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452 Bone marrow-targeted liposomal carriers:

%
* K a feasibility study in nonhuman primates

Background & aims: Recently, we described a novel surface-modified lipid vesicle formulation (liposome)
that had very high targeting to bone marrow in normal rabbits. Because the bone marrow is the site of
hematopoiesis, bone marrow-targeted drug-delivery systems have many potential applxcat:ons. In this
study we lnvesuga’ced whether these bone marrow-targeted vesicles are also similarly effective for bone
marrow targeting in rhesus monkeys, a primate animal model that is more relevant to humans.
Materials & methods: The preformed vesicles encapsula’cmg 30 mM- glutathione were labeled with
technetium-99m (99‘“Tc) for scintigraphic imaging. The vesicles were 216 = 21 nm in diameter Wwith a negative
surface charge composed of DPPC, cholesterol, anionic amphlphile and poly(ethyiene glycol)-DSPE
(1:1:0.2:0.013 molar ratio). Results: The whole-body images of rhesus monkeys receiving intravenous *™Tc
vesicles revealed high uptake of the *mTc vesicles in bone marrow. Based on image analysis, we estimated
that approximately 70% of the injected dose of the *"Tc vesicles was taken up by the bone marrow.
Conclusion: This finding increases the feasibility of using this bone marrow—specn‘lc drug- dellvery system

for clinical apphca’clons.

KEYWORDS: biodistribution bone marrow drug carrier lipid veéicles liposomes
nonhxuman primate scmtlgraphy surface modification- ‘ )

Phospholipid vesicles (liposomes) are one type
of nanosized carrier for drug delivery (1-4). Since
the pharmacokinetics of liposomally encapsu-
lated drugs are strongly dependent on the bio-
distribution of the liposomes, the tracking of the
in vive distribution of liposomes is an imporrant
factor in estimating the potential of a particular
liposome formulation for specific drug-delivery
applications. Whole-body radionuclide imaging
is a powerful tool for noninvasive and quantita-
tive determination of the biodistribution of lipo-
somes in preclinical and clinical evaluations (5-7).
In particular, technetium-99m (*"Tc), which has
a photopeak of 140 keV and a halflife of 6 b, isa
commonly used radionuclide for clinical scinti-
graphic imaging. To label liposomes encapsulat-
ing glutathione (GSH) with *~Tc, Phillips ez 4/
has established a simple method using a com-
plex of ®"TcO, and hexamerhyl propyleneamine
oxime (HMPAO) (s].

In general, whole-body scintigraphic imaging
of animals and humans receiving conventional
99~ T¢ liposomes demonstrates significant uprake
of the ™Tc liposomes in the liver and spleen
with minimal uptake in the bone marrow [6].
Significant phagocytic function of the mono-
nuclear phagocyte system of the liver and spleen

is a principal mechanism for capturing circulat-  function of hematopoiesis. Bone marrow phago- uture part of g
ing vesicles 77 vivo. Tissue macrophages such as  cytic cells are well known to provide important
hepatic Kupffer cells and splenic macrophages ~ support to hematopoetic cells by serving as the l i |€ ICIﬂ@

are the cellular components responsible for the
uptake of vesicles in these mononuclear phago-
cyte system organs [9]. To achieve a longer circu-
lation of liposomes, their surface can be modi-
fied with poly(ethylene glycol) (PEG) chains,
which function to decrease phagocytosis by
macrophages in the liver and spleen (10-12].

On the other hand, phagocytes such as
macrophages and dendritic cells are potential
target cells for liposome-based drug deliv-
ery (13-17). To specifically target liposomes to
macrophages, known ligand molecules such as
mannose have been attached to the surface of
the liposomes. Recently, we found that rabbit
bone marrow phagocytic cells selectively caprure
lipid vesicles that have been surface modified
with an anionic amphiphile: L-glutamic acid,
N-(3-carboxy-1-oxopropyl)-, 1,5-dihexadecyl
ester (SA) (18). This lipid, when added as a small
fractional component of the lipasome formu-
lation, was serendipitously found to result in
high uptake of the bone marrow in studies con-
ducred for the development of an encapsulated
blood substitute. Development of an effective
bone marrow delivery system in humans could
prove valuable owing to the viral importance
of the bone marrow as the site of the crucial
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central component of erythroblastic islands [19].
Potential clinical uses of this bone marrow-deliv-
ery system include delivery of agents that protect
the marrow from the toxic effects of chemother-
apy and radiation, and the delivery of agents to
effectively and safely ablate bone marrow prior
to bone-marrow transplant. The present study
was carried out to determine if vesicles that
are surface modified with SA and PEG (PEG-
[SA-Ve]) can effectively target bone marrow in a
primate. For this purpose, we examined the bio-
distribution of PEG-[SA-Ve] in rhesus monkeys
by noninvasive scintigraphic imaging.

Materials & methods

& Materials
1,2-dipalmitoyl-sz-glycero-3-phosphocholine
(DPPC), cholesterol and SA were purchased
from Nippon Fine Chemical Co. Ltd. (Osaka,
Japan). SA was custom synthesized based on
previous reports [20]. 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-{monomethoxy PEG
(5000)] (PEG-DSPE) was purchased from NOF
Co. (Tokyo, Japan). GSH was purchased from
Sigma (St Louis, MO, USA).

& Preparation of vesicles

Mixed lipid powder of DPPC, cholesterol, SA
and PEG-DSPE (1:1:0.2:0.013 molar ratio)
was hydrated with phosphate-buffered saline
(pH 6.0) containing 30 mM GSH at 5 gdl. After
controlling vesicle size by an extrusion method
(final pore size of the filter: 0.2 um, Isopore™,
Millipore, Tokyo, Japan), the unencapsulated
GSH was removed by two ultracentrifugation
steps (3 x 10° g, 60 min each) and PEG-[SA-Ve]
encapsulating GSH were dispersed in phosphate-
buffered saline at 6.2'gdl. The diameter of the
final PEG-[SA-Ve] determined by dynamic light

scattering was 216 + 21 nm.

2 ¥mTc-labeling of PEG-[SA-Ve]

Radiolabeling of preformed vesicles was per-
formed according to a method described previ-
ously (7.18]. A saline solution of sodium (*™Tg)
pertechnetate (5 ml, 2.78 GBq [75 mCi]; GE
Healthcare Radiopharmacy, San Antonio,
TX, USA) was injected into a vial containing
lyophilized HMPAO (0.5 mg, SnCl,; 7.6 mg;
Ceretec™; GE Healthcare, Arlington, IL, USA).
The mixed solution was incubated for 5 min at
room temperatute. The " Tc-HMPAO solu-
tion (0.6 ml) was then added to PEG-[SA-Ve]
dispersion ([lipids] = 6.2 gdI?, 0.6 ml), and the
resulting mixture was incubated for 1 h. After
removing free " Tc-HMPAO by gel filtration

(Sephadex-G25 column), total radioactivity
was measuted in a dose calibrator (AtomLab
100, Biodex, Shirley, NY, USA) and the labe-
ling efficiency was calculated as the percentage
of radioactivity in ®~Tc-PEG-[SA-Ve] after
separation to radioactivity measured just before
gel-filtration chromatography.

