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TasLE 23. Mental Health Composite Scores in SF-12: An Example for Wilcoxon Signed-Rank Test

Before Surgery After Surgery Sign of
Subject Score: X, Score: X, X, — X X, — Xl Rank of IX; — X,
1 80 65 + 15 9
2 60 72 - 12 8
3 55 62 - 7 2

4 70 66 + 4 1

5 85 95 - 10 55

6 83 92 - 9 4

7 66 74 - 8 3

8 52 92 - 40 10

9 73 62 + 11 7

10 80 90 - 10 5.5
general anesthesia or regional anesthesia during total 90 X 100 90 X 80
knee replacement. €T T80 50, e = 180 40,

Let 0y,, 015, 02, and 0,, denote the observed fre- 90 X 100 90 X 80
quency of each combination of anesthesia type and ey = —o— =50, €y = —— =
incidence of nausea in cells ¢, ¢;5 ¢, and c¢,5, and B 180 ' 180
€1, €2, €, and e,, denote the corresponding ex- Hence,
pected frequency if there were no association, where e s )
the expected frequency: /)22 _ (70 — 50) " (20— 40) n (30 —50)

row i total X column j total ) >0 40 >0 0
— [ = . 5
€y total (N) P BIE 4 (0~ 40 404 ¥ 6

One way to assess the association between the row
and the column variables is by measuring the differ-
ence between the observed and expected frequencies
with a x* test. The x* test statistic is defined by the
following:

§2 _ Z (OiJ - ei,j)2
G Cij

The test can be applied to any row-by-column, or
m X n, contingency table, m,n > 1. Under the null
hypothesis of no association between the row and the
column variables, the test statistic follows a x> distri-
bution with (m — 1)(n — 1) degrees of freedom.

Example 6: The expected frequencies in Table 24
are as follows:

TABLE 24. Association Between Anesthesia Type and
Incidence of Nausea

Incidence of Nausea

Anesthesia
Type Yes No Row Total
General Oy, =T70(c;y) O, =201(cn) 90
Regional 0,1 =30 (cy;) Oy, =60 (cy5) 90
Column total 100 80 Total N = 180

and the degree of freedomis (2 -1) X 2-1) = 1.
The P value obtained with statistical software is less
than .05, implying that patients who received general
anesthesia during total knee replacement are more
likely to have nausea than patients who received re-
gional anesthesia.

Fisher Exact Test

When the expected frequency in any cell of a contin-
gency table is less than 5, the x* test becomes inaccurate
and loses its power because it relies on large samples.
For example, in a study comparing mortality rates be-
tween patients undergoing unilateral or bilateral knee
replacement, the incidence of death is very low, resulting
in highly unbalanced data allocations among the cells of
the table. In such a case, the Fisher exact test is an
alternative to the xz test. Because, in general, the com-
putation of the Fisher exact test is not feasible by hand,
we avoid the detailed formula here.

McNemar test

If the x* (or Fisher exact) test could be considered
the independent 2-sample ¢ test for categorical vari-
ables, the McNemar test is the counterpart of the
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TABLE 25. Case-Control Study of Cancer

Non-cancer patient

Smoker Non-smoker Row Total
Cancer patient
Smoker a b a+b
Non-smoker ¢ d c+d
Column total atc b+d Total N

paired ¢ test for comparing dependent categorical vari-
ables. For example, the investigators studied the as-
sociation between smoking and lung cancer in a case-
control study where N cancer patients (cases) were
matched with N non-cancer patients (controls) in Ta-
ble 25 based on age, gender, location, and other re-
lated variables. In this case the x* test and the Fisher
exact test are not appropriate because they assume that
the samples are independent.

The McNemar test is a modification of the y* test,
taking into account the correlation between the
matched samples. Because the concordance cells
where both case and control are smokers (a) or non-
smokers (d) do not provide information about the
association between cancer and smoking, the McNe-
mar test only contains the frequencies in the discon-
cordance cells (b and ¢) and is defined as:

,\2_(|b—c|—0.5)2
X = b+c

The test statistic follows a x* distribution with 1
degree of freedom under the null hypothesis of no
association between cancer and smoking.

MULTIPLE-SAMPLE PARAMETRIC TESTS

These tests are used when comparing data sets among
3 or more groups. The ANOVA is used for normally
distributed samples/data, whereas the Kruskal-Wallis test

and GEE are appropriate for samples with normal or
non-normal distributions.

One-Way ANOVA

A 1-way ANOVA is an alternative to the indepen-
dent 2-sample ¢ test for testing the equality of 3 or
more means by use of variances.

The assumptions of ANOVA include the following:

e The samples are drawn from populations following
normal distributions.

e The samples are independent.

o The populations have equal variances.

The null hypothesis of ANOVA is that all popula-
tion means are equal, and the alternative hypothesis is
that at least one population mean is different.

The basis of ANOVA is to partition the total vari-
ation into “between-group variation” and “within-
group variation” and compare the two. These and
other terms related to ANOVA are defined below.

Grand mean is the average of all sample values.

Between-group variation is the sum of squared dif-
ferences between each group mean and the grand
mean. The between-group variance is the between-
group variation divided by its degrees of freedom. If
there are g groups, the degrees of freedom is then
equal to g - 1.

Within-group variation is the sum of squared dif-
ferences between each sample and its group mean.
The within-group variance is the within-group varia-
tion divided by its degrees of freedom. If there are g
groups and n samples within each group, the degrees
of freedom is then equal to g(n —1) or N — 1, where N
is the total sample size.

Total variation is the sum of between-group varia-
tion and within-group variation.

The ANOVA is used to compare the ratio (F test
statistic) of between-group variance to within-group
variance. If the between-group variance is much larger

TABLE 26. One-Way ANOVA

Source Sum of Squares (Variation) Degrees of Freedom Mean Square (Variance) F Statistic
- SSB MSB
Between group SSB g-1 MSB =
g—1 MSW
. _ SSw
Within group SSwW gn-1) MSW = —
Total SST = SSB + SSW N-1 g(n=1)

Abbreviations: SSB, sum of squares between groups; SSW, sum of squares within groups; SST, total sum of squares; MSB, mean squares
between groups; MSW, mean squares within groups; g, number of groups; n, number of samples within each group.
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TABLE 27. Two-Way ANOVA

Source Sum of Squares Degrees of Freedom Mean Square F Statistic
Main effect | SSt g — 1 MS1 = SSl/df MS1/MSW
Main effect 2 SS2 g, — 1 MS2 = SS2/df MS2/MSW
Interaction effect SS12 (gr— g =D MS12 = SS12/df MSI12/MSW
Within SSW 818, (n—1) MSW = SSW/df
Total SST = SS1 + SS2 + SS12 + SSW g18n — 1

Abbreviations: SS1, sum of squares for Main Effect 1; SS2, sum of squares for Main Effect 2; SS12, sum of squares for interaction between
Main Effect 1 and Main Effect 2; SSW, sum of squares within groups; SST, total sum of squares; MS1, mean squares for Main Effect 1;
MS2, mean squares for Main Effect 2; MS12, mean squares for interaction between Main Effect 1 and Main Effect 2; MSW, mean squares
within groups; g, number of groups; n, number of samples within each group.

than the within-group variance, then we conclude that
the means are different. This is summarized in an
ANOVA table (Table 26).

Two-Way ANOVA

In contrast to 1-way ANOVA, which tests the
equality of population means in one variable, 2-way
ANOVA is extended to assess the difference among
population means in 2 independent variables or fac-
tors.

The 2-way ANOVA has the same assumptions as
the 1-way ANOVA.

The null hypotheses in a 2-way ANOVA include:

e Main effect: The population means of each factor
are equal.

e Interaction effect: There is no interaction between
the 2 factors.

Similar to 1-way ANOVA, 2-way ANOVA parti-
tions the total variation into 2 main effects or between-
group variations, within-group variation, and interaction
effects between the 2 factors. There is an F test for
testing each main effect and the interaction effect. A
similar table is created for 2-way ANOVA (Table 27).

MULTIPLE-SAMPLE NONPARAMETRIC
TESTS

Kruskal-Wallis Test

The Kruskal-Wallis test is a generalization of the
Mann-Whitney U test for testing the equality of 3 or
more population medians and is a nonparametric al-
ternative to 1-way ANOVA. Like other nonparametric
tests, the Kruskal-Wallis test is based on the ranks of
data and does not assume normality.

