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Fig. 2 Characteristics of the deacylated polyethylenimine (PEI max)-
nanoparticle: a The size of the PEI max-nanoparticles was measured
with a laser light-scattering method using a fiberoptics particle
analyzer (FPAR-1000, Otsuka Electronics) at 37°C. Secondary
particle size of the PEI max-nanoparticles was approximately
121.32 & 27.36 nm. b PEI max-nanoparticles were induced to
aggregate by a magnet (@) and were then dispersed (b). Asterisk
indicates column-shaped neodymium magnet. ¢ Cationic PEI max-
nanoparticles (100 pg per tube) in deionized water or PEI max

because PEI max-nanoparticle and plasmid DNA complexes
are taken in by endocytosis. Thus, it might be difficult to take
the large complexes into the cytoplasm by endocytosis. Fur-
thermore, the expression level of the EGFP gene was also
reduced under transfection during a prolonged time on the
magnetic sheet (24 h) (Fig. 4b). This result may demonstrate
a causal relationship between the cell division cycle and time
on the magnetic sheet. Plasmid DNAs in the cytoplasm were
transported into the nucleus when the nuclear membrane
disappeared on cell division [24]. Thus, plasmid DNAs and
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solution (1 mg/ml) were reacted with anionic plasmid [pCAGGS—
enhanced green fluorescent protein (EGFP)] by an ionic bond. PEI
max-nanoparticles in deionized water and plasmid aggregated more
easily than that in PEI max solution and plasmid. d To evaluate
whether plasmid DNA attached to PEI max-nanoparticles in deion-
ized water, PEI max-nanoparticles were reacted with plasmid DNA
for 15 min at room temperature. Measuring the concentration of
plasmid DNA in the upper layer (hyaline layer), the weight of PEI
max-nanoparticles was reduced in a dependent manner

magnetic nanoparticle complexes might not be transported
into the nucleus because they are drawn to the bottom of the
cell by magnetic force.

We succeeded in producing PEI max-nanoparticles that
enabled P19CL6 cells, which is derived from embryonic
carcinoma transfected on a magnetic sheet. In addition, this
method resulted in a highly efficient gene transduction
compared with that of conventional transfection methods
(Fig. 5a, c¢). This transfection method using PEI max-
nanoparticles is a relatively low-cost and quick method of
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Fig. 3 Enhanced green fluorescent protein (EGFP) expression in CL6
cells using deacylated polyethylenimine (PEI max)-nanoparticle and
magnetic field. Phase-contrast fluorescent micrograph of CL6 cells

were transfected with pCAGGS-EGFP and PEI max as a control
(a) and PEI max-nanoparticles (b). The numbers of EGFP-positive
cells were further increased by PEI max-nanoparticles
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Fig. 4 Optimum condition for transfection of the deacylated poly-
ethylenimine (PEI max)-nanoparticle. To optimize the transfection
method, we examined PEI max-nanoparticles in terms of volume
(a) and time (b) on the magnetic sheet. These results were evaluated
by quantitative real-time reverse transcriptional polymerase chain
reaction (RT-PCR). The expression level of the CL6 cells treated with
PEI max alone is regarded as 1. The optimal conditions for
transfection using PEI max-nanoparticles were when the CL6 cells
were treated with 0.8 pg of PEI max-nanoparticles and 2.0 pg of
pCAGGS-EGFP for 4 h on the magnetic sheet. The double asterisks
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indicate a significant difference (P < 0.05). Cytotoxicities of PEI max
and PEI max-nanoparticles were evaluated by Alamar Blue assay (c).
After 48 h of PEI max or PEI max-nanoparticle exposure, there were
no significant differences in cell viability between CL6 cells treated
with PEI max and those with PEI max-nanoparticles. Mock the CL6
cells treated without any treatment as a negative control. PE] max
alone the CL6 cells treated with PEI max. PEI max-nanoparticles the
CL6 cells treated with PEI max-nanoparticles (0.8 pg) for 4 h on the
magnetic sheet. The relative absorbance of untreated CL6 cells is
regarded as 100%
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Table 1 Comparison of transfection methods using the polyethylenimine and magnetic nanoparticles
Author Year Vector Component Cell Transfection Cell viability = References
efficiency (% of control)