“# Animal experiments

The animal experiments were performed under
the NTH Animal Use and Care guidelines and
approved by the University of Texas Healch
Science Center at San Antonio Institutional
Animal Care and Use Committee (TX, USA).
The male rhesus monkeys (11.2-15.0 kg;
n = 3) were sedated with ketamine 10 mg/kg
intramuscularly. They were maintained sedated
with 29 isoflurane gas anesthesia and placed in
the supine position under a Picker (Cleveland,
OH, USA) large-field-of-view y-camera inter-
faced with a Pinnacle imaging computer
(Medasys, Ann Arbor, MI, USA). Tc-PEG-
[SA-Ve] (total lipid dose: 15 mg/kg bodyweight;
#mTe activity, 237-337 MBq [6.4~9.1 mCi])
were injected in the venous line of the animals at
1 mlmin®, The 1 -min dynamic 128 x 128 pixel
anterjor scintigraphic images were acquired over
a continuous period of 1 h. Then static images
were acquired at 1, 3 and 22 h after injection
of ¥"Tc-PEG-{SA-Ve]. Blood samples (100 pl)
were collected into tubes at various times post-
injection to monitor circulation persistence. The
radioactivity of the blood samples was counted in
an automated scintillation well counter (Wallac
1480, Perkin Elmer Life Sciences, Boston, MA,
USA). The counts at each time point were nor-
malized to the percentage of the counts in the
first blood sample collected immediately after

99 Te-PEG-[SA-Ve] injection.

% Image analysis

Region of interest analysis was performed by
drawing regions of interest for all the regions of
the body demonstrating uptake on the images.
These regions included che liver, spleen and the
bone marrow uptake regions including the skull,
neck vertebrae, right and left clavicles, right and
left upper limbs, the ribs, sternum, upper spine,
lower spine, pelvis, sacrum and right and left
lower limbs. Total count activity in all regions
was considered to be 100% of the injected dose
of activity. The percentage of activity in the
whole body was then calculated for each region
by dividing by the total body counts and mul-
tiplying by 100. This analysis was performed at
3 and 22 h and the results are shown in Tasz 1.
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Since dynamic images were acquired at 1-min
intervals for the first 1 h, dynamic region of
interest activity as a percentage of activity fol-
lowing the complete infusion of the dose of
10 min was calculated as the percentage change
in the particular region from the baseline 10-min
image. The results from this analysis are shown
in Fieure 1.

Results

& Preparation of ®mTc-PEG-[SA-Ve]

The lipid membrane of present PEG-[SA-Ve] is
composed of four different lipids, as shown in
Feure 2. In addition to DPPC and cholesterol,
which are common components of most con-
ventional liposome formulations, the vesicles
contain an anionic amphiphile (SA) and PEG-
lipid (PEG-DSPE). The average diameter of
PEG-[SA-Ve] was controlled to 216 = 21 nm
by the stepwise extrusion through mem-
brane filters with a final pore size of 0.2 pm.
Preformed PEG-[SA-Ve] encapsulating GSH
was labeled with *™Tc to allow investigation
of PEG-[SA-Ve] biodistribution quantitatively.
The #"Tc labeling of the vesicles encapsulat-
ing GSH was accomplished by using a com-
plex of the *"Tc and HMPAO. Stoichiometric
analysis has shown a 2:1 molar ratio of GSH
and *™Tc for stable complex formation [21).
The " Tc-labeling efficiencies were reproduc-
ible with the three individual runs of 81, 86
and 82%. We have confirmed that 98% of the
incorporated *™Tc remains with present vesicle
formulation after incubation in plasma at 37°C
for 24 h 18). This high encapsulation stability
supports the accuracy of the ®"Tc-PEG-[SA-Ve]
biodistribution results.

& Circulation & biodistribution kinetics
90 Te.-PEG-[SA-Ve] was intravenously injected
into anesthetized rhesus monkeys (n = 3) at
15 mg lipids/kg bodyweight. The circulation
halflife times of #*Tc-PEG-[SA-Ve] in each
monkey were 1.3, 2.8 and 4.0 h. The averaged
profile of the ®*Tc-PEG-[SA-Ve] elimination
from blood circulation is shown in Ficure 3. At
22 h postinjection, the " Tc-PEG-[SA-Ve] have
almost disappeared from circulation (<3% of
injected ?"Tc-PEG-[SA-Ve] in blood). As
shown in Fure 14, the y-camera images show
intense radioactivity in blood pool of the heart
and liver at 10 min after injection of ™ Tc-PEG-
[SA-Ve]. At 60 min, the radicactivity of heart
clearly is decreased owing to the elimination
of 9 Tc-PEG-[SA-Ve] from the blood circula-
tion. On the other hand, liver still had strong

W oo NGO whN —
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Skull

Neck vertebrae

Right clavicle

Left clavicle

Right upper limb (shoulder and arm)
Left upper limb (shoulder and arm)
Ribs, sternum and upper spine
Lower spine

Total bone marrow uptake

circulation.

N-(3-carboxy-1-oxopropyl)-, 1,5-dihexadecyl ester.

Lower limbs (pelvis, sacrum, tail, femur and tibia)

% of $"Tc- PEG-[SA-Ve]
3h 22h
28.0 27.2
8.3 6.7
2.2 2.4
0.7 0.5
0.6 0.6
45 5.4
47 5.8
21.0 213
11.3 14.7
19.0 15.7
72.0 72.9

‘These biodistribution percentages are estimated based on region of interest counts uncorrected for
9mTe-PEG-[SA-Ve] activity in circulating blood. Circulating blood activity is contributing to a portion
of the activity at 3 h, but very little at 22 h when virtually all activity has been cleared from the

*These correspond to the numbered regions in the y-camera image of FIGURES 4 & 5.
#mTc: Technetium-99m,; L: Liver; PEG: Poly(ethylene glycol); S: Spleen; SA: i-glutamic acid,

St

radioactivity at 60 min. The radioactivity of
bone marrow in the shoulder, sternum and spine
is increased with time, indicating the distribu-
tion of the ?"Tc-PEG-[SA-Ve] to these organs
from the blood circulation. The percentage of
radioactivity at each time point to that at 10 min
postinjection showed that the ?"Tc-PEG-[SA-
Ve] gradually distributed to the shoulder, lower
spine and liver with time (Fieure 18). In particu-
lar, the increase of radioactivity in the shoulder
bone marrow was remarkable.

# Whole-body imaging

The whole-body y-camera images were acquired
at 1, 3 and 22 h after injection of *Tc-PEG-
[SA-Ve]. All three monkeys showed significant
distribution of ?"Tc-PEG-[SA-Ve] in bone
marrow but one monkey was removed from
the whole-body image analysis because it was
incidentally discovered to have a liver mass.
Biodistribution images of two monkeys are
shown in Fieures 4 & 5. The high overall uptake of
9w Tc-PEG-[SA-Ve] throughout the bone mar-
row is easily visualized at 3 and 22 h in two
different monkeys. The skull, sternum, shoul-
ders, spine and pelvis were especially active to
99" Te-PEG-[SA-Ve] uptake in monkeys. From
the image analysis, we estimated that approxi-
mately 70% of " Tc-PEG-[SA-Ve] is distrib-
uted into the bone marrow, as summarized in
Taste 1. The other 30% was distributed in the
liver and spleen. These results clearly indicare
that the bone matrow is 2 principal organ of
PEG-[SA-Ve] uptake in rhesus monkey.
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S e

Intensity of radioactivity (%)

Figure 1. Initial distribution kinetics of *™Tc-PEG-[SA-Ve] after intravenous
injection (lipids: 15 mg/kg bodyweight) in rhesus monkeys. (A) y-camera
images of a rhesus monkey acquired at 10 and 60 min postinjection of **"Tc-PEG-
[SA-Ve]. (B) Intensity profile of radioactivity at the region of interest with time. The
intensity of radioactivity at each time point was expressed as a percentage of the
radioactivity at 10 min postinjection. The uptake is shown to increase in the bone
marrow over the first 60 min of the study during which time the activity is clearing
in the heart, which correlates with the clearance of the *"Tc-PEG-[SA-Ve] from the

blood circulation.