Assume there are g independent groups with n;
observations in the { group, i = 1, 2, ..., n. To
calculate the Kruskal-Wallis test statistic, rank all data

from the g groups with the smallest value obtaining a
rank of 1. Ties are assigned average ranks. The test
statistic is given by the following:
K= 1 E§=1 n{(r; = '_’)2

o 2_?1—.1 (rij— )’
where r; is the rank among all data of observation j in
group i, 7; is the mean rank of all observations in group
[, and r is the mean rank of all observations across all
groups.

The test statistic K follows a x* distribution under
the null hypothesis with g — 1 degrees of freedom. The
P value can be obtained from the x* distribution table.

Correlation Analysis

In addition to the previous statistical tests, we next
briefly discuss correlation analysis. A variety of cor-
relation coefficients are available and used to assess
the relation between 2 or more random variables. We
introduce 2 commonly used correlation coefficients,
the Pearson correlation and Spearman rank correlation
coefficients.

Pearson Correlation: Pearson correlation, also
called Pearson product-moment correlation, was de-
veloped by Karl Pearson. It is applied to continuous
variables and assumes a linear relation between 2
normally distributed variables. Pearson correlation
liesin [-1, 1], with 1 (-1) indicating a perfect positive
(negative) linear relationship. For a pair of indepen-
dent variables, the Pearson correlation is 0.

Spearman Rank Correlation: Spearman rank
correlation is a nonparametric correlation. When 2
variables are not normally distributed or do not have a
linear relation, Spearman rank correlation is an alter-
native to Pearson correlation. Like those nonparamet-
ric tests we introduced earlier, Spearman rank corre-
lation is also calculated based on ranks and therefore
is not affected by the distribution of data.
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ADVANCED STATISTICAL TESTS

In addition to those commonly used statistical tests,
there are advanced statistical methods available for
more complicated data settings. A couple of examples
are presented here.

Regression Analysis

Regression analysis is a method for assessing the
relation between a dependent variable and one or more
independent variables. The most commonly used re-
gression analysis is linear regression, which assumes a
linear relation between the dependent and independent
variables.

Repeated-Measures ANOVA

As with any ANOVA, repeated-measures ANOVA
tests the equality of multiple means. However, repeated-
measures ANOVA is used when the same group of
random samples is measured under the same condition
at multiple time points or under different conditions. It
assumes data to be normally distributed and can be
considered an extension of the paired ¢ test to a sample
with more than 2 repeated measures.

The GEE Method

The GEE method is for modeling clustered data and
longitudinal data. When data are clustered dependent,
the GEE allows for fitting the parameters of a gener-
alized linear model without explicitly defining the
correlation structure.

CONCLUSIONS

Statistical tests prove that observed ditferences are
not due to random chance, providing scientific rigor to
clinical and other experimental findings. Examples in
this section show that specific tests have been devel-

oped to analyze most types of data sets that are of
interest to the academic clinician-scientist. As out-
lined in this section, the appropriate test for a given
data set is simple to determine based on 3 basic
aspects of the data set(s): dimension (whether 2 or
more groups are being compared), distribution
(whether data are normally or non-normally distrib-
uted), and dependency (whether variables are depen-
dent or independent). In the context of clinically rel-
evant study design and interpretation of results,
statistical tests establish nonrandom correlations that
rigorously support efficacy, safety, or other outcomes
of therapeutic interventions or other factors that are of
interest to the clinician-scientist investigator.
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SECTION 14

Key Statistical Principles: The Nature of Data

he goal of clinical research is to use information
collected from a sample of patients to answer
questions about all patients with that condition or who
receive that treatment. The statistical inference meth-

ods we use to do this requires that (1) the selected
sample is representative of the population of interest
and (2) we know something about the distribution of
the data. If a variable’s distribution approximates that
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of a known probability distribution, like the normal
distribution, that has well-described parameters, then
we can use our knowledge of these distributions to
calculate the probability that our hypotheses are valid
using parametric tests (described in section 13). When
a variable does not follow such a distribution, we need
to use different methods that do not rely on parameters
to help us, using nonparametric tests (also described in
section 13). This makes understanding our data im-
portant in developing the proper analysis plan for our
study, and the point of this chapter is to:

1. describe the tools used to summarize data and
learn about the distributions (descriptive statis-
tics),

2. develop methods for estimating association be-
tween two variables (measures of Association),

3. describe how we use our knowledge of the pa-
rameters of probability distributions to confirm
or negate our hypotheses (confidence intervals
and P values).

DESCRIPTIVE STATISTICS

Every variable has an underlying distribution func-
tion that describes how the observations are spread
over all possible values of the variable. This distribu-
tion is influenced by the type of variable: categorical
(discrete) or continuous. In brief, continuous variables
are those that can take on any value in a range of
possible values, whereas categorical variables can
only take on a specific set of values. Categorical
variables can be further classified as ordinal, where
the categories have a defined order (e.g., disagree,
neutral, agree), or nominal, where there is no intrinsic
order (e.g., gender [male, female]). The purpose of
descriptive statistics is to generate a few measures that
give us an idea of the particular features of the distri-
bution of the variable of interest.

FREQUENCIES AND PERCENTAGES

A simple way to describe the distribution of a
variable is to list all of the different values and the
frequency of each value (i.e., the number of times the
value occurs in the data set) (Table 28).

We can see that presenting frequencies and percent-
ages in a table is an effective way to describe cate-
gorical data because there are a limited number of
possible values. This method does not work as well
for numerical variables because the range of possible
values is often much larger and it is not practical to

display all the observed values. One way to resolve
this problem, if it makes sense for the analysis, is to
group the values of the variable into a smaller number
of defined categories and calculate the frequencies and
percentages for these created categories. This is often
done with variables such as age (e.g., <59 years, 60 to
79 years, and =80 years) and clinical laboratory val-
ues such as serum vitamin D level (where <20 ng/mL
is deficient, 20 to 31 ng/mL is insufficient, and =32
ng/mL is sufficient), where groupings of the numeric
data make sense clinically. If it does not make sense to
categorize the variable, other methods are necessary to
summarize the data.

NUMERICAL SUMMARY METHODS
Measures of Location

These are methods to describe the center of a dis-
tribution of continuous data. The mean and median are
most common, although the mode is rarely used in
special circumstances.

Mean: The mean of a variable is the sum of all
values of the variable divided by the number of ob-
servations. In statistical notation this is represented by
the following:

x= ;Z}l X
So, using the variable age from our example data in
Table 29, the mean age is as follows:

Mean age = (49 + 45+ 63 + 41 + 50 + 29 + 37
+40 + 40+ 47)/10=441/10 = 44.1

The mean is simple to compute and has nice theo-
retical properties in terms of statistics that make it
widely used. However, the mean is sensitive to ex-
treme values, especially when the number of observa-
tions is small.

Median: The median of a variable is the central
value when the data points are arranged in rank order,
so that half of the data values are higher than the

TABLE 28. Sex Distribution in Hypothetical Study
Population

N %
Sex
Female 437 53.2
Male 384 46.8
Total 821 100.0




S74 J. KARLSSON ET AL

TABLE 29. Age for 10 Hypothetical Research Subjects

Squared Deviation From

Subject Age (yr) Mean (x; — X)*
1 49 24.01
2 45 0.81
3 63 357.21
4 41 9.61
5 50 34.81
6 29 228.01
7 37 50.41
8 40 16.81
9 40 16.81

10 47 8.41

Mean (%), 44.1 Sum, 746.9

median value and the other half are lower than the
median value. When there are an even number of
observations in a data set, the median is defined as the
midpoint between the 2 middle values. In our age
example, the median is calculated as follows:

Age sorted lowest to highest: 29, 37, 40, 40, 41,
45, 47, 49, 50, 63

This data set has an even number of observations,
so the 2 middle values are 41 and 45. The median is
(41 + 45)/2 = 43.

The median requires the data to be sorted, so it is
not as simple to compute as the mean, especially with
larger sample sizes. It is not as sensitive to outlying
values, though, so it may be a better measure of
central tendency, especially for smaller samples.

