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Lacking a blood supply and having a low cellular density, articular cartilage has a minimal ability for self-
repair. Therefore, wide-ranging cartilage damage rarely resolves spontaneously. Cartilage damage is
typically treated by chondrocyte transplantation, mosaicplasty or microfracture. Recent advances in
tissue engineering have prompted research on techniques to repair articular cartilage damage using
a variety of transplanted cells. We studied the repair and regeneration of cartilage damage using layered

Iéeyvqords.'t ] . chondrocyte sheets prepared on a temperature-responsive culture dish. We previously reported
Ci‘;{lgfsc;:zue engineering achieving robust tissue repair when covering only the surface layer with layered chondrocyte sheets

when researching partial-thickness defects in the articular cartilage of domestic rabbits. The present
study was an experiment on the repair and regeneration of articular cartilage in a minipig model of full-
thickness defects. Good safranin-O staining and integration with surrounding tissues was achieved in
animals transplanted with layered chondrocyte sheets. However, tissue having poor safranin-O
staining—not noted in the domestic rabbit experiments—was identified in some of the animals, and
the subchondral bone was poorly repaired in these. Thus, although layered chondrocyte sheets facilitate
articular cartilage repair, further investigations into appropriate animal models and culture and trans-
plant conditions are required.
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1. Introduction

Articular cartilage is hyaline cartilage featuring an extracellular
matrix (ECM) consisting of an intricate collagen network and
protecglycans, and is highly resistant to mechanical loads.
However, lacking a blood supply and having a low cellular density,
articular cartilage has a minimal potential for self-repair. Therefore,
wide-ranging cartilage damage rarely resolves spontaneously. Left
untreated, cartilage damage in a load-bearing area causes
secondary degeneration of the surrounding cartilage and ulti-
mately exerts negative effects on routine activities. Numerous
treatments have been developed to repair articular cartilage
damage, typical examples being chondrocyte transplantation [1],
mosaicplasty {2], and microfracture [3]. These treatments have
produced satisfactory outcomes. However, the literature also
documents treatment failures [4—38].
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Autologous chondrocyte implantation (ACI), first reported by
Brittberg et al. [1], has been performed over 20,000 times world-
wide. However, two sites for the resection of cartilage and perios-
teum must be sacrificed to repair a single cartilaginous lesion. This
is the largest drawback of ACL. Other problems include periosteal
hyperplasia and incompatibility with surrounding tissues [3].
Problems associated with mosaicplasty include a limited number of
donors of healthy cartilage and the need for long-term monitoring
for damage at the harvest sites [2]. Microfracture induces cartilage
regeneration by promoting the migration of mesenchymal cells
from the marrow, but results in the production of fibrocartilage,
which is mechanically weaker than hyaline cartilage {9].

Previously, we prepared highly adhesive layered chondrocyte
sheets without a scaffold and with a short culture time using
a temperature-responsive culture dish (Fig. 1a, b). On trans-
plantation, these layered chondrocyte sheets suppressed degener-
ation in articular cartilage [10—12]. These temperature-responsive
culture dishes have already been applied to research in various
fields of regenerative medicine, including the regeneration of
myocardium {13,14], vascular epithelium [15], cornea ]16], hepa-
tocytes [ 171, and renal cells {18]. This method has also been applied
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Fig.1. (a) Layered chondrocyte sheet. Chondrocytes cultured on a temperature-responsive surface can be released from the dish (4.2 cm?) by reducing the temperature without the
need for proteolytic enzymes. Confluent cultured chondrocytes were harvested as a single contiguous cell sheet retaining cell—cell junctions, and extracellular matrix (ECM) was
deposited on the basal side. (b) Chondrocyte sheets can be layered and thereafter adhere to other cell sheets. Culture of five-layered chondrocyte sheets can be continued for up to 1

week (scale bar = 150 um).

clinically to the myocardium and cornea [16]. The surface of
a temperature-responsive culture dish is coated with a polymer
(poly(N-isopropylacrylamide)), which becomes hydrophilic or
hydrophobic in a reversible manner, depending on the temperature
[19]. The polymer has a low critical solution temperature of 32 °C,
below which it becomes soluble in water. Based on this character-
istic, the temperature-responsive culture dish has a weakly
hydrophobic surface, similar to that of commercially available
dishes, so it can be used to culture cells in a conventional manner
when the temperature is 37 °C or higher. However, the surface of
the dish becomes hydrophilic when the temperature falls below the
critical solution temperature. Therefore, confluent sheets of
cultured cells can be released spontaneously from the hydrophilic
dish surface by reducing the temperature to below 32 °C[28]. Using
this method, cultured cells can be harvested as a sheet without
damaging cell—cell junctions and the ECM because it eliminates the
need for conventional enzymatic harvesting with trypsin. Such cell
sheets have been reported to have various advantages, including

- preservation of the normal phenotype and expression of adhesion
proteins on the sheet base [21]. Furthermore, these cell sheets can
also be superimposed to prepare layered ‘tissue’ because the ECM is
preserved on the base, and such three-dimensional (3D) manu-
factured tissue has already been used successfully in trans-
plantation [14]. We confirmed previously that such layered
chondrocyte sheets are able to maintain a normal chondrocyte
phenotype in the knee joints of rabbits. Moreover, they can be
attached to injured cartilage, thereby acting as a barrier to prevent
the loss of proteoglycan from these sites, while also protecting
them from catabolic factors [10].