%mTc: Technetium-99m; H: Heart; L: Liver; LS: Lower spine; PEG: Poly(ethylene

glycol); SA: 1-glutamic acid, N-(3-carboxy-1-oxopropyl)-, 1,5-dihexadecyl ester;

SH: Shoulder.
Discussion
The present study focused on PEG-[SA-Ve],
which are composed of lipids modified with SA
and PEG. In a previous study, we have identified
that the SA is an active factor leading to their
phagocytosis by bone marrow macrophages
in rabbits 18]. The specific mechanism of why
SA lipid is associated with high bone marrow
macrophage uptake is not known; however,
its uptake is likely owing to interaction with
scavenger receptors on the bone marrow mac-
rophages that are important in the removal of

Nanomedicine (2010) 5(1)

senescent blood cells and also in the phagocytosis
of extruded erythroblast nuclei [22,23]. As little
as 0.6 mol% of PEG-DSPE can depress hepatic
uptake without depressing bone marrow uptake.
The active targeting factor of SA and the passive
targeting factor of PEG-DSPE appear to coop-
eratively increase the distribution of vesicles to
bone marrow. However, the species specificity of
bone marrow macrophages for uptake of PEG-
[SA-Ve] was unclear. Therefore, the present
experiments in a primate are important for future
translational research and clinical applications.

After injection of PEG-[SA-Ve] in rhesus
monkeys, they were eliminated from the blood
circulation with a half-life of several hours, as
shown in Ficure 3. Based on previous studies in
rabbits, the highest percentage uptake in the
bone marrow was found with a lipid dose of
15 mg lipid/kg bodyweight [18,24]. Based on these
prior studies in rabbits, we selected this dose of
15 mg lipid/kg bodyweight for the present study.

One significant finding offered by the present
study is that PEG-[SA-Ve] are promising
carriers for delivering encapsulated agents
to primate bone marrow. The whole-body
images impressively show that the primate bone
marrow has significant phagocytic activity for
these specially modified circulating particles, as
shown in Fieures 4 & 5. In particular, the skull, ster-
num, shoulders, spine and pelvis demonstrated
uptake of PEG-[SA-Ve] in all monkeys tested.
The injected doses of ™ Tc-PEG-[SA-Ve] in the
liver, spleen and bone marrow were calculated
from the distribution of radioactivity in these
three organs. This image analysis revealed that
approximately 70% of the injected dose of **®Tc-
PEG-[SA-Ve] were distributed in the bone mar-
row. This #"Tc-PEG-[SA-Ve] uptake by bone
marrow is nearly identical to the level determined
from a previous experiment in rabbits (> 60%
of injected dose **Tc-PEG-[SA-Ve]). However,
in contrast to the distribution of PEG-[SA-Ve]
in bone marrow throughout the whole body in
rabbits, there was less **Tc-PEG-[SA-Ve] dis-
tributed in the legs and arms of the monkeys. In
adult humans, the myeloid hematopoiesis is dis-
tributed in red marrow, which is mainly localized
in the ribs, sternum, spine, pelvis and proximal
shafts of the femora and humeri [25]. It seems
that the distribution of PEG-[SA-Ve] in monkeys
is similar to the distribution of myeloid hemat-
opoiesis in humans. The scintigraphic imaging
of PEG-[SA-Ve] distribution appears to show
the location of hematopoietic activity in bone
marrow, which may be useful for the diagnosis
of hematopoietic disorders.
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In a recent study [Sou K, Goiwns B, Ovajos1 BO,
TrAvI BL, PHILLIPS WT, MANUSCRIPT IN PREPARATION],
PEG-[SA-Ve] did not show a very high uptake
in the bone marrow of rats, while they had a
much higher uptake in the spleen of rats than
in the spleen of rabbits and primates. The rea-
son for this species difference in bone marrow
distribution is unknown. We believe this dif-
ference may be related to the relatively larger
spleen-to-bodyweight ratios found in rats as
compared with rabbits and primates. We also
believe this species difference may be due to the
much higher cell production and turnover in the
spleen of rats relative to the bone marrow as com-
pared with rabbits and primates, which likely
have higher cell production and turnover in the
bone marrow. Extramedullary hematopoeisis has
been shown to commonly occur in the spleen of
rats while being much less common ‘in rabbits
and primates [26]. The significant differences in
bone-marrow uptake between the rats and rab-
bits/rhesus monkeys demonstrates the impor-
tance of studying nanoparticle distributions in
avariety of animal species, particular larger ani-
mals such as rabbits and primates. Quantitative
noninvasive imaging studies of the distribution
of nanoparticles in larger animals can best be
done with scintigraphic imaging.

The distribution of the #*Tc-PEG-[SA-Ve]
in rhesus monkeys found in this study is very
different from a previous imaging study of a
standard liposome formulation in rhesus monkeys
as reported by Dams ez al. (27). In the Dams ez al.
study, ***Tc-liposomes which were composed of
partially hydrogenated egg-phosphatidylcholine,
cholesterol and PEG (Mw. 2000)-DSPE showed
significant liver and spleen uptake but no signifi-
cant bone marrow uptake of the *™Tc-liposomes.
This demonstrates that conventional liposomes
are not taken up by the bone marrow of rhesus
monkeys and suggests that bone-marrow uptake
of PEG-[SA-Ve] is specifically related to its lipid
formulation. This bone-marrow specificity
appears to provide a mechanism for site-specific
drug delivery to the bone marrow from the blood
circulation. Thus, the present PEG-[SA-Ve]
system is regarded as a successful example of
in vivo site-specific targeting by specific surface
modification of liposomes. The specific par-
ticipation of bone marrow macrophages in the
clearance of circulating particles such as lipopro-
teins and neutrophils has been shown previously
(28-30]. Interestingly, the uptake of apoprotic
neutrophils by bone marrow macrophages was
shown to stimulate the production of granulo-
cyte-colony stimulating factor [29). Furthermore,
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Figure 2. Bone marrow-targeted liposomal carriers (PEG-[SA-Ve]) labeled
with **™Tc. The lipid bilayer membrane is composed of four lipids and the surface is
specialized by an anionic amphiphile (SA) with succinic acid moiety and a
poly(ethylene glycol) lipid. **™Tc is remotely loaded into preformed vesicles
encapsulating 30 mM GSH.

99mTc: Technetium-99m; DPPC: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine;

GSH: Glutathione; PEG: Poly(ethylene glycol); SA: -glutamic acid, N-(3-carboxy-1-
oxopropyl)-, 1,5-dihexadecyl ester.

bone marrow macrophages, associated with
erythroblasts in a hematopoietic environ-
ment, participate in erythropoiesis control and
engulfment of nuclei from erythroid precursor
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Figure 3. Circulation kinetics of *"Tc-PEG-[SA-Ve] after intravenous
injection (lipids: 15 mg/kg) in rhesus monkeys. The percentage of radioactivity
is calculated as a percentage of the baseline radioactivity in a blood sample
withdrawn just after injection.

9smTc: Technetium-99m; PEG: Poly(ethylene glycol); SA: t-glutamic acid, N-(3-
carboxy-1-oxopropyl)-, 1,5-dihexadecyl ester.
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Figure 4. Static y-camera images of rhesus monkey number 1 at (A) 1, (B) 3 and (C) 22 h
postinjection of **"Tc-PEG-[SA-Ve]. Numbered regions are 1: skull; 2: neck; 3: right clavicle; 4: left
clavicle; 5: right upper limbs (shoulder and arm); 6: left upper limbs (shoulder and arm); 7: ribs,
sternum and upper spine; 8: lower spine; 9: lower limbs (pelvis, sacrum, tail, femur and tibia).