Mode: The mode of a variable is the value that
occurs most frequently. A multimodal variable has
more than 1 value that meets this criterion. In our age
example the mode is 40, because it occurs twice and
all other values occur only once. This statistic is not
often reported because it is usually not useful for
describing continuous variables, which may have all
unique values so that every value in the data set is a
mode.

Measures of Variability/Dispersion

Range: The range is the difference between the
largest and smallest values of a variable (Table 29). A
wider range indicates more variability in the data. In
our age data, the range is 63 — 29 = 34. The minimum
and maximum values of a variable are more often
reported than the range, however, because these 2
values also provide some information about the loca-
tion of the extremes of a variable.

Variance: The variance of a data set, denoted s2, is
a measure of variability around the sample mean. The

equation for variance is listed below. In words, the
variance is the average of the squared deviations from
the mean:

Variance(s?) = (n E (x; — %)
(20 G—2
1
Variance = (9)(764 .9)=83.0

Standard Deviation: The standard deviation is the
square root of the variance. This value is more often
reported in descriptive tables because it is measured in
the same units as the variable, and the mean and
standard deviation together can tell us a lot about a
distribution of values.

MEASURES OF ASSOCIATION

The objective of the study designs discussed in
previous chapters is to compare outcomes in 2 or more
groups, such as new treatment versus old treatment,
exposure versus no exposure, and so on. The numer-
ical summary methods we have discussed above are
useful in describing individual variables, but now we
need to define some measures of association that will
let us compare groups.

Relative Risk (Risk Ratio)

What Is Relative Risk? In epidemiology, the inci-
dence of an event (e.g., disease diagnosis or surgical
complication) is the frequency of new events that
occur during a specified time interval. What we call
the “risk” of an event is the incidence rate, which is
the incidence divided by the population at risk during
that time interval.

Number of new events

Inciden: = - :
ncidence rate Population at risk for event

A related concept is the prevalence of the event,
which is the sum of events that have already occurred
plus new incident events divided by the population
total. So we can see that the incidence rate is a
measure of the risk of disease whereas prevalence
shows the burden of disease in a population.

As formulas, incidence and prevalence can be de-
scribed as follows:

Incidence = Number of knee replacement
surgeries performed this year
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TABLE 30. Two-by-Two Frequency Table

Outcome
Yes No
Treatment A a b a+b
Treatment B c d c+d
atc b+d

Number of Knee arthroplasties
performed this year
Number of people in population

Incidence rate =

Number of people living with
knee arthroplasty
Number of people in population

Prevalence rate =

What we usually want to do in clinical research is to
compare the risk between groups, so an easy way to
do this is to simply determine the ratio of the risk
(whether incidence or prevalence) for the 2 groups:

o Risk in group 1
Relative risk = m

How to Calculate the Relative Risk in a Cohort
Study: When preparing data for a comparison of 2
treatments, we can most easily calculate relative risk
by creating a 2 X 2 table (Table 30). The term “2 X
27 refers to the numbers of rows and columns in the
table—2 possible outcomes and 2 possible treatments
in the example in Table 30.

We can calculate the likelihood (or risk) of the
outcome for each treatment group as follows:

) A
RlSkTXA = a-+b
) C
Riskrya = c+d

We can then calculate a relative risk of the outcome
in patients receiving treatment A versus treatment B:

Riskrxa  a/(a+b)
Riskryxg  ¢/(c + d)

How to Interpret the Relative Risk: If the rela-
tive risk equals 1, then the risk is the same in both
groups and there does not appear to be an association.
When the relative risk is greater than 1, the risk in
group 1 is greater than that in group 2; this is usually
described as evidence of an increased risk, or positive
association. If the relative risk is less than 1, the risk
in group 1 is less than that in group 2; this is usually

Relative risk =

described as indicating a negative association, or a
decreased risk.

For example, if we had a cohort study that wanted
to determine whether a new form of pain management
reduced the incidence of postoperative pain, we would
generate a contingency table from our data (Table 31).
The relative risk is less than 1, which indicates that the
new pain management technique reduces the inci-
dence of postoperative pain.

Odds Ratio (Relative Odds)

Calculating relative risk requires us to know the
incidence rate for a population, which is not possible
for some study designs. In a case-control study, for
example, the 2 groups are based on outcome status, so
we do not know the population at risk. Thus we need
another measure of association that will work for both
cohort and case-control studies. For this type of study,
we can calculate a different measure of association,
using the odds.

What Is an Odds Ratio? The odds of an event is
defined as the ratio of the probability that an event
occurs to the probability that the event does not occur.
If we represent the probability that event A occurs by
P, then the probability that event A does not occur is
1 — P. So the odds of event A is as follows:

P

Odds = ﬁ

For example, when rolling a die, the probability of
rolling a 1 or 2 is 2/6 = 1/3 = 33.3%, so the odds of
rolling a 1 or 2 is as follows:

33.30%
66.70%

It is important to note that the probability of rolling
a1 or2(33.3%) and the odds of rolling a 1 or 2 (0.50)
are 2 distinct measures.

How to Calculate the Odds Ratio: Now suppose
we have a study as in the contingency table for a

Odds = =0.50

TABLE 31. Sample Data for Relative Risk

Postoperative No Postoperative
Pain Pain Total

New pain management 4 21 25
Old pain management 9 16 25
Total 14 36

NOTE. Risk in patients with new technique = 4/25 = 0.16. Risk
in patients with old technique = 9/25 = 0.36. Relative risk =
0.16/0.36 = 0.44.
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cohort study as shown in Table 32. In a cohort study
we are comparing the odds of event A in the exposed
group with the odds of event A in the non-exposed
group.

First, we need to calculate the probability (P) of
event A for group 1:

P=a/(a+Db)
Next, we will calculate the odds of event A for
group 1:
Odds = [a/(a + b)]/[b/(a+ b)] =a/b

Similarly, the odds of event A for group 2 equals
¢/d. Finally, the odds ratio for group 1 versus group 2
is (a/b)/(c/d) = ad/bc (Table 33).

In a case-control study, first, we need to calculate
the odds that a case had a history of exposure
(Oddscases):

Odds.es = [a/(a+ ¢)])/[c/(a+ ¢c)] = a/c

Next we calculate the odds that a control had a
history of exposure (Odds qurors):

0dds onueis = [b/(b + d)1/[c/(b + d)] = b/d

Odds ratio = Odds,yses” OddSconors = (a/¢)/(b/d)
=ad/bc

(alc) ad
Odds ratio = ——

(b/d) ~ bec

Note that the formula for the odds ratio is the same
for both cohort and case-control studies.

How to Interpret the Odds Ratio: Similar to the
interpretation of the relative risk, an odds ratio of 1
indicates that the exposure is not related to the event.

If the odds ratio is larger than 1, then the exposure
is positively associated with the event, and if the odds
ratio is less than 1, the exposure is negatively associ-
ated with the event.

Using the Odds Ratio to Estimate Relative Risk:
The odds ratio is itself a useful measure of association,
but there may be situations when reporting the relative
risk is preferred. In a case-control study, although the
relative risk cannot be directly calculated, the odds

TABLE 32. ' Contingency Table for a Cohort Study

Event A
Yes No
Exposed a b a+b
Not exposed c d c+d
a+c b+ d

TABLE 33. Odds of Event A for Group 1

Event A
Cases Controls
History of exposure a b atb
Not exposed c d c+d
atc b+d

ratio is a good approximation of the relative risk when
the cases and controls are representative samples of
the populations from which they are drawn and the
outcome is infrequent.

We will use examples of a cohort study, where both
the relative risk and odds ratio can be directly calcu-
lated, to see when the odds ratio is a good estimate of
the relative risk.

When event is infrequent:

Event A
Yes No
Exposed 25 975 1,000
Not exposed 10 990 1,000
35 1,965
o 25/1,000 25
Relative risk = m = *1‘6 =2.50
25X990 24,750

Odds ratio =

10x975 ~ 9,750 2%

When event is frequent:

Event A
Yes No
Exposed 250 750 1,000
Not exposed 100 900 1,000
350 1,750

250/1,000 250
m - m =2.50
25X 990 24,250
10%750 ~ 9,900 _ >0

Relative risk =

Odds ratio =

MEASURES OF PROBABILITY

Understanding the properties of a distribution al-
lows us to apply this knowledge to the first steps of
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understanding statistical inference, which is the pro-
cess of drawing conclusions about an entire popula-
tion based on the information from a sample of that
population. Recall that it is our goal to describe or
make an educated estimate of some characteristic of a
continuous variable using the information from our
sample of observations.

