles ~ Exon 2 Intron 2 Exon 3
Polymorphism  Non-synonymous  Polymorphism  Polymorphism  Non-synonymous
change (%) change (%)
Human 5 2 2 (100%) 3 3 3 (100%)
Rhesus macaque 25 9 5 (55.6%) 22 22 14 (63.6%)
Crab-eating macaque 14 17 9 (52.9%) 18 16 9 (56.3%)

eating macaques showed a higher degree of polymorphism
in the analyzed region, namely, exon 2, intron 2, and exon
3, than in humans (Table 2). All polymorphisms found in
exons of human ULBP4/RAETIE were non-synonymous,
whereas a considerable part of the polymorphisms were
synonymous in the Old World monkeys. On the other hand,
the polymorphic sites in the rhesus macaque (positions 29,
46, 59, 64, 79, 88, 112, 121, 126, 135, 136, 144, 157, 158,
161, 168, 171, and 173) and the crab-eating macaque
(positions 32, 39, 40, 59, 72, 73, 79, 91, 112, 136, 163,
164, 165, 171, 178, and 179) were shared at five positions
(59, 79, 112, 136, and 171) by each other, whereas only one
position (position 112) was shared with polymorphic sites
in humans (positions 53, 99, 112, and 113) (Fig. 2). In
addition, a termination at position 29 was found in a rhesus
macaque allele Mamu-ULBP4*8; a single amino acid
deletion caused by deletions of a total of three nucleotides
was found in a crab-eating macaque allele Mafa-ULBP4*6
[i.e., TGGCTCAGG sequences corresponding to codons
163-165 were changed to TGCTCA, which may be due to
two different deletions at codons 163 (from TGG to TG)
and 165 (from AGG to A)], whereas such polymorphisms
were not observed in humans. These findings suggest that a
selection pressure to generate and maintain the polymorphic
sites might be considerably different between the lineages
of humans and the Old World monkeys.

Discussion

It has been suggested that the ancestral gene for the ULBP/
REAT molecule of placental mammals was originally
diverged and duplicated in each species after an emigration
from the MHC region (Kondo et al. 2010). In humans, MHC
genes (HLA genes) are clustered and mapped on the short
arm of chromosome 6, 6p21.3, whereas the ULBP/RAETI
genes are located on the long arm of chromosome 6, 6g25.1.
As for the MHC genes in the macaque, it was previously
reported that rhesus macaque MHC, e.g., BAT1 gene, was
localized to chromosome 6q24 by using fiber-fluorescence in
situ hybridization (Huber et al. 2003) and cynomolgus (crab-
eating) macaque MHC, e.g., Mafa-A and Mafa-B genes, was
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cytogenetically mapped to chromosome 6pl3 (Liu et al
2007), although the rhesus macaque MHC is mapped on the
short arm of chromosome 4 in the draft genome sequence
database of rhesus macaques (Gibbs et al. 2007); e.g.,
Mamu-A and BAT1 were mapped from positions 29, 517,
308 to 29, 520, 221 and from 31, 164, 822 to 31, 175, 032,
respectively, on chromosome 4 (data were obtained from the
UCSC Genome Browser at http://genome.ucsc.edu/cgi-biry/
hgGateway). The discrepancy between the cytogenetic
mapping and the assignment in draft genome sequence
should be resolved in the future. On the other hand, it is
interesting to note that each member of the ULBP/RAETI
gene family, except for ULBP6, is completely or partially
duplicated in the rhesus genome. As for the ULBP4/
RAETIE, two related sequences, LOC695031 (NC007861)
and LOC694265, have been identified as orthologs of human
ULBP4/RAETIE. On the other hand, the configuration of
ULBP/RAETI loci in the crab-eating macaque genome
remained unknown. Because LOC694265 was a pseudogene
lacking most part of the coding exons, we designed PCR
primers by referring the NC007861 sequence. By using the
designed primers, we could successfully amplify ULBP4/
RAETIE alleles from both rhesus and crab-eating macaques.