Kami - Plasmid PEI max (MW 25k), MNP (y-Fe203, 70 nm), MF (0.2 T) P19CL6 80%" 100 This paper
Zhang 2010 Plasmid Branched PEI (MW 25k), SPION (30 nm), MF (1.2 T) NIH3T3 64%" 100 [14]
siRNA Branched PEI (MW 25k), SPION (30 nm), MF (1.2 T) NIH3T3 77%" 100
Kievit 2009 Plasmid PEI (MW 25k), SPION (200 nm) C6 90%" 10 [13]
Plasmid PEI (MW 25k), Chitosan, SPION (200 nm) C6 45%° 100
Plasmid PolyMag (commercial magnification reagent), MF (1.2 T) C6 32%° 66
Scherer 2002 Plasmid PEI (MW 800k), SPION (200 nm), MF (1 T) NIH3T3 5-fold® - [15]
Adenovirus  PEI (MW 800k), SPION (200 nm), MF (1 T) K562 100-fold® -

Retrovirus  PEI (MW 800k), SPION (200 nm), MF (1 T) NIH3T3 20%" -

Transfection efficiency indicates optimal transfection condition

PEI polyethylenimine, PEI max deacylated PEI, MNP magnetic nanoparticle, SPION superparamagnetic iron oxide nanoparticle, MW molecular

weight, MF magnetic force, T tesla

* Flowcytometric analysis
® Luciferase activity assay

introducing plasmid into target cells with increased effi-
ciency. Furthermore, a major advantage of this method is
its tolerability among cells. Other methods might be lim-
ited either by possible cytotoxic effects of the lipidic
transfection reagent (lipofection) or simply by the directly
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applied force on the cells (electroporation). In contrast,
methods such as lipofection offer only a certain probability
of hits between cargo and cells because of the three-
dimensional motion of cells and transfection aggregates in
a liquid suspension. Normally, transfection was inhibited
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by serum using transfection reagent [25]. However, this
method can also be performed in the presence of serum,
which is a further benefit. Additionally, synergistic effects
on transfection efficiency can arise from the possible
combination of PEI max and nanoparticles. This technol-
ogy might be an alternative to the currently used viral and
nonviral vectors in gene therapy and gene transfer [26].

Our results suggest that PEI max-nanoparticles offer
the ability to deliver various DNA formulations in addition
to the traditional methods. Furthermore, gene transfer
efficiency was not inhibited in the presence of serum in
the cells. PEI max-nanoparticles may be a promising
gene carrier with high transfection efficiency and low
cytotoxicity.
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Abstract: Nanoparticle technology is being incorporated into many areas of molecular
science and biomedicine. Because nanoparticles are small enough to enter almost all areas
of the body, including the circulatory system and cells, they have been and continue to be
exploited for basic biomedical research as well as clinical diagnostic and therapeutic
applications. For example, nanoparticles hold great promise for enabling gene therapy to
reach its full potential by facilitating targeted delivery of DNA into tissues and cells.
Substantial progress has been made in binding DNA to nanoparticles and controlling the
behavior of these complexes. In this article, we review research on binding DNAs to
nanoparticles as well as our latest study on non-viral gene delivery using
polyethylenimine-coated magnetic nanoparticles.

Keywords: magnetic nanoparticles; Magnetofection; gene delivery; polyethylenimine
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1. Introduction

Nanotechnology describes the creation and utilization of materials, devices, and systems through
the control of nanometer-sized materials and their application to physics, chemistry, biology,
engineering, materials science, medicine, and other endeavors. In particular, intensive efforts are in
progress to develop nanomaterials for medical use as agents that can be targeted to specific organs,
tissues, and cells. For example, magnetic nanoparticles (MNPs) are being used clinically as contrast
agents for magnetic resonance imaging (MRI) (Table 1). MRI is a noninvasive technique that can
provide real-time high-resolution soft tissue information [1,2]. MRI image quality can be further
improved by utilizing contrast agents that alter proton relaxation rates [3—-8]. MNP-based drug delivery
systems (DDS) [9-11], and treatments of hyperthermia [12-21], using MNPs have been studied for
over a decade. Furthermore, researchers have reported that MNPs have been useful in hyperthermic
treatment for various cancers in vivo [22-31]. Nanotechnology-based anti-cancer agent DDS have
already been approved, such as pegylated liposomal doxorubicin (DOXIL) for ovarian cancer [32-37].
MNPs have been used effectively as transfection reagents for introducing nucleic acids (plasmids or
siRNAs) [38-53], or viruses (retrovirus, or adenovirus) [44,54-56] into cells. Our own research is
focused on MNP-mediated gene delivery systems (called as “Magnetofection™).