There are 2 ways of estimating these character-
istics. “Point estimation” involves taking the sam-
ple data and calculating a single number, such as the
mean, to estimate the parameter of interest. How-
ever, the inherent problem of calculating 1 mean
from 1 sample of a population is that drawing a
second sample and calculating its mean may yield a
very different value. The point estimate does not
take into account the inherent variability that exists
between any combinations of samples that are
drawn from all populations. To account for this
variability, a second technique, called “interval es-
timates,” provides a reasonable range of values that
are intended to contain the parameter of interest
with a certain degree of confidence. This range in
values is called a confidence interval (CI).

The CI allows us to evaluate the precision of a
point estimate by calculating an interval that con-
tains the true population mean with a planned de-
gree of certainty. For the 95% CI, we are 95%
confident that the true population mean lies some-
where between the upper and lower limits calcu-
" lated. Another way to understand the 95% CI is as
follows: if we were to select 100 random samples
from a population and use these samples to calcu-
late 100 different intervals for these samples, 95 of
these intervals would cover the true population
mean (whereas 5 would not).

A few ways not to interpret the CI is to state that the
probability of the calculated mean lies between the
upper and lower limits of the calculated interval. In
addition, it would be incorrect to state that there is a
95% chance that the mean is between the upper and
lower limits of the calculated interval.

Suppose, for example, that we were looking to find
the CI for serum cholesterol for all men in the United
States who are hypertensive and smoke. If the mean
serum cholesterol level in a sample of 12 hypertensive
men is 217 mg/100 mL with a standard deviation of 46
mg/100 mL, what is the 95% CI for this calculated
mean? To calculate the upper and lower bounds, we
first use the equation for the interval for a continuous
variable:

_ o
X= 1‘96(

v

where X is the calculated mean, o is the standard
deviation, and r is the sample population. When the
values are plugged into the equation, we end up with
a lower limit of 191 and an upper limit of 243.
Although the interval values calculated appear to in-
dicate a fairly precise mean, what would you imagine
would happen if we were able to increase the sample
size of the sample we collected? Imagine that all that
changed from this sample was only the number of our
sample. If the sample size was increased from 12 to
50, the CI now changes to 204 in the lower limit and
230 in the upper limit. As you can see, the sample size
plays an important role in the precision of our esti-
mates. The more people we have in our study, the
more narrow the range, which in turn increases our
accuracy.

As stated earlier, the bounds of the CI give us an
important indicator of the precision of the calculated
mean. Therefore the more narrow the CI, the more
precise the estimate. The CI is an important and ex-
tremely helpful way of evaluating an estimate and, if
possible, should always be reported whenever an es-
timate is provided in the results. Whereas the standard
deviation gives the reader an idea of the spread of the
values around the mean, the CI provides the reader the
precision of the estimate.

CONCLUSIONS

Up until now, the chapters of this book have fo-
cused on designing studies. This chapter begins to
explore what to do with the data once they have been
collected. The first step should be to describe each
variable. For continuous variables, we calculate the
appropriate measures of central tendency and spread
or dispersion. For categorical variables, we create
frequency tables and calculate percentages for each
stratum within each variable. Next, we calculate mea-
sures of association through either a relative risk if we
know the underlying distribution or an odds ratio if we
have conducted a case-control study. Finally, we cal-
culate measures of probability. This can be done
through hypothesis testing as described in section 13
but also through the calculation of CIs, which gives us
a different perspective on the probability underlying
our data.
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SECTION 15

Survival Analysis in Orthopaedic Surgery: A Practical Approach

Survival analysis is an effective statistical tool for
evaluating and comparing outcomes of orthopae-
dic procedures. This method is based on constructing
a life-table of a cohort of patients after certain ortho-
paedic procedures. The life-table contains all the data
relevant for the determination of the cohort at regular
follow-up periods. The main outcome value in the
life-table is the cumulative survival of the study group
at each time interval with provision of 95% ClIs of
distribution of cumulative survival values. The calcu-
lation of these values is based on the recognition of a
number of patients who were lost to follow-up and
determination of the uniform criteria for patients with
failed outcome. If the latter parameters are similar in
different studies, a comparison of survival values can
be performed by the log-rank test.

To evaluate the clinical outcome of orthopaedic
procedures, 2 important and unique characteristics
should be addressed: the relatively limited number of
patients (<100 patients in most studies) and the term
of follow-up (usually several years). These require-
ments might challenge the effectiveness of traditional
statistical tools for comparison of medical or surgical
treatments used in other clinical areas, with involve-
ment of large cohorts of patients with clear short-term

outcomes that remain unchanged for long time peri-
ods. To answer this specific need, orthopaedic proce-
dures are evaluated and compared by use of survival
analysis, which has been especially adapted to the
field of orthopaedic surgery. Initially, this method was
developed for the long-term follow-up of prosthetic
implants,2%5 but it can also be used for other ortho-
paedic procedures.?06

There are 2 main methods for survivorship analysis.
In the classic “product limit method” according to
Kaplan and Meier, the survival (i.e., the success of the
procedure) changes immediately after clinical fail-
ure.207 Using this method in relatively small groups of
evaluated patients, the Cls at the change points of the
survivorship might be misleadingly overestimated or
even show values above 100%.208 Therefore, for more
reliable evaluation of orthopaedic procedures with rel-
atively small groups of patients who are followed up
at constant time intervals, for example, on an annual
basis in the arthroplasty follow-up, a need for special
adaptation of this method is apparent. Exactly for this
purpose, Murray et al.208 popularized a method of
survivorship analysis based on construction of a “life-
table” with the assumption that all the procedures
were performed at the same time O and the patients
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TAaBLE 34. Life-Table of Patients Operated on in 1989-1994 With BioModular Uncemented Total Shoulder Prosthesis®'?

Withdrawn at Last Review

Postoperative  No. at No. at  Proportion Proportion Cumulative  95% Confidence

Year Start  Success Lost Died Failed Risk  Failing (%) Succeeding (%) Survival (%) Interval
1 90 0 0 1 5 89.5 5.6 944 94.4 87.6-97.6

2 84 0 0 1 3 83.5 3.6 96.4 91 83.1-95.4

3 80 0 0 0 4 80 5.0 95.0 86.5 77.6-92.2

4 76 0 0 0 5 76 6.6 934 80.7 70.9-87.8

5 71 0 0 2 2 70 29 97.1 78.4 68.1-86.0

6 67 0 0 2 2 66 3.0 97.0 76.1 65.5-84.3

7 63 1 1 4 2 60 33 96.7 73.5 62.4-82.2

8 55 7 0 2 0 50.5 0 100 73.5 62.1-82.4

9 46 4 0 1 t 435 23 97.7 71.8 59.9-81.3
10 40 18 0 0 1 31 32 96.8 69.5 56.8-79.8
11 21 9 0 1 0 16 0 100 69.5 55.3-80.7

NOTE. Postoperative years 1, 7, and 8 represent the data discussed in the text.

re-evaluated at constant intervals, taking into consid-
eration patients who were lost to follow-up, thus es-
tablishing a cumulative success rate for each time
interval. Subsequently, according to these consider-
ations, 95% ClIs of survival were determined. In this
method 95% Cls are more appropriate for a small
group of patients and never exceed 100% of survivor-
ship.

VARIABLES

As an example of a life-table (Table 34), we use
data published on survival analysis of 90 patients af-
ter total shoulder arthroplasty.?®® According to the
method presented here, the main outcome values are
the cumulative survival rates for each time period with
95% CI distribution of these values. The survival
values can be presented graphically as survival curves.
In addition to these final outcome values, the life-table
includes all the parameters that are required for the
calculation of the main outcome values; thus it con-
tains all the data for independent evaluation of survi-
vorship outcome, enabling critical review by readers
and an ability to compare outcomes with other studies.
The calculation method is shown in rows 1, 7, and 8 in
Table 34.