In this study, we identified a total of 25 and 14 alleles
from rhesus and crab-eating macaques, respectively. One of
the rhesus macaque alleles had identical sequences to one
of the crab-eating macaque alleles, and the phylogenetic
analysis demonstrated that the ULBP4/RAETIE alleles were
widely diverged. None of the alleles identified in this study
were identical to the previously reported sequence
NC007861, which was derived from an individual of
Indian rhesus macaque. Given that we analyzed rhesus
macaques of Burmese origin in this study, and allele
distribution of MHC-related polymorphic genes are well
known to be largely dependent on the habitat regions, the
extent of diversity and variation in ULBP4/RAETIE may be
further expanded.

It was demonstrated that the diversity of ULBP4/
RAETIE in the Old World monkeys was much higher than
that of human ULBP4/RAETIE. It is possible that the genes
in the ULBP/RAET] locus, in particular, ULBP4/RAETIE
and ULBP/RAETIs, might be highly polymorphic in the
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0ld World monkeys. We therefore investigated ten unrelat-
ed rhesus macaque subjects, in which we had detected 16
ULBP4/RAETIE alleles for polymorphisms in the adjacent
ULBP/RAETI genes. We found one ULBPI/RAETII allele,
seven ULBP2/RAETIH alleles, and one ULBP3/RAETIN
allele in these subjects. The observation suggested that
ULBP4/RAETIE was highly polymorphic as compared to
the adjacent ULBP/RAET] genes.

We revealed a high degree of polymorphism in the
ULBP4/RAETIE of the rhesus and crab-eating macaques,
although about half of the polymorphisms were synony-
mous changes (Table 2). Albeit the expression of the
ULBP4/RAET1E molecule is known to be involved in the
recognition of tumor cells by the NKG2D receptor (Cao et
al. 2008; Kong et al. 2009), the functional significance of
the polymorphisms in the extracellular domain of the
ULBP4/RAET1E molecules remained unknown. To inves-
tigate a possible role of the polymorphisms, we have
created a 3-D structure model of thesus ULBP4/RAETIE
molecule by using the structure data of human ULBP3/
RAETIN in complex with NKG2D (Radaev et al. 2001) as
the reference. As shown in Fig. 3, only one polymorphic
site at 173 was on the surface of the « helix pointing to the
NKG2D receptor, five sites at 59, 136, 144, 161, and 165
were positioned outside the « helix, and only two sites at
32 and 91 were mapped on the  sheet in the groove. The
other polymorphic sites were on the 3 sheet outside of the
groove or were not on the surface of the o helix. In
addition, expression of ULBP4/RAETIE is predominantly
found in the skin and tumor tissues and not induced by viral
infection in normal cells (Chalupny et al. 2003; Eagle et al.
2006). These observations suggest that the polymorphisms
are unlikely to be involved in the differential presentation

Fig. 3 Mapping of polymorphic
sites on the structure model

of the macaque ULBP4/RAET1E
molecule. Polymorphic sites
found in the Old World

monkeys were mapped on the 3-
D structure model of ULBP4/
RAETIE. Residues on the upper
and outer sides of the « helix
structure were indicated by

a circle and squares, respectively.
Residues not found on the
surface of the o helix were
underlined, and those on the 3
sheet structure were represented
by rhombi
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of characteristic small molecules bound by the ULBP4/
RAETIE molecules, as found in the presentation of
antigenic peptides by the MHC molecules. Nevertheless,
highly prevalent polymorphisms leading to amino acid
replacements suggest that a selection pressure had operated
on the configuration of diversity in ULBP4/RAETIE.