#mTc: Technetium-99m; L: Liver; PEG: Poly(ethylene glycol); S: Spleen; SA: 1-glutamic acid, N-(3-
carboxy-1-oxopropyl)-, 1,5-dihexadecyl ester.

cells (19.22,31]. Such specific biology of bone mar-
row macrophages in controlling hematopoiesis
may offer a therapeutic avenue for PEG-[SA-Ve]
to deliver the therapeutic agents directly to bone
marrow macrophages.

In a prior study by Senior and Gregoriadis,
35% of the injected dose of intravenously
administered small unilamellar liposomes com-
posed of DSPC and cholesterol (1:1) and encap-
sulating In-bleomycin as a tracer with a size
of 65 nm accumulated in the carcass/bone of
mice and rats at 72 h [32]. In this article, it was
presumed that the liposomes were taken up by
the phagocytic cells of the bone marrow. This
previous study describes a high uptake of lipo-
somes in the bone marrow of rats, whereas the
bone marrow-targeted liposomes in the present
study do not have high bone-marrow uptake
in rats [Sou K, Gorns B, Ovajosr BO, Trav1 BL, PHILLIPS
WT, MANUSCRIPT IN PREPARATION] but do have high
bone-marrow uptake in rabbits [1s] and in the
rhesus monkey primate model. It is also possible
that the high apparent uptake in the Senior and
Gregoriadis study may be due to the postmetab-
olism distribution of In, as 90% of the tracer

Nanomedicine (2010) 5(1)

had cleared from the blood by 24 h, but the
tissue biodistribution was not performed until
72 h. High bone-marrow uptake has not been
shown in subsequent studies with liposomes of
this formulation labeled with other radiotracers.

To the best of our knowledge, this is the
first carrier system that has been described that
can specifically deliver a very high quantity of
intravenously injected therapeutic agents to
bone marrow in a primate model. There are
many potential applications of this delivery sys-
tem [33,34]; however, the success of these applica-
tions will depend on the nature of the drug being
delivered and its interaction with bone marrow
macrophages, which are the likely cells of uptake
in the marrow. For some applications, the drug
may need to be released from the phagolyso-
some of the bone marrow macrophage to reach
its therapeutic target located within the macro-
phage cytoplasm. In other applications, there
may need to be a complete release of the lipo-
some-encapsulated drug from the bone marrow
macrophage so that the drug can move to other
cells located in the bone marrow that contain the
therapeutic target. Previous studies have shown
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that macrophages in culture that have phago-
cytosed liposome-encapsulated doxorubicin can
release the majority of the doxorubicin intact
into the cell media, providing clear evidence that
macrophage-ingested drugs can be completely
released [35]. Other studies have also shown that
macrophages can be loaded with drugs to serve
as cellular drug-delivery vehicles [36,37).
Assuming the drug targeting and release issues
can be overcome, potential uses of this bone-
marrow delivery system include: the delivery of
chemo- and radio-protective agents to protect
sensitive bone marrow during radiation and
chemotherapy treatments; the delivery of agents
to specifically ablate bone marrow prior to bone
marrow transplant; the delivery of gene therapy
to bone marrow; the specific delivery of anti-
microbial agents to treat parasitic diseases that
reside in high concentrations in bone marrow
macrophages such as leishmania; and the deliv-
ery of diagnostic agents to the bone marrow to

assess bone-marrow mass and provide precise
localization of bone marrow. In patients receiving
radiation treatment, knowledge of the size and
location of the marrow in a particular patient is
important for accurate quantification of radiation
dose to bone marrow, which is the organ most
sensitive to radiation and chemotherapy toxiciry.

Another potential application of PEG-[SA-Ve]
in cancer is the delivery of anticancer drugs into
bone marrow. This bone marrow-specific drug-
delivery system may allow for a more targeted
therapy of hematopoietic disorders such as mye-
loleukemia and myeloma. Furthermore, recent
evidence indicates that macrophages can be
targeted as a method to suppress angiogenesis in
solid tumors [14.38,39]. In addition, PEG-[SA-Ve]
encapsulating a macrophage-depleting agent such
as clodronate may be able to selectively deplete
the bone marrow macrophages. On the other
hand, myelosuppression is a frequent side effect
of cancer chemotherapy and radiotherapy. In this

Figure 5. Static y-camera images of rhesus monkey number 2 at (A) 1, (B) 3and (C) 22 h
postinjection of **"Tc-PEG-[SA-Vel. In this second monkey, uptake in the proximal tibia was

more prominent.

99mTc: Technetium-99m; F: Femur; PEG: Poly(ethylene glycol); SA: -glutamic acid, N-(3-carboxy-1-

oxopropyl)-, 1,5-dihexadecyl ester; T: Tibia.
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humans genetically.

= Whole-body region of interest scintigraphic image analysis of monkeys receiving intravenous %" Tc-PEG-[SA-Ve] revealed that

| Sou, Goins, Leland, Tsuchida & Phillips

instance, PEG-[SA-Ve] may be used as a vehicle
to deliver protective agents to bone marrow with
the goal of reducing myelosuppression.

to be performed to demonstrate the feasibil-
ity of this carrier system for these different
therapeutic applications.

Conclusion

The clear demonstration of bone marrow tar-
geting of the SA surface-modified vesicles in
the rhesus monkey model, in addition to the
previous demonstration of bone marrow tar-
geting in rabbits, suggests that the mechanism
of uprake relies upon a common mechanism
likely to be present in a large number of large
mammals. More importantly, it is likely that
human subjects will have a similar pattern of
increased bone marrow uptake of these vesicles,
opening the possibility for development of bone
marrow-specific nanomedicines.

Future perspective

This bone marrow-specific drug-delivery sys-
tem may facilitate targeted therapy of many
therapeutic agents. Further research will need

= 2 Seti s s
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al site of uptake of the present PEG-[SA-Ve] formulation in rhesus monkeys, a primate closely

approximately 70% of the injected dose was taken up by the bone marrow.

= This bone marrow-specific drug-delivery system may facilitate targeted therapy of agents to protect the bone marrow, as well as agents
to specifically ablate the bone marrow prior to bone-marrow transplant. It may also provide an effective delivery system for gene

therapy and the specific treatment of hematopoietic malignancies.
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Sakai H, Okuda N, Sato A, Yamaue T, Takeoka S, Tsuchida E.
Hemoglobin encapsulation in vesicles retards NO and CO binding and
Oa release when perfused through narrow gas-permeable tubes. Am J
Physiol Heart Circ Physiol 298: H956-H965, 2010. First published
December 31, 2009; doi:10.1152/ajpheart.00741.2009.—Intravenous
administration of cell-free Hb induces vasoconstriction and circula-
tory disorders, presumably because of the intrinsic affinities to endog-
enous nitric oxide (NO) and carbon monoxide (CO) as vasorelaxation
factors and because of the facilitated O» release that might induce
autoregulatory vasoconstriction. We examined these gas reactions
when Hb-containing solutions of four kinds were perfused through
artificial narrow tubes at a practical Hb concentration (10 g/dl).
Purified Hb solution, polymerized bovine Hb (PolysHb), encapsulated
Hb [Hb-vesicles (HbV), 279 nm], and red blood cells (RBCs) were
perfused through a gas-permeable narrow tube (25 pm inner diame-
ter) at 1 mm/s centerline velocity. The level of reactions was deter-
mined microscopically based on the visible-light absorption spectrum
of Hb. When the tube was immersed in NO and CO atmospheres, both
NO binding and CO binding of deoxygenated Hb (deoxy-Hb) and
PolygHb in the tube was faster than those of HbV and RBCs, and
HbV and RBCs showed almost identical binding rates. When the tube
was immersed in a N» atmosphere, oxygenated Hb and PolygHb
showed much faster O, release than did HbV and RBCs. PolysHb
showed a faster reaction than Hb because of the lower O, affinity of
PolysHb than Hb. The diffusion process of the particles was simu-
lated using Navier-Stokes and Maxwell-Stefan equations. Results
clarified that small Hb (6 nm) diffuses laterally and mixes rapidly.
However, the large-dimension HbV shows no such rapid diffusion.
The purely physicochemical differences in diffusivity of the particles
and the resulting reactivity with gas molecules are one factor inducing
biological vasoconstriction of Hb-based oxygen carriers.