TIME PERIODS OF FOLLOW-UP

In the first column of the life-table, the follow-up
periods are given. As has been noted, the main char-
acteristic of the presented survival analysis is the
constant periods between patient evaluations accord-
ing to the nature of the surgical procedure. In the

presented example, because the life-table deals with
the outcome of shoulder arthroplasty, 1 year be-
tween follow-up evaluations is a commonly used
practice. Because the purpose of the survival anal-
ysis, among others, is a comparison between differ-
ent cohorts of patients, the use of the established
follow-up period for the particular procedure is
recommended. An additional basic assumption of
this method is that all the patients were treated at
time 0. This does not mean that all the patients
actually underwent surgery on the same date, but
the date of the surgery for each patient is considered
as time O, after which all the calculations are per-
formed. Accordingly, in row 1 of the life-table, the
first column contains the values of 1 year; in row 7,
the value of 7 years; and in row 8, the value of 8
years (i.e., 1, 7, and 8 years of follow-up).

NUMBER OF PATIENTS REMAINING FOR
FOLLOW-UP AT EACH PERIOD (NUMBER
AT START)

The number of patients at the start represents the
number of patients who were available for evaluation
at each time period. This value is a product of sub-
traction of the number of patients who were with-
drawn from the number of patients at the start in the
previous time period. Note that the number at the start
in the first row (i.e., in the first time period) represents
the total number of patients enrolled in the study. The
number of patients withdrawn for each time period is
the sum of values given in columns 3, 4, 5, and 6
(success, lost, died, and failed). The method to deter-
mine these values is given in the next section. There-
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fore, in our example, in year 1, the number of patients
at the start was 90 (the entire cohort). In year 7, this
value is 63, when the 4 patients “withdrawn at last
review” (0 + 0 + 2 + 2 = 4) were subtracted from
the original number; there were 67 patients in row 6.
Similarly, in row 8, the original number of patients is
the product of subtraction of 8 patients (1 + 1 + 4 +
2 = 8 “withdrawn at last review” in row 7) from 63
patients, which is the original number of patients in
row 7, giving a value of 55 patients.

WITHDRAWN AT LAST REVIEW

This section requires special attention because it is
based on assumptions that can influence the entire
life-table and can be manipulated according to special
characteristics of the study group. This section con-
tains 4 subsections (4 columns)—success, lost, died,
and failed—which will be discussed separately.

Success

This might be misleading terminology, but it means
that the patients reached their maximal follow-up time
period and should be considered for withdrawal in the
discussion of the next time period of the survival
analysis. For example, in row 7, 1 patient reached the
maximal follow-up of 7 years; therefore he cannot be
discussed as part of the group of patients in row 8. In
addition, from inspection of the life-table, the “suc-
cess” column indicates the minimal follow-up time in
the studied group and the number of patients who did
not reach the maximal follow-up period, excluding
those who were lost to follow-up and died, and at what
quantitative extent. By looking at our example, we see
that only 9 patients reached the whole 11-year period
of follow-up, as indicated in row 11, and the minimal
follow-up time was 7 years, because the first “suc-
cess” is indicated in row 7.

Lost

The patients who were lost to follow-up are the
main factor of uncertainty of a life-table and survival
analysis. The designers of this method reasonably
argued that this group might have a higher proportion
of unsatisfied persons with failed procedures.?!® We
will address this topic in the following sections.

Died

Two factors are crucial in the estimation of this
group. It must be verified at the highest possible extent
that the cause of death is unrelated to the procedure for

which survival analysis is performed, because in that
case the patient should be included in the “failed”
group. In addition, maximal effort should be exerted
to verify that the persons who have died are not
included in the “lost-to-follow-up” group. The reason
for the latter is that the proportion of failures in
patients who died might be overestimated.?!® This
might affect the other parameters of the life-table, as
will be discussed later.

Failed

The way these data are filled is determined by the
survival analysis constructor and has the highest po-
tential to be biased. Unfortunately, because different
authors consider different criteria for determination of
failure of the studied procedure, their life-tables might
be difficult for meaningful comparison. The minimal-
istic approach for determination of failure and the
most often used is eventual revision surgery. The
maximalistic approach might involve clinical signs on
imaging modalities, such as radiographic signs of
prosthesis loosening, a certain level of pain, restricted
range of movements, and so on, without surgery.
These signs can also be the reason for the decision on
revision surgery2®® and become part of the minimal-
istic approach. Therefore a clear definition of the
criteria of “failure” should be provided. It is also
possible to perform a survival analysis with different
failure definitions on the same group of patients to
compare life-tables from different sources. -

NUMBER OF PATIENTS AT RISK

This variable reflects the number of patients who
are actually considered for evaluation in the certain
period of time, according to the life-table design.
These patients were available for follow-up at a cer-
tain time period and therefore were determined as a
product of subtraction of unavailable patients, mean-
ing those who died, were lost, or reached the end of
their follow-up (success), from the total number of
patients at the start of this time period. These patients
at risk can reach clinical failure as discussed before,
and would be removed from further follow-up, or
could be considered as successes and be followed up
in the next time period. The fact that not all of the
subtracted individuals were exposed to the risk during
the total time period should be taken into consider-
ation. It will be impossible to know the exact fraction
of these patients; therefore a reasonable estimation of
50% is used, and subtraction of only half of the
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withdrawn patients is implemented for the life-table.
In the example in Table 34, the number at risk in row
1 was 89.5 after subtraction of 0.5 [(0 success + 0
lost + 1 died)/2 = 0.5] from 90 (number at start).

PROPORTION OF FAILING

This is a proportional value of failed cases from the
number at risk. It is usually represented in percent-
ages. In our example (Table 34), in postoperative year
7, the proportion of failing was 3.3% (2 [failed]/60
[number at risk] X 100 = 3.3%).

PROPORTION OF SUCCEEDING

Naturally, the proportion of succeeding will be the
remainder value from the proportion of failing to
100%. So, during the seventh postoperative year, the
proportion of succeeding is 96.7% (100% — 3.3%
[proportion failing] = 96.7%).

CUMULATIVE SURVIVAL

This is the main outcome value of the life-table and
can be later represented graphically as a survival es-
timation for the given time period.2%¢ Because it is
cumulative in definition, this value is calculated by
multiplying the proportion succeeding in the given
time period by the cumulative survival proportion in
the previous time period, expressed in percentages.
In the first time period, the cumulative survival pro-
portion is equal to the proportion of succeeding, be-
cause we consider the initial cumulative survival of
the procedure as 100%, as expressed in the example in
Table 34. Another example is the cumulative survival
of 73.5% in postoperative year 8 (1 [proportion of
succeeding in year 8] X 0.735 [cumulative survival in
year 7] X 100 = 73.5%).

95% CONFIDENCE INTERVAL

The last column to be filled in the life-table contains
the CIs of the cumulative survival and represents
distribution of 95% of these values for every time
period. The calculation of the CI for a given time
interval is based on determination of the “effective
number of risk” (M), which contains information on
the number of patients at risk from the previous time
intervals according to the following formula:

M=i/> 1/n

where i is the time interval and » is the number of
patients at risk in the time interval i.208210

Accordingly, the confidence limits (CL) are calcu-
lated according to the following formula20-21t;

M [ 1.96%

L= P+
M + 1.96 2-M

(1—P) 1.96*
£ 1.964 [P —gr— + RV

when M is an effective number at risk and P is
cumulative survival at the given time interval (ex-
pressed as proportion and not as percentage). This
mathematical expression is based on the theoretical
assumption presented by Rothman?'2 and popularized
by Murray et al.?°® The mathematical basis of these
assumptions will not be discussed in this presentation,
which is more of a practical nature. The interested
reader is referred to these extensive statistical reports
that are given in the “References” section.

As an example of the calculations of the Cls, we
will refer to time interval 8 (i = 8 [postoperative year
8]) (Table 34). The M value is 69.739 according to the
following calculation:

8
1 1 1 1 1 1 1 1
8957835780 76770 766 60 " 505
= 69.739
The values of the CI are calculated as follows (M =
69.739, P = 0.735).
For the upper limit,

SURVIVAL OF THE BIOMODULAR TOTAL
SHOULDER PROSTHESIS: 1983-94
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Ficure 11.  Graphic representation of outcome values of survival
analysis given in Table 34. Vertical bars represent 95% confidence
intervals of the cumulative survival rates.
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TABLE 35. Life-Table of Patients With Shoulder Osteoarthritis Operated on in 1989-1994 With BioModular Uncemented
Total Shoulder Prosthesis®?

