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FIGURE 1. (a) Overall appearance of SRBFS. SRBFS appears to have a “cotton woo!’-like formation. (b) SEM (original magni-
fication, x200) of SRBFS reveals a non-woven fabric appearance. Scale bar: 50 um. (c) SEM (original magnification, x1000) of
SRBFS showed that the polymer fiber was 500 ym-10 nm in diameter. Scale bar: 10 um. (d) FESEM image of BMSCs seeded on

SRBFS after 7 days. Scale bar: 15 gm.

10% FBS and 1% penicillin/streptomycin for 7 or
14 days in a humidified environment with 5% CO, at
37 °C before in vitro assays and cultured for 14 days
before in vivo assays, with the medium changed every
3 days. Osteogenic factors, such as dexamethasone and
BMP-2, were not added in the culture medium during
the culture period.

Scanning Electron Microscopic Study

BMSCs cultured on SRBFS for 7 days were washed
with PBS to remove non-adherent cells, fixed in 2.5%
glutaraldehyde, and then post-fixed in 4% osmium
tetroxide. The samples were dehydrated through a
series of graded alcohol solutions. After r-butyl-alco-
hol freeze-drying, cellular constructs were sputter-
coated with osmium and observed under field emission
scanning electron microscopy (FESEM) (S-800,
Hitachi, Tokyo, Japan) at 10 kV.

Measurement of Alkaline Phosphatase Activity

Seven and 14 days after seeding on BFS and SRBFS,
BMSCs were assayed for alkaline phosphatase (ALP)
activity. ALP activity was measured with a commercial
p-nitrophenyl phosphate tablet set (Sigma Chemical,

St. Louis, MO, USA) and a cell counting kit (WST-8:
Dojindo, Kumamoto, Japan). Cell numbers were ana-
lyzed according to the manufacturer’s protocol. Briefly,
100 uL of reagents was added to each well containing
1 mL of fresh medium with cell-scaffold constructs,
incubated for 3 h, and absorbance measured on a
spectrophotofluorometer (Bio-Rad Laboratories, Her-
cules, CA, USA). Cell numbers were determined from
the standard calibration curve by measuring the
absorbance. After WST-8 analysis, each well and
scaffolds were washed three times with PBS, and
800 mL of p-nitrophenyl phosphate solution was added
to each well. After 10 min of incubation at 37 °C, the
reaction was stopped with 800 mL of 3 N NaOH and
the absorbance of p-nitrophenol was measured. ALP
activities were normalized to the number of cells cal-
culated according to the WST-§ assay.

In Vitro Osteoclast Formation

Mouse osteoclasts were prepared from bone mar-
row cells as previously described.” Briefly, bone mar-
row cells were obtained by flushing the femurs and
tibiae of mice and cultured in --MEM containing 10%
FBS for 1 day. Non-adherent cells were harvested and
cultured in a-MEM (5 x 10" cells per well in a 24-well
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plate) with 10% FBS containing 10 ng/mL M-CSF
(R&D Systems, Inc., Minneapolis, MN, USA). Two
days later, adherent cells were used as bone mar-
row-derived monocyte/macrophage precursor cells
(BMMs) after washing out the non-adherent cells.
These cells were cultured with 100 ng/mL RANKL
(R&D Systems, Inc., Minneapolis, MN, USA) and
10 ng/mL M-CSF (R&D Systems), and co-cultured
with 5 mg of SRBFS or BFS. Indirect co-culture sys-
tems for BMMs and SRBFS or BFS were established
using a 24-well plate with 0.4-um pore, 10-um thick-
ness polyester membrane cell culture inserts (Corning,
NY, USA). BMMs were cultured on the plate well, and
SRBFS or BFS were then placed in the insert. After
5 days, cultured cells were fixed and stained for tar-
trate-resistance acid phosphatase (TRAP) (Wako Pure
Chemical Industries, Osaka, Japan). TRAP-positive
multinucleated cells with greater than three nuclei were
counted as osteoclasts.

Cell-Scaffold Construct Implantation

After the mice were anesthetized by diethyl ether
inhalation (Sigma-Aldrich, Tokyo, Japan), small inci-
sions were made on the bilateral dorsal skin. A cell-
seeded SRBFS was immediately implanted into the left
subcutaneous pocket on the murine back, a cell-seeded
BFS into the right, and the skin was then closed with
sutures.

Radiographic Analysis

Twelve weeks after transplantation, the samples
were assessed by X-ray (Gl meister]l FLUOREX,
Toshiba, Tokyo, Japan), and the conditions used were
40 kV and 200 mA for 0.640 s. Under these defined
conditions, exposures were carried out with an alumi-
num wedge that allowed the radiographic densities to
be computed later. The radiographic density of the
harvested transplant area was estimated as aluminum
thickness by measuring with image analysis software
(Image J, Scion Corporation, Frederick, MD, USA).