microcirculation; blood substitutes; gas biology; liposome; erythrocytes

CELL-FREE. HEMOGLOBIN-BASED oxygen carriers (HBOCs) have
been developed for use as transfusion alternatives. Some exam-
ples are intramolecular cross-linked Hb, polymerized Hb, and
polyethylene glycol conjugated Hbs (5). The realization of
HBOCs has long been anticipated, because they are free of
pathogens and blood-type antigens and are storable for a long time
for using at emergency situations. Some are in the final stage of
clinical trials (23). The major remaining hurdle before clinical
approval of this earliest generation of HBOC:s is vasoconstriction
and resulting hypertension, which are presumably attributable to
the high reactivity of Hb with endothelium-derived nitric oxide
(NO) (26, 28, 55). It has been suggested that small molecular Hbs
permeate across the endothelial cell layer to the space near by the
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smooth muscle and inactivate NO. However, cellular Hb-vesicles
(HbV) that encapsulate concentrated Hb solution in phospholipid
vesicles (37) induce neither vasoconstriction nor hypertension
(32). A physicochemical analysis using stopped-flow rapid scan
spectrophotometry clarified that Hb encapsulation in vesicles
retards NO binding compared with molecular Hb, because an
intracellular diffusion barrier of NO is formed. The requisites for
this diffusion barrier are /) a more concentrated intracellular Hb
solution, and 2) a larger particle size (34, 36). Even though various
kinds of liposome-encapsulated Hb have been studied by many
groups (29, 38), our HbV encapsulates a highly concentrated Hb
solution (>35 g/dl) with a regulated large-particle diameter (250~
280 nm) and attains 10 g/dl Hb concentration in the suspension.
The absence of vasoconstriction in the case of intravenous HbV
injection might be related to the lowered NO-binding rate con-
stant, although it is much larger than that of red blood cells
(RBCs) (34), and the lowered permeability across the endothelial
cell layer in the vascular wall.

The proposed mechanism of vasoconstriction induced by
HBOCs in relation to gaseous molecules is not limited to NO
scavenging (31, 46, 50). For example, endogenous carbon mon-
oxide (CO) is produced by constitutive hemeoxygenase-2 in
hepatocytes; it serves as a vasorelaxation factor in hepatic micro-
circulation. Small molecular Hb permeates across the fenestrated
endothelium, scavenges CO, and induces constriction of sinusoids
and augments peripheral resistance (8). Oversupply of Os induces
autoregulatory vasoconstriction to regulate the O, supply (10, 14,
16, 19). Injection of small HBOCs induces vasoconstriction,
probably because of the facilitated O, transport (1, 18).

These reports imply the importance of studying the reaction
profiles of HBOCs with NO, CO, and O,. Stopped flow-rapid
scan spectrophotometry and flash photolysis are common
methods to define the binding and dissociation rate constants of
Hb (25, 26, 31, 34, 36, 42). However, the Hb concentration in
a cuvette must be diluted extremely, e.g., to 2 pM heme
concentration ([Hb] = 0.003 g/dl), which is much lower than
the practical concentration of HBOC injections ([Hb] = 4-13 g/dl).
Moreover, the results of flash photolysis depend on the quan-
tum yield (& = 0.5 for CO; 0.002 for NO) (43). This is not
practical for larger particles, such as HbV, because the photo-
dissociated gas molecule would remain in the particles before the
rebinding profiles are observed (11). The results do not necessar-
ily reflect the in vivo physiological circulatory condition, espe-
cially in small arteries and arterioles, so-called resistance vessels,
where blood flow is strictly regulated. We are interested in the
reaction profiles of HBOC fluids of a practical concentration
without considering any biological effect, such as permeation
across the endothelial cell layer in the vascular wall.
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Gas-permeable narrow tubes enable the measurement of the
Os-releasing rates of HBOCs and RBCs during their flow
through the tubes at a practical [Hb] (613 g/dl) (18, 27, 40, 43). As
described in this paper, we used gas-permeable narrow tubes
made of perfluorinated polymer to study not only O, release,
but also NO-binding and CO-binding profiles, all of which
should relate to the mechanisms of vasoactive properties of
cell-free HBOCs and the vasoinactive properties of cellular
HbV proposed above.

MATERIALS AND METHODS

Preparations of HbV, Stroma-free Hb, Polymerized Hb,
and Human RBCs

HbV was prepared as reported previously (33, 40, 45, 47), with
slight modifications. Human Hb solution was obtained through puri-
fication of cutdated RBCs provided by the Japanese Red Cross
Society (Tokyo, Japan). Then Hb was stabilized by carbonylation
(HbCO) and concentrated by ultrafiltration to 38 g/dl. Subsequently,
pyridoxal 5'-phosphate (PLP; Sigma, St. Louis, MO) was added to the
HbCO solution as an allosteric effector at a molar ratio of PLP/Hb
tetramer = 2.5. We use PLP instead of 2,3-diphosphoglyceric acid,
because 2,3-diphosphoglyceric acid is chemically unstable (53). The
Hb solution with PLP was then mixed with lipids and encapsulated in
vesicles. The lipid bilayer comprised 1,2-dipalmitoyl-sn-glycero-3-
phosphatidylcholine, cholesterol, 1,5-O-dihexadecyl-N-succinyl-L-
glutamate (Nippon Fine Chemical, Osaka, Japan), and 1,2-distearoyl-
sn-glycerol-3-phosphatidylethanolamine-N-PEGspgo  (NOF, Tokyo,
Japan) at a molar composition of 5:5:1:0.033. The particle diameter
was regulated using the extrusion method (45). The encapsulated
HbCO was converted to oxyhemoglobin (HbO») by exposing the
liquid membrane of HbV to visible light under an O atmosphere.
Finally, the Hb concentration of the suspension was adjusted to 10
g/dl. The particle size distribution was measured using a light-
scattering method (Submicron Particle Size Analyzer, model N4
PLUS; Beckiman Coulter, Fullerton, CA).

Purified human Hb solution suspended in phosphate-buffered sa-
line (PBS) solution was prepared and mixed with PLP at molar ratios
of PLP/Hb tetramer = 4 ([Hb] = 10 g/dl). We also used polymerized
bovine Hb (gHb) solution (PolysHb) designed for veterinary use
(oxyglobin; Biopure, Cambridge, MA) (2, 3), which is a mixture of
nonpolymerized tetrameric sHb (37.2%) and PolysHb with a broad
molecular weight distribution. The PolysHb solution (13 g/dl) was
diluted to 10 g/dl using PBS. PolygHb was only one chemically
modified Hb that was commercially available, and its physicochem-
ical properties and the presence of vasoconstrictive effect were doc-
umented (2, 3). We used this product as the standard product as a
negative conirol.