Withdrawn at Last Review

Postoperative  No. at No. at  Proportion Proportion Cumulative ~ 95% Confidence
Year Start  Success Lost Died Failed Risk  Failing (%) Succeeding (%) Survival (%) Interval
1 48 0 0 1 4 475 8.4 91.6 91.6 80.3-96.7
2 43 0 0 0 3 43 7 93 85.2 72.1-92.8
3 40 0 0 0 3 40 7.5 92.5 78.8 64.9-88.2
4 37 0 0 0 3 37 8.1 91.9 72.4 57.4-83.6
5 34 0 0 0 1 34 29 97.9 70.9 55.5-82.7
6 33 0 0 0 2 33 6.1 93.9 66.6 50.8-79.4
7 31 0 0 3 1 29.5 34 96.6 64.3 48.2-71.7
8 27 3 0 I 0 25 0 100 64.3 47.7-78.1
9 23 1 1 0 1 22 4.5 95.5 61.4 44.4-76
10 20 10 0 0 0 15 0 100 61.4 43.4-76.7
11 10 2 0 1 0 8.5 0 100 614 41.6-78
M 1.962 this type of comparison is the same proportion of
5| P+ Ry failures in every time interval for 2 compared treat-
M + 1.96 ) ments. Using this test, we will be able to compare the

(1-P) 1.96°
+1.964 [P —1 +4‘M2 =0.824

For the lower limit,

M b 1.96*
P+
M + 1.96* 2-M
1.96

(1-P)
— 196 [P+ o

Therefore the 95% CI for the cumulative survival of
73.5% in postoperative year 8 (Table 34) is between
62.1% and 82.4%.

At this stage, when all the data are entered into the
life-table, the main outcome values, cumulative sur-
vival and its 95% ClIs, can be presented graphically
(Fig 11).

} =0.621

COMPARISON BETWEEN SURVIVAL
ANALYSES

The last step of the process of evaluating the results
in the life-table is the ability to compare it with the
results of other survival analyses. It is clear that the
prerequisite for such comparison will be the same
determination for “failure” in the compared life-ta-
bles, similar numbers of “lost to follow-up,” and a
similar method of life-table construction.

For comparison of 2 life-tables with a relatively
small number of patients with low failure rates, the
log-rank test is usually used.?%¢ The null hypothesis of

occurrence of failures in the 2 survival analyses in
question. For this purpose, a X statistic is calculated.
For comparing 2 life-tables, the x* distribution of
values with 1 degree of freedom is assumed.?!3 In this
case the value of x* above 3.841 indicates a P value
below .05; when the value of x* is above 6.635, the P
value is below .01; and when the value of x? is above
10.828, the P value is below .001.213 We will demon-
strate the calculations by using 2 life-tables (Tables 34
and 35).

For calculation of the x* statistic according to the
log-rank test, additional variables are determined and
summarized (Table 36). “Postoperative year,” “Num-
ber at risk” and “Observed failure” are taken from the
life-tables that are compared.

Total number at risk” is the sum of “Number at
risk” from the 2 life-tables for each postoperative
year. For example, for year 7, this value is 89.5 (60
[Table 34] + 29.5 [Table 35]).

“Expected failure” for each of the life-tables for
every postoperative year is calculated according to the
following formula:

(Observed failure)
X (Number at risk)/(Total number at risk)

In our example, in postoperative year 7 in Table 35,
this value is 0.33 (1 [observed failure] X 29.5 [number
at risk]/89.5 [total number at risk]).

After the previously described variables are deter-
mined, the )(2 statistic can be calculated for each of the
life-tables according to the formula (Observed failures
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TABLE 36. Variables Required for Comparison of Survival Data in Tables 34 and 35

Postoperative  No. at Risk:  Observed Failure: No. at Risk:  Observed Failure: Total No. Expected Failure: Expected Failure:
Year Table 34 Table 34 Table 35 Table 35 at Risk Table 34 Table 35
1 89.5 5 47.5 4 137 3.27 1.39
2 83.5 3 43 3 126.5 1.98 1.02
3 80 4 40 3 120 2.67 1.00
4 76 5 37 3 113 3.36 0.98
5 70 2 34 1 104 1.35 0.33
6 66 2 33 2 99 1.33 0.67
7 60 2 29.5 1 89.5 1.34 0.33
8 50.5 0 25 0 75.5 0.00 0.00
9 435 1 22 1 65.5 0.66 0.34
10 31 1 15 0 46 0.67 0.00
11 16 0 8.5 0 24.5 0.00 0.00

— Expected failures)?/Expected failures, summing up
to the postoperative year in question. In comparing 2
life-tables, x* is equal to the sum of the results of this
formula for each in the example above. If we compare
the 11-year survival from Tables 34 and 35, x* equals
26.07 according to the following calculation: (25.00
[sum of observed failures until year 11 in Table 34] —
16.63 [sum of expected failures until year 11 in Table
341)%/16.63 [sum of expected failures until year 11 in
Table 34] + (18.00 [sum of observed failures until
year 11 in Table 35] — 6.05 [sum of expected failures
until year 11 in Table 35])%/6.05 [sum of expected
failures until year 11 in Table 35]) = (25.00 - 16.63)%/
16.63 + (18.00 — 6.05)2/6.05 = 26.07.

This value of x? is higher than 10.828, giving a P
value < .001. Therefore the difference in the 11-
year survival of the implanted shoulder prostheses

between these 2 groups of patients is highly signif-
icant.

CONCLUSIONS

A method for constructing and comparing survival
analyses of orthopaedic procedures by use of the life-
table method is presented. The method requires simple
arithmetical calculations and can be further simplified by
use of basic computer software, such as commonly used
spreadsheet software packages. The main issue that
should be addressed in this method of survival analyses
is a determination of the endpoint criteria for “failures.”

Nahum Rosenberg, M.D.
Michael Soudry, M.D.

SECTION 16

Outcome Measures in Multicenter Studies

mall communication errors between different

project teams can result in a catastrophic fail-
ure: for example, the loss of radio contact between
NASA and its Mars Climate Orbiter in 1999 led
to a loss of more than US $125 million.2!4 The
metric/US customary unit mix-up that destroyed the
craft was caused by human error in the software
development and therefore severe communication
problems associated with a lack of control. This
nonmedical case exemplifies the need for appropri-

ate harmonization, communication, and subsequent
control if more than one group is involved in a
complex research project.

Orthopaedic multicenter studies are complex by
nature. They are difficult to organize, complex to
manage, and hard to analyze. However, there are good
reasons to face these challenges:

1. The larger sample size enables testing hypothe-
ses with greater statistical power. It also allows
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a more precise estimation of population para-
meters.2!5 Especially in low-prevalence disor-
ders, multicenter studies represent the sole op-
tion to generate a large enough sample size.

2. The findings and observations of multicenter
studies are more generalizable than those of 1
single-center only.?!6 The heterogeneity in pa-
tient demographics, clinical characteristics, and
treatment differences contributes to the variance
in study outcome. Even if the treatment is uni-
formly delivered, it may result in different out-
comes at different sites (e.g., European sites
compared with Asian sites).

3. The study protocol as a result of a consensus
process of experts from different sites is more
likely to represent the general opinion in a field
and has a better chance for acceptance in the
scientific community after the study.?!> This has
been recently demonstrated in a large cross-
sectional survey of 796 surgeons. The majority
of them agreed that they would change their
practice based on the results of a large random-
ized trial.217

CHALLENGES IN MULTICENTER STUDIES

The advantages of multicenter studies represent a
number of challenges at the same time. The inclusion
of more study sites increases the complexity. Slight
differences in treatment modalities have to be consid-
ered. Working processes that may work locally with-
out extensive infrastructure (e.g., patient monitoring)
are not feasible at another site. In most studies differ-
ences in infrastructure between various sites require
an independent system for data acquisition and pro-
cessing. The inclusion of several study sites also re-
quires strict monitoring to obtain a defined leve] of
data quality. In summary, it has to be ensured that all
sites measure the same variable with the same instru-
ment and the same quality.