Table 1. Biomedical Applications of Magnetic Nanoparticles (MNPs).

Purpose References
MRI Diagnosis [1-8,57-61]
DDS Anti-cancer therapy, Enzyme therapy [9-11,22-31]
Hyperthermia Anti-cancer therapy [12-18,33-37]

Gene Delivery Anti-cancer therapy, Cell transplantation therapy [38-55]

2. Gene Delivery

Gene delivery techniques efficiently introduce a gene of interest in order to express its encoded
protein in a suitable host or host cell. Currently, there are three primary gene delivery systems that
employ viral vectors (retroviruses and adenoviruses), nucleic acid electroporation, and nucleic acid
transfection. These systems vary in efficacy (Table 2). Gene delivery by viral vectors can be highly
efficient (80-90%) but may insert viral vector nucleic acid sequences into the host genome, potentially
causing unwelcome effects, such as inappropriate expression of deleterious genes. Electroporation is
also a highly efficient technique for introducing foreign genes into a host (50-70%); however, half of
the recipient cells die due to the electrical stimulation. Transfection reagents do not efficiently deliver
nucleic acids into cells (20-30%); however, cell viability is largely preserved and the method is safe
enough for clinical use. Therefore, this method holds relatively more promise for medical applications,
provided that its efficiency can be improved. MNPs are already in use by basic researchers to increase
transfection efficiencies of cultured cells. Thus, MNP-nucleic acid complexes are added to cell culture
media and then onto the cell surface by applying a magnetic force (Figure 1).
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Table 2. Gene delivery systems.

Expression Type Efficiency (%) Cell Viability (%)  Safety
Virus * Stable, or Transient 80-90% 80-90% Low
Electroporation Transient 50-70% 40-50% High
TF reagent ** Transient 20-30% 80-90% High

* Virus including adenovirus (transient), retrovirus (stable), and lentivirus (stable); ** TF reagent,
transfection reagents including PEI (Polysciences Inc.), FuGENE HD (Promega), and
Lipofectamine 2000 (Invitrogen); All values are ours (unpublished experiments).

Figure 1. MNP gene delivery system (Magnetofection). Plasmids are bound to MNPs,
which then move from the media to the cell surface by applying a magnetic force.
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Oxide nanoparticles mixed with high magnetic moment compounds such as CoFe;O4, NiFe;O4, and
MnFe,0, exhibit superior performance compared to other magnetic materials [62,63]. However, these
nanoparticles are highly toxic to cells, limiting their use for in vivo, and in vitro biomedical
applications [64—67]. However, iron oxides such as magnetite (Fe3O4) and maghemite (y-Fe;O;), in
particular, possess high magnetic moments, are relatively safe, and currently in clinical use as MRI
contrast agents [57-61]. These iron oxide based-magnetic materials are also suitable for biomedical
applications. Fe’* is widely dispersed in the human body so leaching of this metal ion from
nanoparticles should not reach toxic concentrations [68,69]. As a result, maghemite is a popular choice
for MNPs used biomedical applications. It is very important to modify the surface of MNPs so that
they can be used for biomedical applications. Thus, MNPs are coated with compounds such as natural
polymers (proteins and carbohydrates) [70—75], synthetic organic polymers (polyethylene glycol),
polyvinyl alcohol, poly-L-lactic acid) [72,76-78], silica [79], and gold [80,81]. These surface coating
agents prevent nanoparticle agglomeration, cytotoxicity, and add functionality. MNPs agglomerate
readily in aqueous solutions around pH 7 [82], and it is difficult to control the properties and amounts
of agglomerated MNPs. The greater toxicity of MNPs compared to those of microparticles can be
attributed to their high surface to volume ratio [83]. Coating agents prevent the leaching of potentially
toxic components from MNPs. In fact, the cytotoxicity of uncoated NiFeO; MNPs is dramatically
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decreased by coating with cationic polymer, polyethylenimine (PEI) [84—86]. PEI, a cationic polymer,
is widely used for nucleic acid transfection [87—89] and also serves as a nanoparticle dispersant [90].
PEI-coated MNPs enhance transfection efficiency [38,41,42,44-46,48,49,51,54,55].