For this study, we used fresh human blood specimens. The study
was approved by Waseda University’s Ethics Committee on Medical
Research Involving Human Subjects and performed according to the
World Medical Association Declaration of Helsinki and Title 45, US
Code of Federal Regulations, Part 46, Protection of Human Subjects
(revised Nov. 13, 2001). A blood specimen was withdrawn after
obtaining written, informed consent from donors. It was mixed im-
mediately with an anticoagulant, and RBCs were pelleted at 800 g for
30 min. Then they were resuspended and washed twice with PBS. The
suspension was then filtrated through a leukocyte removal filter (Pall,
East Hills, NY). The RBC suspensions were prepared at a Hb
concentration of 10 g/dlL

The values of the oxygen partial pressure at which Hb is half-
saturated and Hill_.numbers of HbV, Hb sclutions, and RBCs were
obtained frorm the oxygen equilibrium curve measured using a Hemox
Analyzer (TCS Medical Products, Philadelphia, PA) at 37°C (Table 1).
Steady-shear viscosity measurements were performed using a theom-
eter (Physica MCR 301; Anton Paar, Graz, Austria) at 25°C.

TARDS GAS REACTIOI\-IS. V - E

HB ENCAPSULATICﬁ RE

Table 1. Physicochemical properties of HbV, PolygHb, Hb,
and RBC

HbV PolysHb Hb RBC

[Hb], g/dl 10 10 10 10
Hb/PLP by mol 1/2.5 14
£SO 105 Mgt 2.12 272 2,10 0.65°
k8O 10" M—1es! 0.61* 2.4% 248 0.012v
K22, 51 in 50 mM

Na28204 32¢ 119¢ 844 4.4%
Pso, Torr 25-28 54 26 27
Size 279 nm  87-502 kDa® 65kDa 8§ um
Viscosity, mPas, at 10* s~ 3.75 1.48 1.35 2.46
Viscosity, mPa-s, at 10 s™! 6.88 1.54 1.35 3.18

Perfusion pressure, kPa 21.0-23.0 7.0-8.0 6.0-7.0 9.0-10.0

HbV, Hb-vesicles; PolysHb, polymerized bovine Hb solution; RBC, red
blood cells; [Hb], Hb concentration; PLP, pyridoxal 5'-phosphate; k.8,
apparent NO-binding rate constant; kE®, apparent CO-binding rate constant;
k;f?fl’ , apparent Oz-releasing rate constant; Pso; oxygen partial pressure at which
Hb is hali-saturated. *See Ref. 36; "sece Ref, 4; °see Ref. 2; 9see Ref.
42;*measured using a stopped-flow rapid scan spectrophotometer (RSP-1000;
Unisoku, Osaka, Japan) by rapidly mixing the PolygHb solution (10 puM in
PBS) and a 50 mM NaS,04 solution in PBS; ‘see Ref. 52.

Perfusion of Hb-containing Fluids Through Narrow Tubes

Narrow, gas-permeable tubes (25-pm inner diameter; 37.5-pum
wall thickness; 150-mm length) were made of a fluorinated ethylene-
propylene copolymer (Hirakawa Hewtech, Ibaraki, Japan), as de-
scribed in previous reports (15, 35, 39, 48) (Fig. 1). One end of the
narrow tube was connected to a reservoir of the Hb-containing
suspension. The narrow tube was immersed in a water bath (12 cm
long X 3 cm width, 0.3 mm depth) made by two acrylic plates with
a rubber supporting plate in between, and it was placed horizontally
on the stage of an inverted microscope (IX-71; Olympus, Tokyo,
Japan). The suspension in the reservoir was mixed gently and contin-
uously with a magnetic stirrer (CC 301; AS One, Tokyo, Japan) and
pressurized using a syringe connected to a syringe pump (FP-W-100;
Toyo Sangyo, Tokyo, Japan). The perfusion pressure was monitored
using a digital pressure sensor (AP-C30; Keyence, Tokyo, Japan). The
centerline flow velocity was analyzed using photodiodes and the
cross-correlation technique (Velocity Tracker Mod-102 B; Vista Elec-
tronics, Ramona, CA) (13). This method usually requires a significant
change of contrasts because of the RBCs passing. However, stroma-
free Hb (SFHD), PolygHb, and HbV are distributed homogeneously in
the tube; no change of contrast is obtainable. Therefore, we added a
small amount of RBCs (5 vol%) to enable centerline velocity mea-
surements. This level of addition would not influence the reaction rate
of the whole solution, because we confirmed that perfusion of saline
with 5 vol% RBCs (without Hb or HbV) provided negligibly small
light absorption spectrum. The centerline velocity was adjusted to 1
mm/s by changing the pressure that was applied to the reservoir. We
selected the velocity 1 mm/s in the tube and the gas concentrations
(see below) to obtain the absorption changes in the tube of 12 cm
length, according to our laboratory’s previous paper (39) and a
reference paper of Tateishi et al. (48). The water bath was filled with
saline containing 10 mM sodium hydrosulfite (Na,S.04; Wako Pure
Chemical Industries, Tokyo, Japan), bubbled with pure Na, low-
concentration NO (NO, 4.7%; Na, 95.3%), or CO (CO, 14.14%; N,
85.86%). NasS20, is effective to eliminate trace amount of remaining
oxygen that might affect the reactions of Hb and CO or NO. The wall
of the narrow tube is made of perfluorinated polymer and is permeable
only for gas molecules, not for Na;S204. The entire perfusion exper-
iment was performed at 25°C. In our experiment, the inner volume of
the narrow tube is 5.9 X 1073 cm?®, which is much smaller (1/180,000) than
that of the exterior water bath (11 cm?®). We assumed that O, is
quenched rapidly at the exterior surface of the tube in the Oz-releasing
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Fig. 1. Top: experimental setup of a gas-permeable
artificial narrow tube immersed in a water bath made by
the gap between two transparent acrylic plates with a
rubber supporting plate. One end of the narrow tube was
connected to a reservoir of the Hb-containing suspen-
sion. The reservoir is pressurized by N2 gas for perfu-
sion of a fluid through the wbe. Botfom: microscopic
view of a gas-permeable artificial narrow tube. The
tube. made of perfluoro polymer, is gas permeable. The
tube is immersed in water equilibrated with N2, low-
concentration carbon monoxide (CO). or nitric oxide
(NO) gases. The wall thickness, (100 — 25)2 = 37.5 um, is
important. not only for regulation of measurable gas
permeability, but also for the stiffness of the tube of
greater than 12 cm traveling distance. The centerline
flow velocity was adjusted to 1 mm/s. To monitor the
velocity, a small amount of red blood cell (RBC) solu-
tion is mixed. Measurements of absorption spectropho-
tometry of the fluid in the tube were performed at
several traveling distances.

experiment. and CO and NO are abundant in the exterior area and
provided continuously into the tube in the CO- and NO-binding
experiments.

Equipment to Monitor Gas Reactions in Narrow Tubes

The apparatus consisted of an inverted microscope with an objec-
tive lens of X40 magnification (ULWD CDPlan 40PL: Olympus), a
spectrophotometer (Photonic multichannel analyzer, model PMA-11;
Hamamatsu Photonics K.K., Hamamatsu. Japan) connected through a
C-mount, a thin optical guide, and a computer (FMV BIBLIO
MGS50R; Fujitsu, Tokyo, Japan). The microscope’s light source (a
halogen lamp) intensity was controlled using a current stabilizer
(TH4-100; Olympus). The scanned wavelength was 194-956 nm
with a gate time of 100 ms/scan; data were obtained every 0.2 nm.
One spectrum from a 25-pm-diameter spot over the centerline of the
narrow tube was recorded. and 100 scans were accumulated in 10 s.
A measuring spot on the narrow tube within the visual field of the
microscope was fixed on a monitor (PVM-14L2; Sony. Tokyo, Japan)
through a charge-coupled device camera (model CS 230B: Olympus)
by sliding the microscope stage.