Although the inclusion of sites with different cul-
tural background makes the study more representa-
tive, this is one of the greatest challenges in multi-
center studies. It leads to a number of confounding
variables such as socioeconomic environment or dif-
ferent patient expectations. Inclusion of non-English-
speaking sites requires cross-cultural adaptation with
translation and validation of questionnaires. Differ-
ences in cultural background have to be considered
during interpretation of data.

Finally, different legal and ethical boundary condi-
tions aggravate study preparation, performance, and

analysis. Necessary applications to local ethics com-
mittees are becoming more and more complex, time-
consuming, and expensive. Different legal restrictions
add another challenge in multicenter studies.

The necessary infrastructure and manpower lead to
increased costs and time compared with single-center
studies. All these challenges have to be considered
during planning and performance of multicenter stud-
ies to avoid major pitfalls and to produce valuable
data.

In summary, there are 2 main challenges related to
outcome measures in multicenter trials:

1. Measuring the same data. This means that at 1
site, exactly the same variable is measured as at
the other site.

2. Obtaining the same data. This means that vary-
ing infrastructure as well as different legal, so-
cioeconomic, and cultural boundary conditions
may influence parameters locally, which aggra-
vates further data processing and analysis.

This article should help to identify key components
related to outcome measures in multicenter studies.
Examples will be used to illustrate possible pitfalls but
also strategies to avoid them.

OBJECTIVE OUTCOME MEASURES IN
MULTICENTER STUDIES

Although objective outcome parameters are consid-
ered as investigator independent, there are a number
of factors that may increase variability or introduce
sources of unsystematic or systematic errors in multi-
center studies. If parameters are measured with differ-
ent devices, different protocols, or different setups,
further data processing may be aggravated.

Range of Motion

Active range of motion and passive range of motion
are the most widely used orthopaedic measures in
daily clinical practice as well as in clinical studies.
Despite their widespread use, there exists a great vari-
ability in recording methods. Whereas one group
quantified standard errors of measurement between
14° and 25° (interrater trial) and between 11° and 23°
(intrarater trial) when comparing 5 methods for as-
sessing shoulder range of motion,?!® other authors
concluded in a systematic review that “inter-rater re-
liability for measurement of passive physiological
movements in lower extremity joints is generally
low.”219 If objective instruments are used, the inter-
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rater reliability of passive physiologic range of motion
at the upper extremity can be improved.??° For exam-
ple, sufficient intrarater and interrater reliability could
be demonstrated when a Fastrak measurement system
(Polhemus, Colchester, VT) was used for measuring
cervical spine flexion/extension, lateral flexion, and
rotation and shoulder flexion/extension, abduction,
and external rotation in healthy subjects.?2! However,
these systems require handling know-how, are costly,
and are often not available at all study sites. Therefore
recording of active and passive range of motion with
simple methods like the goniometer has to be stan-
dardized across study sites. This includes exact defi-
nition of measurement planes, starting position, the
neutral position for the joint, and the description of the
course of movement. The values should be recorded in
the neutral-zero method. If only the complete range or
a deficit in one plane is reported, information about
changes in the neutral position are lacking.???

Active and passive range of motion
should be recorded with the neutral-
zero method. Each movement should
be described exactly in the study
protocol.

Performance Tests

Physical function and its impairment due to disease
activity can be quantified with performance tests.
Most tests include the recording of the time needed for
a patient to perform the requested activity. In addition,
several observational methods have been described
that use ratings from observers to assess the quality of
physical function.??3 However, Terwee et al.223 found
a number of methodologic shortcomings during a re-
view of the measurement properties of all perfor-
mance-based methods that have been used to measure
the physical function of patients with osteoarthritis of
the hip or knee. Most of the tests in this study showed
low values for reliability, which represents a challenge
for multicenter studies. Impellizzeri and Marcora?**
propose that physiologic and performance tests used
in sports science research and professional practice
should be developed following a rigorous validation
process, as is done in other scientific fields, such as
clinimetrics. If performance tests are used in multi-
center studies, they have to be described in detail (e.g.,
with photographic illustrations), should be demon-
strated during onsite visits, and should be controlled
during study monitoring.

Exact protocols including detailed
test descriptions are required for per-

formance tests. Similar testing proce-
dures should be ensured during on-
site Visits.

Strength Measurements

Muscle strength tests in typical positions belong
to the most common clinical outcome parameters.
They not only reflect muscle power but also indicate
absence of pain, which enables active force gener-
ation. Although they are considered “objective,”
they underlie a number of influencing factors such
as fear of injury, pain, medications, work satisfac-
tion, and other motivational factors with an influ-
ence on sincerity of active testing.225> These factors
may vary among study sites depending on cultural
background, Workers’ Compensation, and other so-
cioeconomic factors.

Another challenge is presented by the variety of
measurement devices. For example, shoulder ab-
duction strength, as required for the calculation of
the Constant score,226 can be measured with a num-
ber of devices, e.g., spring balance, Isobex (Medical
Device Solutions AG, Oberburg, Switzerland), or
dynamometer. They all operate on a different work-
ing principle and subsequently measure different
parameters. If not specified before the study, this
may lead to a situation in which data pooling is not
feasible. Therefore specification of the measure-
ment device is mandatory in each multicenter study.
More information about the measurement protocol
is necessary, however, to ensure comparability of
data. Positioning of the patient may influence the
result. This has been shown for grip strength as well
as for hip abduction strength. For example, maximal
hip abductor strength is significantly higher in the
side-lying position compared with the standing and
supine positions.??? In addition, information about
the number of repetitions, as well as further data
processing, is required to avoid additional bias.
Strength measurements are typically repeated in
triplicate. Then, it has to be specified whether the
maximum, mean, or median value will be processed
according to the research question.228

For strength measurements, the exact
measurement device, including man-
ufacturer, positioning of the patient,
number of repetitions, and selection
process of measurements have to be
defined to ensure data comparability
across study sites.
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Sophisticated Functional Tests

More sophisticated functional tests such as in-shoe
plantar pressure measurements, gait analysis (instru-
mented walkway), or force-plate analysis may contri-
bute additional information.??® For specific research
questions, these laboratory methods are considered to
be the most accurate measurement methods, and cli-
nicians and scientists tend to include them in clinical
trials. For instance, high reliability could be shown
for various methods of instrumented foot-function
tests.230 However, a number of issues have to be
considered to avoid pitfalls when used in multicenter
trials: not only does the technology of the chosen test
have to be available at each site, but the know-how to
operate it is also crucial. For example, a sophisticated
motion-capture system requires skilled staff who can
install, calibrate, and run it. Laboratory space, logis-
tics for patient handling, computational resources, and
experiences in patient testing are necessary. If such a
method is to be used in a multicenter study, exact
definitions of the system and of all laboratory param-
eters applicable to all sites are mandatory, as well as
careful training. If the specific laboratory test is not
feasible at all sites, it is an option to perform the test
in a study subgroup only at clinics with the required
infrastructure and resources.

Sophisticated functional tests may
provide additional information for a
given research question but require
specific infrastructure, know-how,
and resources. If not available at all
sites, these methods can be limited to
a subset of selected sites to collect the
additional information.

Radiographic Evaluation

Radiographic parameters are part of almost all or-
thopaedic studies. However, despite the widespread
use, only little consensus exists about radiographic
grading. Interrater agreement measured with the k
coefficient ranges from 0.4 for sclerosis to 0.95 for
joint-space narrowing as shown by Lane et al.?3! This
broad range was recently re-emphasized in another
study investigating the reliability and agreement of
measures used in radiographic evaluation of the adult
hip.232 The authors also stated that direct measure-
ments (femoral head diameter) were more reliable
than measurements requiring estimation on the part of
the observer (Tonnis angle, neck-shaft angle). Agree-
ment between repeated measurements showed many

parameters with low absolute reliability. The same
problem was reported from the quantification of frac-
ture classification,?33 reduction,?3* and healing.?35-236

However, the information of an image is stored in
the radiograph. Central radiograph reading may help
to extract the required data and to avoid subjective
judgment by the treating surgeon on the one hand, and
it is more reliable in detecting all suspicious findings
and less biased by the surgeon’s perspective on the
other hand. Establishing a radiology review board for
a multicenter study is a worthwhile method to increase
data quality.?3” The images should be collected cen-
trally, and a minimum of 2 experienced investigators
should evaluate the blinded radiographs indepen-
dently. It is recommended to collect the digital radio-
graphs in DICOM (Digital Imaging and Communica-
tions in Medicine) format for later image processing.
Clear definitions of each radiologic parameter docu-
mented in the study plan or an image-reading manual
is mandatory.23® An initial training session may help
to improve interrater agreement.