Of particular interest in this study was the rhesus
macaque allele Mamu-ULBP4*8, which was supposed to
contain a stop codon in the exon 2 coding sequence that
would truncate the most part of the molecule. This is the
first report of a non-functional ULBP/RAETI allele in
primates; however, a similar situation was reported for
another NKG2D ligand gene, MIC. For example, a specific
human MIC haplotype linked to HLA-B*048 consists of
non-functional MIC genes, in which MICA was deleted and
MICB contained a termination codon (Ota et al. 2000); the
non-functional MIC haplotype is widely distributed in the
East Asian populations (Komatsu-Wakui et al. 2001). It is
interesting to note that there are two distinct and poly-
morphic genes for MIC in the rhesus macaque, MICA
(previously designated as MIC! and MIC3) and MICB
(previous MIC2); however, they are not considered to be
orthologous to the human MICA and MICB genes,
respectively (Seo et al. 1999, 2001; Doxiadis et al. 2007,
Averdam et al. 2007). Because members of the MIC and
ULBP/RAET1 molecules are structurally related (Li et al.
2002), there is a functional redundancy in the recognition
by NKG2D, and thus, the presence of a null allele had been
allowed during the evolution of primates.

In the present study, we demonstrated the ULBP4/
RAETIE allelic polymorphisms not only in the rhesus
macaque but also in the crab-eating macaque. Although the
localization of ULBP4/RAETIE in the crab-eating macaque
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genome is unknown, a homology search showed that a
Mafa-MICH3 gene (AY032639) was homologous to Mafa-
ULBP4/RAETIE because the nucleotide sequences of
Mafa-ULBP4*1.] showed a 96% homology to Mafa-
MICH3. Similarly, nucleotide sequences of a chimpanzee
gene, Patr-MICH3 (AY032638), showed a 94% homology
to the rhesus ULBP4/RAETIE. These findings strongly
suggest that M/CH3 in the crab-eating macaque and
chimpanzee is orthologous to ULBP4/RAETIE in the
human and rhesus macaque.

In conclusion, we revealed a large diversity of ULBP4/
RAETIE in two related species of the Old World monkey.
Because there were extremely large polymorphisms in the
extracellular domain of the ULBP4/RAETIE molecule in
the Old World monkey, which was larger than that in the
human, the functional impact of the polymorphisms and its
significance in the evolution of primates should be
investigated in future studies.
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Abstract Toll-like receptor 2 (TLR2) plays an important role
in the recognition of a variety of pathogenic microbes. In the
present study, we compared polymorphisms of 7LR2 locus in
two closely related old world monkey species, rhesus
monkey (Macaca mulatta) and Japanese monkey (Macaca
fuscata). By nucleotide sequencing of the third exon of 7LR2
gene from 21 to 35 respective individuals, we could assign
17 haplotype combinations of 17 coding SNPs of ten non-
synonymous and seven synonymous substitutions. A non-
synonymous substitution at codon position 326 appeared to
be differentially fixed in each species, asparagine for M.
mulatta whereas tyrosine for M. fuscata, and may contribute
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to certain functional properties because it locates in the
region contributing to ligand binding and interaction with
dimerization partner of TLR2-TLR1 heterodimeric complex.
Although TLR2 alleles have diverged to similar extent in
both species, they have evolved in significantly different
ways; TLR2 of M. fuscata has undergone purifying selection
while the membrane-proximal part of the extracellular
domain of M. mulatta TLR2 exhibits higher rates of non-
synonymous substitutions, indicating a trace of Darwinian
positive selection.

Keywords Innate immunity - TLR - Polymorphism -
Nonhuman primate - Molecular evolution -
Reporter gene assay

Introduction

The rhesus macaque, Macaca mulatta, is one of the best
known old world monkeys and has been used for various
biomedical researches as a nonhuman primate model
including infections of simian immunodeficiency virus
(Ling et al. 2002; Matano et al. 2004) and Mycobacterium
tuberculosis (McMurray 2000; Huang et al. 2007). M.
mulatta belongs to the primate family Cercopithecidae that
shares the last common ancestor of approximately 25
million years ago (Mya) with human and hominoids
(Kumar and Hedges 1998). According to this fact,
nucleotide sequence similarity between humans and M.
mulatta has been maintained as high as 93% in average
(Rhesus Macaque Genome Sequencing and Analysis
Consortium 2007). Analyses of molecular evolution of
mitochondrial and nuclear DNA among species of genus
Macaca estimate the divergence between rhesus and
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