3. Cell Transplantation Therapy Using MNPs

Autologous cell transplantation has been widely used in the clinic for decades. Delivering therapeutic
genes to patients using their own cells avoids using immunosuppressive drugs. We reasoned, therefore,
that a non-viral gene delivery system using iron oxide-based MNPs could provide a powerful tool for
next-generation therapies. Gene delivery using MNPs has been successful for delivering nucleic acids
into living cells with high efficiency and low cytotoxicity [38,41,42,44-46,48,49,51,54,55]. Currently,
there are several methods for inducing cellular differentiation.

One of these methods, termed direct reprogramming, or direct conversion, has successfully yielded
induced cardiomyocytes, induced neurons, reprogrammed pancreatic f§ cells, and induced pluripotent
stem cells (iPSCs) [91-95]. Direct reprogramming represents a more straightforward strategy to treat
diseases involving loss of function by specific cell populations compared to approaches requiring an
intermediate embryonic stem cell. Thus, patient-derived differentiated cells by gene transfer are
suitable for autologous cell transplantation, potentially resulting in faster patient recoveries. The
scheme is classified into ex vivo gene therapy. The steps involved in this technique are as follows:
(1) Patient-derived cells (such as fibroblasts) are cultured in chemically defined media in vitro;
(2) These cells are transfected by MNPs, and differentiated into functional cells; (3) Differentiated
cells are isolated by fluorescence-activated cell sorting (FACS); (4) FACS-purified differentiated cells
are transplanted into the patient’s target tissue (Figure 2).

Here we briefly describe the magnetofection [96], and our latest study concerning non-viral gene
delivery using deacylated polyethylenimine coated MNPs.

Figure 2. Strategy for cell transplantation therapy. A patient’s cells are cultured in
chemically defined media. MNP-transfected cells by the introduced gene are isolated
by FACS. FACS-purified differentiated cells are transplanted into the patient.
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4. Gene Delivery Using MNPs and Magnetic Force

The mechanism of magnetofection is similar to using transfection reagents (Lipofectamine 2000,
FuGENE HD, and PEI). The only difference is that the plasmids form complexes with cationic
polymer-coated MNPs (called as “Magnetoplex™) [42,48,97-99] (Figure 3). Figure 3 shows the two
difference techniques. The behavior of magnetoplex is readily controlled by magnetic force. Upon
binding to the cell surface they are taken up by endocytosis [51,100,101]. Thus, the transfection

efficiency was increased.

Figure 3. Gene delivery systems using a transfection reagent (cationic polymer) and
MNPs: (A) Gene delivery system using transfection reagent. The polyplex moves randomly
in culture medium; (B) Magnetofection system. The magnetoplex only moves to the

cell surface.
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Many researchers have described magnetofection methods (Table 3). They modified the surface of
iron oxide-based MNPs to increase transfection efficiency and reduce cytotoxicity. To achieve this,
some investigators selected coating agents such as anionic surfactants (oleic acid, lauroyl
sarcosinate) [42,50,102], a non-ionic water-soluble surfactant (Pluronic F-127) [42], fluorinated
surfactant (lithium 3-[2-(perfluoroalkyl) ethylthio]propionate) [54], a polymer (polyethylene glycol,
poly-L-lysine, poly(propyleneimine) dendrimers) [40,103,104], carbohydrates (Chitosan, Heparan
sulfate) [41,47], silica particles (MCM48) [49], proteins (serum albumin, streptavidin) [40,55],
hydroxyapatite [105], phospholipids [49,50], a cationic cell penetrating peptide (TAT peptide) [43],
non-activated virus envelope (HVJ-E) [47], a transfection reagent (Lipofectamine 2000) [53], and viruses
(adenovirus, retrovirus) [44,54—-56]. These coating agents are often used in conjunction with PEI. PEl is a
well-known cationic gene carrier with high transfection efficiency. However, the high toxicity, depended
on its molecular weight, has limited its use as a potential gene carrier. Thus, the PEI was modified to
increase transfection efficiency, and decrease cytotoxicity [88,106]. To enhance transfection
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efficiency, most researchers used the PEL, or the modified PEI to coat the nanoparticle
surface [38,41,42,44-46,48,49,51,54,55,102,107]. PEI-coated MNPs are stable in water, bind nucleic
acids, and control MNP behavior by magnetic force. In addition, linear PEI possesses low cytotoxicity
compared with branched PEI in vivo and in vitro [108,109] The highest transfection efficiencies have
been achieved using 25,000 molecular weight linear PEI [89]. However, PEI cytotoxicity due to its acyl
groups has been described [88]. Therefore, our group focused on commercial deacylated PEI
(Polyethylenimine “Max” (PEI “Max”), Polysciences Inc.) as an MNP (y-Fe;Os, d = 70 nm, CIK
NanoTek) coating agent.