Histological Analysis of Ectopic Bone Formation
In Vivo

Six and 12 weeks after transplantation, the implants
were harvested for analysis, immediately fixed in
4% (w/v) paraformaldehyde and decalcified with a
commercially available decalcifying solution (K-CX,
Falma Corporation, Tokyo, Japan) for about 2 days
before embedding in paraffin. Three-micrometer serial
sections were cut and processed for routine histological
observation by staining with hematoxylin and eosin
(H-E) and for immunochemistry. The bone formation

area was measured using image analysis software
(Image J, Scion Corporation, Frederick, MD, USA),
and then expressed as the percentage of bone area in
the total cross-sectional area. Immunohistochemical
analysis was performed using bone sialoprotein (BSP)
polyclonal antibody (1:200) (LSL Co., Cosmo Bio,
Tokyo, Japan) as primary antibody. A biotinylated
secondary antibody (1:200) (rabbit anti-mouse IgG)
(Vector Laboratories, CA, USA) was applied, and an
avidin-biotin complex using Vectastain ABC kit
(Vector Laboratories). Finally, slides were reacted with
0.1% w/v 3,3’-diaminobenzidine tetrahydrochloride
solution and counterstained with hematoxylin solu-
tion. The BSP-positive cells were counted as follows.
At least 10 fields for each section were randomly cap-
tured (x200 magnification, 5 samples in total), and
then all cells and BSP depositing cells in the fields were
counted. The ratio of BSP-positive cells was calculated
as the percentage of BSP-positive cells in all cells.

Mineralization Analysis

Bone mineralization was analyzed by determining
the amount of deposited calcium using a method
reported previously.’* Twelve weeks after transplan-
tation, retrieved implant samples were rinsed with PBS
and homogenized with 0.6 N HCl, and calcium was
then extracted by shaking them for 4 h at 4 °C. The
lysate was then centrifuged at 1,000xg for 5 min, and
the supernatant was used to quantify calcium content
in samples by spectrophotometry using a Calcium
Colorimetric Assay Kit (BioVision, Mountain View,
CA, USA). Five minutes after the addition of reagents,
the absorbance of the samples was read at 575 nm
using a microplate reader (SmartSpeckTM3000, Bio-
Rad, Tokyo, Japan). Calcium content was calculated
from a standard curve generated from the serial dilu-
tion of a calcium standard solution (BioVision).

Statistical Analysis

Statistical significance was analyzed either by
one-way factorial analysis of variance (ANOVA) or
unpaired f test. A p value less than 0.05 was considered
statistically significant. Quantitative data were statis-
tically analyzed to express the mean £ the standard
deviation.

RESULTS

Morphology of BMSCs on SRBFS

The FESEM image of BMSCs cultured on SRBFS
for 7 days shows that the cells spread actively, rigidly
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FIGURE 2. Cumulative release of SRBFS in vitro. The curve
is intended to lead the eye. Values represent the mean =
standard deviation (n = 3).

adhered to the fibers, and ECM production by cells
was then observed (Fig. 1d).

In Vitro Simvastatin Release from SRBFS

The in vitro release pattern of simvastatin from
SRBFS is shown in Fig. 2. On day 1, approximately
5% of the simvastatin was released from SRBFS.
Thereafter, simvastatin release was slow and at a
constant rate until day 7. By day 14, about 35% of the
loaded simvastatin was released, and about 55% of it
from SRBFS by day 28.

Effect of Released Simvastatin on BMSC Osteogenic
Differentiation

To examine whether released simvastatin had an
effect on osteogenic differentiation of BMSCs, ALP
activity was measured in vitro on days 7 and 14
(Fig. 3). Although there was no significant difference
between the SRBFS and BFS groups on day 7, the
ALP activity of the SRBFS groups was significantly
higher than that of the BFS groups (p < 0.05) on
day 14.

Effect of Released Simvastatin on Inhibition
of Osteoclastogenesis

The effect of simvastatin released from SRBFS on
osteoclastogenesis was examined. Figures 4a and 4b
revealed that BMMs incubated with BFS differenti-
ated into many osteoclasts, whereas BMMs incubated
with SRBFS differentiated into only a few osteoclasts.
As shown in Fig. 4c, the total number of TRAP-
positive multinucleated osteoclasts in the SRBFS
group was significantly inhibited compared with the
BFS group.

200
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FIGURE 3. ALP activity of BMSCs on SRBFS and BFS mea-
sured on days 7 and 14. Values represent the mean = stan-
dard deviation (n = 5). Statistically significant difference is
labeled (*p<0.05).