Measurement of O»-releasing Rates of Oxygenated
Hb-containing Solutions

To measure the O, releasing rate, the gas-permeable tube was
immersed in deoxygenated saline solution containing 10 mM NayS,0.. The
spectroscopic measurements were performed at traveling distances of
10, 30, 50, 70, and 90 mm. After a steady flow was attained. three
measurements were performed. Because of the light scatter by fine
particles, the absorbance of the HbVs at a shorter wavelength was
slightly higher than that at a longer wavelength (41). In the spectra of
the 100% deoxy-Hb and 100% oxygenated Hb-containing samples,
two isosbestic points (522 and 586 nm) in the Q band of Hb were
connected by a straight line as the baseline (Fig. 24). The absorbances

Outer aqueous solution
containing CO, NO, or N,

HB ENCAPSULATION RETARDS GAS REACTIONS

Manometer

Centerline velocity
=1 mm/s

—

at 555 nm [Asss: maximum absorbance (Amax) of deoxy-Hb] and 576
nm (As76, Amax Of oxyHb) from the baseline were obtained to produce
a calibration line that shows the relation between the O saturation (in
%) and the ratio of the two absorbances (R = Asss/Asvs) (39). The O-
saturation values of each sample were averaged and shown vs. the
traveling distance (n = 3, mean * SD).

Measurement of CO-binding Rate of Deoxy-Hb-containing
Solutions

To measure the CO-binding rate, the tube was immersed in a saline
solution containing 10 mM Na,S,0., which had been previously bubbled
with a gas of 14.14% CO/N, balance (Takachiho Chemical Industrial,
Tokyo, Japan). The resultant CO concentration outside of the tube was
~135 wM. The spectroscopic measurements were performed by the same
manner. In the spectra of the 100% deoxy-Hb and 100% carbonylated
Hb-containing samples, two isosbestic points (454 and 578 nm) were
connected by a straight line as the baseline (Fig. 2B). The Asss (Amax Of
deoxy-Hb) and Aseg (Amax of HDCO) from the baseline were obtained to
make a calibration line that shows the relation between the CO saturation
(in %) and the ratio of the two absorbances (R = Asss/Asgq). The CO
saturation values of each sample were averaged and shown vs. the
traveling distance (n = 3. mean = SD).

Measurement of NO-binding Rate of Deoxy-Hb-containing
Solutions

The method to measure the NO-binding rate is essentially identical
with that of CO-binding rate. A gas of 4.7% NO/N- balance
(Takachiho Chemical Industrial) was used to attain the NO concen-
tration, ~88 M. Two isosbestic points (449 and 592 nm) of HBNO
and deoxy-Hb were obtained (Fig. 2C). The Asss (Amux of deoxy-Hb)
and As7s (Amax 0of HBNO) from the baseline were used to obtain the
calibration curve of NO saturation (in %) vs. R = Asss/As7s.
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Simulation of Diffusion Profiles of Hb and HbV in Narrow Tubes

The diffusion and distribution of Hb (6 nm) and HbV (250 nm) in
a fluid flowing through a tube (25-pm diameter) were simulated to
clarify the stirring effects of the fluids. The profiles of the ditfusion of
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Hb molecules or HbV particles that were originally present just near
the wall of the narrow tube (12.5-p.m radius, 10-cm length, 1-mm/s
centerline velocity) at the entrance are analyzed. We assumed that the
two different solutions had identical physicochemical properties.
Component | enters the core, with 0- to 11.5-um tube radius. Then
component 2 enters the peripheral, with 11.5- to 12.5-pm radius. The
simulated diffusion of component 2 to the center and to the flow
direction in two-dimensional imaging of the tube cross section was
calculated.

Hb solution. The Hb is much smaller than the tube diameter. The
Navier-Stokes equation is solved with the incompressible condition to
obtain flow velocity v and pressure p.

p(@v/an +(pv- Vyv=—=Vp+ V ‘{n[Vr + (Vv)']} (N

where p denotes the density, m is the viscosity, and 7 is time. An
advection-diffusion equation is used for solute transport in a flow.

9C/9t+ V - (=D, VCy=—(v- V)C; (2)

where C; represents a solute concentration, and D; is the diffusion
constant. The flux density N; of a solute is expressed as

N;=Cp—D,VC; 3

The tube wall does not allow penetration of the solute; the Neumann
condition is adopted as

Ni-n=-D;VC;-n=0 4

At the entrance tube, C; is fixed. At the tube exit, the Neumann
condition without the concentration gradient is adopted as N; - n = C;
v - n. In fact, D; is expressed as

D, = kT/(6mmd,) (%)

where d is particle diameter.

HbV suspension. For HbV, the particle size is 1/100 of the tube
diameter and is no longer negligible. Actually, HbV is regarded as a
solid particle and the fluid as a solid-liquid two-phase flow. A
two-phase flow equation is solved for the velocities of the particles
and the liquid phase separately. with the assumptions that /) the
difference in density between HbV and the suspending medium is not
large: 2) the two phases deform and flow together: and 3) the relative
velocity (slip velocity) is determined by the mechanical balance of
pressure and slip force.

A mean velocity v and a pressure p is solved by a two-phase flow
equation with a slide friction term expressed as Eq. 6.

p(av/at) + (pv- Vv )
==Vp—V (pc,(1 — chvgpvaip) + V -{'q[Vv + (V\')’]}

Therein, p signifies the averaged density, ¢, is the mass fraction of
solid particles, and vy is the relative velocity between the two
phases. For a solid particle dispersion, vg;p is expressed as Eg. 7.

vaip = —[(p = po)d3/(18pm)] V p 7)

Therein, p, the density of solid particles.

Fig. 2. Calculation of reaction levels of oxy-Hb (HbO»; A), HbCO (B), and
HbNO (C) from the absorption changes. A: for the oxygen saturation deter-
mination, for example. two isosbestic points of the spectra of deoxygenated
(deoxy) and oxygenated (oxy) Hb solutions (at 522 and 586 nm) were
connected by a straight line (baseline). Based on absorbances at 555 nm
[change (A) in Asss, maximum absorbance (Amax) of deoxy-Hb] and 576 nm
(AAs76, Amax Of HbO2) from the baseline, linear relations between the level of
HbO: (%) and AAsss and AAsys are obtained individually, as shown in the
inset. Then the ratio of the two absorbances (R = Asss/As7¢) was utilized to
obtain the level of HbOa2. The levels of HbCO (B) and HbNO (C) were
calculated similarly.
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The viscosity m of a multiphase flow depends on the volume
fraction of the particles (¢) and shear rate (y) and was obtained by the
experimental measurement between the volume fraction and the shear
viscosity of the HbV suspension, as shown in Eg. 8.

A2+ 2 QL 90T s 2
Tl((bs 'Y) _ 0‘9,Y~(0,2542¢ +0.25¢ )64‘!278(1’ +4.2207¢ (8)

The Maxwell-Stefan advection-diffusion equation was used for a
highly concentrated particle dispersion (HbV) to calculate the counter
diffusion.

ap/at+ V-, +dmy=0 €]

Therein, j; is the relative diffusion flux, and ¢; is the volume fraction
of the component i. The diffusion flux can be expressed by external
forces, such as the concentration gradient and pressure, applied to the
component .. Therefore, E¢. 9 is converted as follows with a self-
diffusion constant of a solute D;.