The objective of this study was to investigate the ability of
layered chondrocyte sheets to repair and regenerate tissue in
a minipig-based large animal model of full-thickness defects of
articular cartilage.

2. Materials and methods

All animal experiments were approved and carried out following the Guidelines
of Tokai University on Animal Use.
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2.1. Temperature-responsive culture dishes

Specific procedures for the preparation of temperature-responsive culture
dishes (provided by CeliSeed, Tokyo, Japan) were as described [19]. Briefly, N-iso-
propylacrylamide (IPAAm) monomer solution was spread onto commercial tissue
culture polystyrene dishes. These dishes were then subjected to electron beam
irradiation, thus resulting in polymerization and covalent bonding of IPAAm to the
dish surface. Poly-IPAAm (PIPAAm)-grafted dishes were rinsed with cold distilled
water to remove ungrafted IPAAm. The dishes were then sterilized using ethylene
oxide gas [22].

2.2. Chendrocytes from minipigs and proliferation on a temperature-responsive
surface

Five minipigs aged 7—8 months and weighing 21.3—21.5 kg were used as the
source of chondrocytes. Cartilage samples were collected from the femoral
compartment of the knee joint and subjected to enzymatic processing; they were
then seeded and cultured according to the method of Sato et al. [23]. Briefly,
chondrocytes were digested for 1 h in Dulbecco’s modified Eagle’s medium/F12
(DMEM/F12; Gibco, Grand Island, NY, USA) containing 0.4% Pronase E (Kaken
Seiyaku Inc., Tokyo, Japan) and for 4 h further in DMEM/F12 containing 5 mg/ml
collagenase type 1/CLS1 (Worthington Inc., Lakewood, NJ, USA) at 37 °C in an
atmosphere of 5% CO, and 95% air. Digested tissue was passed through a Falcon
cell strainer (BD Biosciences, Franklin Lakes, NJ, USA) with a pore size of 100 wm.
Cells were then seeded at high density (50,000 cells/cm?) into temperature-
responsive dishes (4.2 cm?; provided by CeliSeed, Tokyo, Japan) and were
cultared in DMEM/F12 supplemented with 20% fetal bovine serum (FBS; Gibco),
50 pg/ml ascorbic acid (Wakojunyakukougyou Corp., Osaka, Japan) and 1%
antibiotic—antimycotic mix (Gibco) at 37 °C in an atmosphere of 5% CO; and 95%
air for a week. Culture dishes were removed from the incubator when the cells
reached confluence and were left to stand at 25 °C for 30 min. After the culture
medium had been removed, cell sheets were harvested as described by Kaneshiro

et al. [10].

2.3. Measurement of chondrocyte proliferative activity

Chondrocytes isolated and cultured as above (3.0 x 10* cells) were cultured on
24-well plates and cell proliferation activity was measured using a thiazolyl blue
tetrazolium bromide (MTT) assay on days 3, 5 and 7. MTT (Dojindo, Kumamoto,
Japan) was added to each well of the 24-well plate and incubated for 2 h at 37 °Cin
the dark. The resulting crystals were solubilized in dimethyl sulfoxide. Absorbance
was read using an enzyme-linked immunosorbent assay (ELISA) plate reader at
590 nm, with absorbance as a function of viable cell number. Data are expressed as
the mean = standard error of the mean.
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Table 1
Variables used in the International Cartilage Repair Society (ICRS) grading system
and the ICRS remodeling system for evaluating subchondral bone maintenance.

Variable Comment

Ti: Tissue morphology
4 = Mostly hyaline cartilage
3 = Mostly fibrocartilage
2 = Mostly noncartilage
1 = Exclusively noncartilage
Matrix staining
1 = None
2 == Slight
3 = Moderate
4 = Strong
Stru: Structural integrity
1 = Severe integration
2 = Cysts or disruptions
3 = No organization of chondrocytes
4 = Beginning of columnar organization
of chondrocytes
5 = Normal, similar to healthy mature cartilage
Clus: Chondrocytes clustering in implant
1 = 25-100% of cells clustered
2 = «25% of the cells clustered
3 = No clusters
Tide: Intactness of calcified cartilage layer,
formation of tidemark
1 = <25% of the calcified cartilage layer intact
2 = 25-49% of the calcified cartilage layer intact
3 = 50-75% of the calcified cartilage layer intact
4 = 76-90% of the calcified cartilage layer intact
5 = Complete intactness of the calcified
cartilage layer intact