Radiographic Analysis

Figure 5a shows X-ray photographs 12 weeks after
transplantation. Round-shaped radiopaque tissues
were found on both sides. Statistical analysis showed
that SRBFS radiodensity was significantly higher than
in the BFS group 12 weeks after transplantation
(Fig. 3b).

Histological and Immunohistochemical Analysis

Figures s5a—6d show H-E staining sections 6 and
12 weeks after transplantation. Six weeks after trans-
plantation, an extensive immature mineral formation
had been observed in both groups (Figs. 6a, 6b). At
12 weeks, mainly woven bone and focal trabecular
bone with a lamellar appearance were observed.
Numerous osteoblasts lining the woven bone and
mineral formation indicated active bone formation
(Figs. 6c, 6d). Immunohistochemical staining with
BSP was performed using the section harvested from
implants taken from mice (Figs. e, 6f). BSP was
positive in a wide range of intracellular and extracellular
tissue regardless of statin content. Newly formed bone
area and the ratio of BSP-positive cells in the SRBFS
groups were significantly higher than those in the BFS
groups 12 weeks after implantation (Figs. 7a, 7b).

Mineralization Analysis

To determine the mineralized matrix deposition in
the generated tissue, calcium deposition was measured.
Calcium deposition in the SRBFS group was higher
than in the BFS group (Fig. 7¢).
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FIGURE 4. Simvastatin released from SRBFS inhibits RANKL-induced osteoclastogenesis 5 days after stimulation. Cells were
cultured for 5 days with (a) SRBFS and (b) BFS after RANKL treatment and stained for TRAP expression. Scale bar: 500 um. (c) The
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FIGURE 5. (a) X-ray photograph of ectopically formed bone 12 weeks after transplantation. (b) Radiographic density in the
transplants 12 weeks after transplantation (n = 4). Values represent the mean =+ standard deviation. Statistically significant dif-

ference is labeled (*p <0.05).

DISCUSSION

Our current study is the first report to describe the
ectopic bone formation of mice using the complex of
statin-releasing biodegradable nano- to microscaled
fiber scaffolds and BMSCs, and our scaffold is appli-
cable for bone tissue engineering.

Our in vitro studies revealed that the effects of
simvastatin released from SRBFS on osteoblastogen-
esis and osteoclastogenesis were effective for osteo-
genesis. ALP activity of BMSCs seeded on the SRBFS
for 2 weeks was significantly elevated, and the number
of osteoclasts differentiated from precursor cells was
significantly decreased in the SRBFS. Thus, we dem-
onstrated that simvastatin released from SRBFS

promotes simultaneously osteoblastic differentiation of
BMSCs and inhibits osteoclastogenesis of BMMs.
However, in this study, the inhibition of osteoclasto-
genesis was demonstrated only in vitro, and further in
vivo assays are needed to evaluate in more detail the
effect of simvastatin on osteoclastogenesis.

In several previous studies, the simvastatin was
loaded in various materials for bone tissue engineering,
such as gelatin hydrogel,™ a-tricalcium phosphate,'’
methylcellulose gel,> collagen sponge,” and calcium
sulfate.”® Most of these studies reported positive effects
for bone regeneration. In this study, the statin-loaded
biodegradable fiber from the electrospinning procedure
was developed to release the simvastatin gradually over
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FIGURE 6. Histological and immunohistochemical analyses 6 and 12 weeks after implantation. (a—d) H-E staining, (a, b) at 6 and
(c, d) 12 weeks, while (e, f) show immunohistochemical staining with BSP at 12 weeks. (a, ¢, e): BFS (b, d, f): SRBFS. Scale bar:

50 ym.

time. The mechanism of sustained release of simva-
statin takes place through degradation of biodegrad-
able polymer by hydrolysis. The -electrospinning
procedure makes it possible to control the release of a
wide range of antibioti_cs5 and anticancer drugs® to
proteins™'® and DNA'® for application in tissue engi-
neering. However, this technique has a limitation in
that some organic solvents used to prepare the polymer
solutions may also degrade the drugs.’

To optimize this simvastatin-releasing system, we
determined the simvastatin content of SRBFS on the
basis of the simvastatin release test of SRBFS and
preliminary studies. BMSCs were cultured in various
concentrations (0.5-5.0 uM) of simvastatin, and cell
proliferation and ALP activity were then evaluated.