-5V
94 8t+ V {@,»-—D,-(wﬁ ¢iu—5)} =0 (o)
o P

For calculations, we used the Comsol Multiphysics and Chemical
Engineering Module (Comsol, Burlington, MA). Table 2 presents the
required physicochemical parameters for simulation.

RESULTS
Oy-releasing Profile

All Hb-containing solutions showed the change of absorption
spectroscopy in the Q bands (Fig. 3A) as they traveled a longer
distance and released oxygen (lines 2—6). The two characteristic
peaks derived from HbO, (fop lines, 100% HbO2; Amax, 541 and
576 nm) tended to decrease and a new peak derived from de-
oxy-Hb (bottom lines, 100% deoxy-Hb; Amax, 555 nm) became
evident, especially in the case of PolygHb and SFHb solutions.
Both HbV and RBCs showed two peaks, even at 9-cim traveling
distance. Figure 4A presents the level of oxygenation vs. the
traveling distance of four Hb-containing solutions. At 9-cm trav-
eling distance, both PolygHb and Hb solutions released O, con-
siderably, and the averaged levels of HbO,, respectively, became
27 = 8 and 43 = 6%. On the other hand, both HbV and RBCs,
respectively, remained high levels of HbO,, 68 = 7 and 76 =
4%. The profile of HbV resembled that of RBCs.

Table 2. Parameters of Hb solution and HbV suspension at
[Hb] =10 g/dl for diffusion simulation

Parameter

Hb

Diffusion coefficient™ 9 X 107" m¥s

Viscosity 1.0 mPa-s

Density of the solutiont 1025 kg/m?

(Hb] 10 g/dl, 1.55 mM
HbV

Volume fraction 0.4

Paiticle diameter 250 nm

Viscosity of the suspending medium 0.9 mPa-s

Data in Table 1
1003.3 kg/m?
1067.05 kg/m®

Viscosity of the HbV suspension
Density of the suspending medium?
Density of HbV particlest

*See Ref. 24. TMeasured by a dynamic capillary rheometer (Anton Paar,
Graz, Austria). $Calculated from the density of the HbV suspension (1028.8
kg/m?), volume fraction (0.4), and the density of the suspending medium
(1003.3 kg/m?) as [1028.8 — (1.0 — 0.4) X 1003.31/0.4 = 1067.05 kg/m*.

HB ENCAPSULATION RETARDS GAS REACTIONS

CO-binding Profile

Figure 3B shows that all of the Hb-containing solutions
showed a single peak at 555 nm attributable to deoxy-Hb (top
lines). The absorption spectrum changes gradually, and two
new peaks tended to appear at 540 and 569 nm (lines 2-6),
indicating the conversion of deoxy-Hb to HbCO (bottom lines,
100% HbCO). The HbCO conversion rates of PolyzHb and Hb
solutions were almost identical; the HbCO levels reached 94 =
53 and 90 % 3% at 9-cm traveling distance (Fig. 4B). On the
other hand, HbV showed the lower rate of HbCO conversion,
and it reached 71 % 3% at 9-cm traveling distance, which was
almost identical to the profile of RBCs (66 *= 4% at 9-cm
traveling distance).

NO-binding Profile

Actually, HbNO has two characteristic peaks at 545 and 575
nm (botrom lines in Fig. 3C). Both PolygHb and Hb solutions
tended to show similar spectra of HbNO at 9-cm traveling
distance. However, both HbV and RBC showed a slight shoul-
der at around 575 nm, but the new peaks were not apparent,
and the change of the spectrum was not remarkable. Figure 4C
portrays that the NO-binding profiles of Hb and PolygHb
solutions were almost identical; they, respectively, reached
HbNO levels of 70 = 5 and 65 = 5%. They are much faster
than the profiles of RBCs (36 = 3%) and HbV (39 * 6%).

Simulation of the Diffusion of Hb and HbV in the
Narrow Tube

We assumed diffusion of two different fluids with the
identical physical property in a tube, namely, HbV-1 as com-
pornent | and HbV-2 as component 2, and simulated how the
two fluids are mixed during their flow. Figure 54 shows the
diffusion of HbV in the narrow tube. The red color signifies
that the HbV-2 enters in the peripheral side of the tube (near
the wall); the red color gradually turns to yellow, green, and
light blue, progressively, with the traveling distance, indicating
that the HbV-2 diffuses and is gradually mixed with the
HbV-1, and that the HbV-2 concentration decreases. However,
the distribution is not homogeneous, even at 100-um traveling
distance. The white lines show trajectory patterns of conponent 2.
A particle of 11.5-pm radius located at the entrance diffuses to
9-pum radius from the centerline at 100-pm traveling distance.

The diffusion of Hb is so rapid that the color change is mostly
observed only at the entrance in a short traveling distance (<10
pm) (Fig. 5B). It becomes homogeneous quite rapidly. The Hb-2
of 11.5-pum radius located at the entrance diffuses to 3-pm radius
at 100-pm traveling distance. In fact, Hb reaches the centerline at
l-mm traveling distance. On the other hand, HbV reaches the
centerline at 25-mm traveling distance.

DISCUSSION

Our primary finding is that the reactions of NO binding and
CO binding and the O, release of Hb solutions are markedly
retarded for encapsulated Hb (HbV) and RBCs when perfused
through artificial narrow plastic tube. These results support the
physiological observation that cell-free Hb induces vasocon-
striction, but not HbV and RBCs (32).

Conditions of hemolysis (20) and studies related to the
development of HBOCs (9, 12, 21, 26, 30, 32, 44, 51) have
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Fig. 3. Spectroscopic changes in Q bands of the Hb-containing fluids by perfusing through the narrow tube at the traveling distances of 1-9 cm. The fop and
bottom lines represent the absorption spectroscopy of 0% and 100% reactions, respectively. A: measurement of Oz-releasing behavior by perfusing through the
narrow tube immersed in an anerobic condition. Two characteristic peaks (Amax = 541 and 576 nm) attributed to HbO. decreased with the traveling distance.
A new peak (555 nm) attributed to deoxy-Hb increased. B: spectroscopic changes in Q bands of the Hb-containing fluids with NO binding perfused through the
narrow tube. Two characteristic new peaks attributed to HBNO (Amux = 545 and 575 nm) increased with the traveling distance; deoxy-Hb (555 nm) decreased.
C: spectroscopic changes in Q bands of the Hb-containing fluids with CO binding perfused through the narrow tube. Two new characteristic peaks attiibuted
to HHCO (Mmex = 540 and 569 nm) increased with the traveling distance; deoxy-Hb (555 nm) decreased. PolysHb, polymerized bovine Hb solution.

shown that the entrapment of endothelium-derived NO induces
vasoconsiriction, hypertension, reduced blood flow, and vas-
cular damage. Physiological doses of CO are a vasorelaxation
factor, especially in the hepatic microcirculation (46). Its en-
trapment by cell-free Hb solutions induces constriction of
sinusoidal capillaries (8). These side effects caused by the
presence of molecular Hb in plasma suggest that the cellular
structure of RBCs plays a role in ensuring the bioavailability of
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NO and CO. It has been suggested that faster O, unloading
from the HBOCs is advantageous for tissue oxygenation (27).
However, this concept is controversial in light of recent find-
ings, because an excess O, supply would cause autoregulatory
vasoconstriction and microcirculatory disorders (31).

The presence of a plasma layer (RBC-free layer) can con-
stitute a diffusion barrier of gas molecules between the vascu-
lar wall and RBCs. This explanation is plausible because a
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