Central image reading by 2 indepen-
dent, experienced observers and con-
sensus finding help to increase data
quality. Strict radiologic definitions are
mandatory, an initial training session
may help to improve agreement.

Bone Density Measurements

Local bone density and systemic osteoporosis status
both came into focus in several studies.?3240 A typi-
cal example is the change in local bone density around
joint replacements as a reaction to different prosthesis
designs.?*! Although many authors refer to predefined
areas like Gruen zones,?*? they may vary from group
to group depending on the exact definition. In a mul-
ticenter study, the measurement method (e.g., periph-
eral quantitative computed tomography or dual-energy
absorptiometry), the exact device, and the imaging
parameters, as well as the processing algorithm, have
to be specified. Especially the differences between
different devices for dual-energy absorptiometry in-
troduce a large source of variability in studies with
several study sites. These devices are often calibrated

“with cohorts provided by the manufacturer only.

Therefore pooling of absolute values is unfeasible;
only relative spatial or temporal changes can be com-
pared or pooled.?43 Limitation to one device type only
reduces the number of potential recruitment sites in
many studies.
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However, if peripheral quantitative computed to-
mography is feasible within a multicenter study,
cross-calibration with a standardized phantom (e.g.,
the European forearm phantom) improves data qual-
ity?#** and allows pooling of the absolute values. Study
protocols including bone density assessment should
include documentation of precision accuracy and sta-
bility at one site as well as comparisons between
different sites. A protocol for the circulation and test-
ing of a calibration phantom helps to ensure the re-
quired data quality.

Quantification of local and systemic
bone density has to be defined in de-
tail including measurement site and
area, measurement device, imaging
protocol, and (cross-)calibration.

PATIENT-REPORTED OUTCOMES IN
MULTICENTER STUDIES

Patient-reported outcomes (PROs) are subjective pa-
rameters that come directly from the patient. In contrast
to objective parameters, they should exclusively reflect
the patient’s health condition (e.g., function of the knee,
ability to walk, pain, and HRQL) without any space for
interpretation by a clinician. They can be used to obtain
information on the actual status of a sign or symptom of
the patient (e.g., on the preoperative status of an arthritic
joint) or to see changes of a sign or symptom over the
time—for example, to assess the effect of a medical
treatment or the success of a surgery.

Choosing the Conceptual Framework

The 4 target domains that contribute to functional
outcomes can be viewed as physical, mental, emo-
tional, and social in nature.?%3 In treating patients with
impingement, for example, there is a need to facilitate
clinical decisions where surgeons must weigh, either
explicitly or implicitly, the expected benefits of a
particular intervention, whether surgical, medical, or
rehabilitative, against the potential harm and
cost.246:247 The choice of an appropriate disability
conceptual framework to classify different domains
and instruments is fundamental because there is a lack
of consistent language and uniform definitions when
defining physical function. However, without a com-
mon metric to measure these targets, we would be
unable to compare results across trials and guide clin-
ical decision making. ,

The main purpose of the International Classification
of Functioning, Disability and Health (ICF) of the

World Health Organization to provide a common lan-
guage to describe disability concepts has made the
framework widely popular.248 Functioning and dis-
ability are described in the ICF in terms of the dy-
namic interaction between health condition, personal
factors, and the environment. The ICF is not only a
classification system for the impact of disease, it is
also a theoretical framework for a relation between
variables. The ICF places the emphasis on function
rather than condition or disease. The ICF provides a
description of situations with regard to human func-
tioning and its restriction. The information is orga-
nized into 2 parts: part 1 deals with functioning and
disability, whereas part 2 covers contextual factors.
Each part has 2 components: The body component
comprises 2 classifications, 1 for functions of body
systems and 1 for body structures. Activities may be
limited in nature, duration, and quality.2*® Activity
limitations are referred to as disabilities and are scaled
by difficulties and whether assistance is needed to
carry out the activity. The ICF has been identified by
the American National Committee on Vital and Health
Statistics as the only viable code set for reporting
functional status.250

The design and conduct of good comparative stud-
ies in this context rely on the choice of valid instru-
ments that are reliable and responsive.25! Should the
instrument assessing functional outcomes prove to
have good psychometric properties, the value of the
published literature would be enhanced.?52 However,
pragmatic qualities such as the applicability of such
instruments in trials examining specific populations,
for instance, femoroacetabular impingement and hip
labral pathology, should also be considered in addition
to the psychometric properties. For example, logistical
choices for use of functional outcome instruments
should take into consideration the burden to adminis-
ter, require additional training, and have an adequate
score distribution as well as format compatibility.253
To obtain comparable results, it is necessary that all
participating centers use the same version of an out-
come measure and perform it in the same way (e.g.,
direct distribution or telephone interview). This is
especially important for those instruments where dif-
ferent versions exist, e.g., the HRQL instrument SF-36
(version 1 or 2, 1 week’s recall or 4 weeks’ recall) or
the Constant score at the shoulder.

e Use a framework to classify health
concepts, whether impairment or
activity participation.
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e Use both disease-specific and ge-
neric health measures.

o Use instruments with tested psycho-
metric properties.

Cross-Cultural Challenges

The cultural background can be an important con-
founding factor in international multicenter studies
and also in national studies including migration pop-
ulations of different cultures. For example, illness
behavior and perceptions of pain are different between
Americans and Asians.?>4

Have you ever thought about how to assess the
same item in patients from different countries, with
different cultural backgrounds and different functional
demands?

For example, East Asian people use different func-
tions of the hand when eating with chopsticks than
Western people. In many cultures, kneeling is an
important function regularly practiced during eating or
praying, with highest functional demands because of
the maximum flexion of the knee.

When using a PRO, it is important that it is avail-
able in the national language of the target population
because it should be answered by the patient in con-
text with his or her cultural background. Availability
in another language does not mean that it has simply
been translated by one interpreter or even by a doctor
during the interview with the patient. An instrument
that should allow reliable comparisons with other
studies (e.g., comparing treatment effects) or will be
used in an international multicenter study should un-
dergo a careful methodologic process of cross-cultural
adaptation and validation such as or comparable to the
process described by Guillemin et al.?>> and Beaton et
al.256 (Fig 12). The questionnaire must be correctly
translated not only for all questions and answers but
also for all instructions for the patient and for the
scoring method. For all steps of such a process, careful
written documentation that highlights difficulties to
reach equivalence between the original questionnaire
and new-language questionnaire is necessary.

The first step is the translation into the target language.
This should be done independently by 2 bilingual trans-
lators with the target language as their mother tongue.
One of the translators should be aware of the concept of
the questionnaire and should have a medical background.
The second translator should have no medical back-
ground and be uninformed regarding the concept of the
questionnaire. Both translators produce 2 forward-trans-
lations, versions T1 and T2.

STEP 1: Translation into the target language
2 bilingual persons
(one informed, one uninformed)

STEP 2: Agreement meeting
Both forward translators,
a medical doctor, and a language professional

STEP 3: Back translation into the
original language
2 bilingual persons (both uninformed)

STEP 4; Expert Committee meeting
All translators, a medical advisor, a language
professional, a methodologist

STEP 5: Pretest
In ~30 persons/patients for comprehensiveness

STEP 6: Approval by the inventor of the score

STEP 7: Assessment of psychometrlc

properties
Rehabmty, validity, responsiveness

FiGure 12,  Steps of cross-cultural adaptation. Adapted from Bea-
ton et al.2>¢

The second step is an agreement meeting, where
both forward-translators find an agreement on the
translations and produce a synthesis version (T12).
The discussion should be led by a third person acting
as mediator, e.g., a medical doctor familiar with the
questionnaire and its concept. A language professional