These preliminary studies suggested that the appro-
priate concentration of simvastatin was 0.5-1 uM in
in vitro culture with respect to cell proliferation
(cytotoxicity) and ALP activity (data not shown).
BMSCs could not proliferate in a medium containing
more than 2.5 uM of simvastatin. Though the apop-
totic effect of high-dose simvastatin has been reported
in several studies,”’ more than a certain concentration
of simvastatin is apparently needed for osteogenic
induction and osteoclastogenesis inhibition. However,
it is difficult to measure exactly a local simvastatin-
exposed dose to cells with such direct adhesion to fiber
as in this study. Besides the simvastatin content of the
biodegradable polymer, the dose of simvastatin released
from fibers is also dependent on the composition
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of the polymer (polyglycolic acid (PGA), polylac-
tic acid (PLA), polycaplolacton (PCL), and their
co-polymers), along with the rate of copolymerization,
and fiber diameter. These factors need to be taken into
consideration for optimization of drug release in the
future. If the local dose of statin released from the
scaffold can be regulated appropriately, this strategy
could not only minimize damage to cells at high con-
centrations, but also reduce the drug dosage needed,
and thereby be more effective, safe and inexpensive for
bone tissue engineering.

Histological examination 12 weeks after transplan-
tation revealed that the amount of new bone formation
in the SRBFS group was significantly higher than in
the BFS group. Twelve weeks after transplantation,
SRBFS alone without BMSCs did not induce bone
formation in the murine back (data not shown). These
data suggest that BMSCs could play an important role
in ectopic bone formation, and statin may promote the
osteogenic activity of BMSCs for bone formation. To
the best of our knowledge, successful ectopic bone
formation in vive using statin-releasing materials
without cell transplantation has not been reported in
detail. A previous study reported that statin-loaded

biodegradable fiber without seeding cells was applied
for healing a critical-size bone defect of an animal,*’
and suggested the necessity of cell-seeded scaffolds.
While statin alone was insufficient to induce ectopic
bone formation, in combination with preosteogenic
cells statin resulted in significant promotion of such
formation.

Analyses of radiodensity and calcium deposition
were performed to determine the mineralized matrix
deposition in scaffolds. Some studies reported that
local application of statin could increase bone mineral
density.'”*” Our results reveal that the SRBFS group
showed significantly higher mineralization, which
suggests that statin may play a pivotal role in miner-
alization during bone maturation. The osteogenic
phenotype of BMSCs seeded onto SRBFS was also
assessed by the immunodetection of a specific osteo-
blastic protein, BSP. High BSP expression confirms the
presence of mature osteoblasts.” These results suggest
that released simvastatin may also promote bone
maturation as well as osteogenic induction.

Our results demonstrate that the combination of
BMSCs and biodegradable fiber scaffolds releasing
simvastatin, which acts like an osteoinductive factor,
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may be an excellent strategy for bone tissue engineer-
ing applications. We here combined simvastatin-
releasing materials with cell transplantation to a bone
tissue engineering scaffold in an attempt to form new
ectopic bone. This “cotton wool”-like configuration
fiber scaffold can flexibly fit any shape of a local bone
defect site. Furthermore, the present result of ectopic
bone formation in vivo shows that this strategy has
potential for application to large bone defects under
severe conditions. Although its clinical utility for large
bone defects is limited by its relatively poor mechanical
properties, these can be improved by combination with
other materials.

In summary, our data suggest that sustained sim-
vastatin release from biodegradable nano-microfiber
scaffolds promotes osteogenic differentiation of
BMSCs and enhances new bone formation in vivo.
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Makoto Hirota®, Masayuki Tamari®, Norivuki Yamamoto®, Minoru Ueda® and Twai Tohnai"

Y Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine

¥ Department of Qral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine

Stemnary

Concurrent chemoradiotherapy using retrograde superselective intra-arterial infusion demonstrates good
local control and overall survival rates due to the advantage of simultaneous infusion of anticancer agent
with the synergistic effects of chemotherapy and radiotherapy. This study evaluated the therapeutic results,
overall survival and local control rates in patients with advanced oral cancer treated with definitive concurrent
chemoradiotherapy using retrograde superselective intra-arterial infusion.

A total of 688 patients with carcinoma of the head and neck were referred to our institution between January
2001 and December 2006, Amonyg them, 175 patients with carcinoma of the oral cavity underwent definitive
concurrent chemoradiotherapy using retrograde superselective infra-arterial infusion. Treatment consisted
of superselective intra-arterial infusions (docetaxel, total 60 mg/m® cisplatin, total 125-150 mg/m® and daily
concurrent radiotherapy {total 50-60 Gy) for 5-6 weeks. Four weeks after the completion of all treatments,
patients usnderwent biopsy of the primary lesion and radiclogical examinations. Complete response {(CR) of the
primary site was achieved in 160 {914%) of the 175 patients. Residoal disease at the primary site was seen in
15 patients (86%), and 14 patients {8.0%) showed local recurrence during follow-up. Five.vear survival and
fecal control rates were 71.6% and 82.2%, respectively.

Key words ! Advanced oral cancer, Retrograde superselective intra-arterial infusion, Chemoradiotherapy, Overall

survival rate, Local control rate
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