Deacylated polyethylenimine (linear, 25,000 molecular weight) is built from the same polymer
backbone as the popular linear polyethylenimine, and possesses high cationic reactivity. PEI
“Max”-coated MNPs (PEI max-MNPs) are stable in deionized water, and positively charged. Thus,
PEI max-MNPs electrostatically bind to plasmids. We attempted to introduce the green fluorescent
protein (GFP) gene into a mouse embryonic carcinoma cell line, P19CL6 using PEI max-MNPs, and
succeeded in establishing a highly efficient and low cytotoxic gene delivery system [107].
Furthermore, we applied this system to human fetal lung-derived fibroblasts (TIG-1 cells) using six-
well plates. Using MNPs, the transfected gene’s expression level increased 2- to 4-fold under optimum
conditions (Figure 4, unpublished data). Furthermore, to assess whether the multiple plasmids were
expressed in a single cell, we attempt to induce the expression of three fluorescent proteins GFP, cyan
fluorescent protein (CFP), and yellow fluorescent protein (YFP). Most cells expressed these three
proteins (Figure 5, unpublished data) indicating that gene delivery using MNPs could introduce and
allow expression of multiple genes in a single cell.

Figure 4. Optimum conditions for PEI max-MNPs magnetofection. To optimize
conditions, we varied volume (A) and time on the magnetic plate (B). These results were
evaluated by quantitative real-time RT-PCR. The relative expression level (GFP/GAPDH)
in the human fetal lung-derived fibroblasts (TIG-1 cells) treated with PEI max alone (A),
and in the absence of magnetic force (0 h) (B) was defined as 1. Optimal transfection
conditions were established when TIG-1 cells were treated with 0.8 ug PEI max-MNPs and
2.0 pg pCAG-GFP for 8 h on the magnetic plate in either a six-well plate or a 35 mm dish.
The asterisk (*) indicates a significant difference (P < 0.05).
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Table 3. Summary of magnetofection literature.
Author Year Vector Magnetic Nanoparticles Modifying Agent Targeting Cell, or Tissue TF Efficiency Cell Viability (% of Control) Reference
Kami D 2011 Plasmid ~ Iron ox1de (y—Fezog) PEI max (MW: 25 k) ’ P19CL6 * 82% IOQ% B - [107]
 Pickard MR . 2011 ‘Plasmid ?NeuroMag e “~J~1Neural'plrecuif$9r c:ell i ,’* 30% 70% . [39] :
. Adenovirus,
Hashimoto M 2011 L SPION PEI Streptoavidin Hel.a ** 4-fold - [55]
Biotin
Adenovirus,
o SPION PEI, Streptoavidin NIH3T3 *# 10-fold -
Biotin
Adenovirus,
o SPION PEI, Streptoavidin Mouse embryonic brain - -
Biswas S 2011 Plasmid  Tonoxide(Fe:0) . Aminooxy, Oxlme ether . MCGR7 e 1425fold | 89% - [110]
B Gonzélez 2011 Plasmid SPION ; Poly(propylenelmme) dendrlmers Saos-2 osteoblasts *12% ’75% - [104]
ZhangH 2010 Plasmid  SPION ~ Branch PEI (MW:25K) ~»'f":N,IT3T3, ‘ E64% 100%. B8]
G SIRNA U SPION. - _ Branch PEL(MW:25k) . NIT3T3 ET% 100% .
Song HP 2010 Plasmid PolyMag Tat peptide U251 * 60% 80% [43]
o Plasmid PolyMag ~ Tatpeptide ~ Rat spinal cord ** 2-fold - ; ’ -
CArsiantiM 2010 Plasmid  Tronoxide . BramchPEI(MW:25k)  BHK2I el 60-90% B
ShiY - 2010 ; Plasmid ’Magnetlte B Hyperbranch PEI (MW 10k) COS-7 ; ** 13-fold - ~[45]
“AngD 2010 Plasmid . Magnetite . Branch PEI(MW: 25k) - COS-T  refold 0% [46] ©
o . . Branch PEI (MW: 25 k),
Tresilwised N 2010 Adenovirus Iron oxide (Fe,0s, Fe;04) EPP85-181RDB ** 10-fold - [54]
’ ’ o ’ Zonyl FSA ﬂuorosurfactant 3 ’ ) . o
‘NamgungR 2010 Plasmid SPION 'PEG, Branch PEI(MW: 25k)  HUVEC #12fold 80% 48]
_ ) PEI (MW: 25 k), MCM438
Yiu HH 2010 Plasmid Iron oxide (Fe;Oq4) NCI-H292 ** 4-fold - [49]
; ; o ; (Silica particle) o .
HC Wu 2010 Plasmid  Magnetite  Hydroxyapatite ~ Rat marrow stromal cells £60-70% . 100% - [105]
Namiki Y 2009 Plasmid Magnetite Oleic acid, Phosphohpld HSC45 ** 8-fold - [50]
. Tissue sample from gastric
SiRNA Magnetite Oleic acid, Phospholipid - -
- . . . . » cancer . — .
Kim TS 2009 Plasmid  PolyMag . . Boar spermatozoa 4 521
Kievit FM 2009 Plasmid SPION PEI (MW: 25 k) Ccé6 * 90% 10% [41]
Plasmid SPION PEI (MW: 25 k), Chitosan C6 *45% 100%
Plasmid PolyMag - C6 *32% 66%
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Table 3. Cont.
Author Year Vector Magnetic Nanoparticles Modifying Agent Targeting Cell, or Tissue TF Efficiency Cell Viability (% of Control) Reference
LeeJH 2000 SIRNA ~ MnMEIO k Serum albumin, PEG-RGD - ‘kM'DA-MB‘-435-GFP C*30% S - [40]
Liz 2009 Plasmid Iron oxide ~ Poly-L-lysine ) ; Lung tissue | EEE60% - [103]
Yang SY 2008 Plasmid Iron oxide (Fe:05) Lipofectamine2000  He9 a5 : 53]
Plasmid ~ Iron oxide (Fe;Os)  DOTAPDOPE He99 - -
Oleic acid, Branch PEI (MW: 25 k),
Pan X 2008 Plasmid Magnetite ) KB ** 300-fold 92% [102]
Transferrm -
MykhaylykO 2007 Plasmid ~ Tron oxide (Fe;O5, Fe;0;) ~ Branch PEI (MW: 25K) o Cvao% - [42]
e Plasmid Tron oxide (Fe,05, Fe,0)  Pluronic F-127 o Ha ey .
Plasmid  Tron oxide (Fe,05, Fes0,)  Lauroyl sarcosinate oHM L .
o h L B PR (MWA25 L) L
Plasmid . Iron oxide (Fe;Os, Fe;Oy) : : # H441 - -
: : ; T EE : ‘Lauroyl sarcosinate E s i
Morishita N 2005 Plasmid Iron oxide (yFe,0s) HVI-E, protamine sulfate BHK-21 ** 4.fold - [47
Plasmid Iron oxids (y-Fe,05) - HVI-E, heparin sulfate Liyer, BALB/C mice (8 weeks age) #*3-fold -

Scherer F 2002 Plasmid  SPION - PEI(MW:800k) om0 o msfld . [44]
i ‘ Adenovirus "fk‘,~]SP‘IONU * PEI(MW:800k) ‘ KSe2 © #100-fold g o
Retroviris  SPION PEI (MW: 800K) N3 0% E
Mah C 2002 Adenovirus Avidinylated magnetite Biotunylated heparan sulfate C128 *75% - [56]
Adenovirus Avidinylated magnetite Biotunylated heparan sulfate Adult 129/Sv] mice - -

* indicates % of fluorescent positive cells analyzed by flow cytometric analysis.

## indicates analysis by luciferase activity assay compared with control. Transfection efficiency was indicated optimal transfection condition.

*#% indicates transfection without magnetic force.

PEI: Polyethylenimine; PEI max: Deacaylated PEI; MNP: Magnetic nanoparticle; SPION: Superparamagnetic iron oxide nanoparticle; MW: Molecular weight; TF: transfection; PolyMag: Commercial
Magnetofection reagent), NeuroMag (Commercial Magnetofection reagent), HVIJ-E: hemagglutinating virus of Japan-envelope; DOTAP: 1,2-dioleoyl- 3-trimethylammonium-propane;
DOPE: 1,2-dioleoyl-3-sn- phosphatidyl-ethanolamine; Tat peptide: cationic cell penetrating peptide; MeMEIO: Manganese-doped magnetism-engineered iron oxide; PEG: polyethylene glycol, Zonyl FSA

fluorosurfactant: Lithium 3-[2-(perfluoroalkyl)ethylthio]propionate).



Int. J. Mol. Sci. 2011, 12 3713

Figure 5. Transfection of TIG-1 cells with multiple genes using PEI max-MNPs. TIG-1
cells were simultaneously transfected with GFP, CFP, and YFP expression vector
plasmids. TIG-1 cells were treated with 0.8 pg of PEI max-MNPs and 0.7 pg each of
pCAG-GFP (GFP, provided by Dr. Nishino), pPhi-Yellow-N (YFP, Evrogen), and
pAmCyanl-C1 (CFP, Clonetech) for 8 h on the magnetic plate in a six-well plate or a 35
mm dish. White bar indicates 200 pm.

5. Conclusions

The great promise of gene therapy for treating devastating, incurable diseases has yet to be realized.
Less toxic and more efficient systems will be required, and robust research efforts in this regard are
currently underway. Rapid advances have been made in adapting nanoparticle technology for basic
biomedical and clinical research. Nanoparticles are already being used clinically to enhance MRI
imaging, and drug delivery for cancer patients. Our own research has focused on gene delivery
systems for autologous cell transplantation therapy, in which the patient’s own cells are transfected
with the gene required to correct their condition. In particular, our laboratory and those of others have
aimed to optimize magnetofection by developing better nanoparticle coating agents [38,40-51,53-55].
Nanoparticle size is another important parameter but there were few reports addressing this subject [111].
Since cells endocytose MNPs [51,100,101], MNP size has significant implications for transfection
efficiency. PEI-MNPs forms magnetoplex, which increased its influence on the magnetic force.
Furthermore, MNP size influences cytotoxicity [112], and more studies on this aspect of MNP
technology will be crucial for enhancing transfection efficiencies.

The two research groups reported the important developments in the field of magnetofection. The
first is the influence of the oscillating magnetic force on transfection [113,114]. The second is the use
of MNP-heating, and -transfection [15,16]. The purpose of these studies have increased the efficiency
of transfection, and/or induced a fever by oscillating MNPs for hyperthermia. The latter, a combination
of MNP-heating and -transfection, was expected to research the efficacy of both hyperthermia and
gene delivery. In the future, the studies of magnetofection using the oscillating MNPs could be
developed as a novel methodology.

We found that PEI is an excellent cationic polymer for dispersing MNPs and that its water
solubility, stability, and low toxicity contribute to enhancing transfection efficiency [95,115-119].
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Derivation of iPSCs with the use of non-viral gene delivery using PEI max MNPs should provide a

powerful tool for treating diseases such as Alzheimer’s, Huntington’s, and Parkinson’s by autologous

cell transplantation. Reprogramming cells requires the action of multiple transcription factors. Our

studies demonstrate that MNP-mediated transfection efficiently introduces at least three genes in a

single cell. This indicates the feasibility of our system for one-step reprogramming.
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