Matx:

Bform: Subchondral bone formation
1 = No formation
2 == Slight
3 = Strong
SurfH: Histologic appraisal of surface architecture
1 = Severe fibrillation or disruption
2 = Moderate fibrillation or irregularity
3 = Slight fibrillation or irregularity
4 = Normal
FilH: Histologic appraisal defect filling
= <25%
2 = 26—50%
3 =51-75%
4 = 76—90%
5=91-100%
Latl: Lateral integration of implanted material
1 = Not bonded
2 = Bonded at one end/partially both ends
3 = Bonded at both sides
Bask: Basal integration of implanted material
1= <50%
2 = 50—70%
3 = 70-90%
4 = 91-100%
InfH: Inflammation
1 = No inflammation
3 = Slight inflammation
5 = Strong inflammation
Hgtot Histologic grading
Some of the histologic variables: tissue morphology
(Ti), matrix staining (Matx), structural integrity (Stru),
cluster formation (Clus), tidemark opening (Tide),
bone formation (Bform), histologic surface architecture
(SurfH), histologic degree of defect filling (FilH), lateral
integration of defect filling tissue (Latl), basal integration
of defect filling tissue (Basl) and histologic signs
of inflammation
Remod: Subchondral bone remodeling (loose textures of

highly cellular tissue composed mostly of fibroblasts)
1 = No remodeling

2 = Discrete cellularity

3 = Moderate cellularity

4 = High cellularity

Presentation of the ICRS histological grading system (Hgtot) and remodeling scores
(Remod) based on a modified ICRS grading scale [30] developed by O'Driscoll et al. [31]
In Hgtot, 11 histologic categories were evaluated and scored. The total score ranged
from 11 points (no repair) to 45 points (normal articular cartilage).

2.4. Transplantation of chondrocyte sheets

Before the surgery of implantation, 0.2 mg/kg dormicum (Midazolam 5 mg/1 ml,
Astellas Pharma, Tokyo, Japan) and 40 pg/kg medetomidine (Domitor 1 mg/ml, Meiji
Seika Pharma Co., Ltd, Tokyo, Japan) were given intramuscularly. Inhalation anes-
thesia was used during the operation with a combination of isoflurane, dinitrogen
monoxide, and oxygen. A chondral defect measuring 6 mm in diameter and 5 mm
deep was made in the area of the host animal's medial fernoral condyle using
a biopsy punch and the damaged cartilage was covered with a three-layered
chondrocyte sheet, which was stabilized with a nylon suture until initial fixation
was achieved. This was performed in the left knees of 12 minipigs (aged 7—8 months
and weighing 21.5—25.0 kg) in the transplantation group. At the same time, the
articular cartilage of the medial femoral condyle was holed similarly in the right
knees of 12 minipigs in the control group, but not covered with a cell sheet. Cartilage
was harvested after 3 weeks, fixed in 4% paraformaldehyde (PFA) for 1 week and
decalcified with K-CX decalcifying solution (Fujisawa Pharmaceutical Co. Ltd., Osaka,
Japan) for 1 week. Specimens were then embedded in paraffin wax, sectioned and
stained with safranin-O for evaluation. Histological scoring of these sections was
carried out by two observers, using the International Cartilage Repair Society (ICRS)
grading system and the ICRS remodeling system to evaluate subchondral bone
maintenance (Table 1).

2.5. Statistical analysis

The Mann—Whitney nonparametric U test was used to analyze histological
scores in assessing the efficacy of treatment. P < 0.05 was considered to indicate
statistical significance.

3. Results
3.1. Chondrocyte sheets

Multilayered chondrocyte sheets were prepared by super-
imposing sheets and then culturing them together. It was thus
possible to continue culturing three-layered sheets. As shown in
Fig. 1, the layered articular chondrocyte sheets cultured for 3 weeks
maintained their original shape without shrinking when the pol-
yvinylidene difluoride (PVDF) membrane was removed. As a result,
it was possible to create round grafts that demonstrated a chon-
drocytic phenotype.

3.2, Measurement of chondrocyte proliferation activity

Cell proliferation activities examined by MTT assay on days 3, 5
and 7 are illustrated in Fig. 2. Proliferation increased gradually until
day 7; the numbers of chondrocytes increased by approximately
2.4-fold by day 5 and by approximately 6-fold by day 7.

3.3. Gross findings in the repaired cartilage

No distinct evidence of infection, articular damage at unin-
volved sites, or synovial proliferation was observed in the trans-
plantation or control groups. All defects were filled with white
cartilaginous tissue, but defect filling in the control group was
insufficient. The surface layer in the transplantation group had
been replaced with smooth cartilaginous tissue of a color resem-
bling that of healthy cartilage, but the surface layer in the control
group had been replaced with coarse cartilaginous tissue, while the
subchondral bone was exposed in some locations (Fig. 3a—d).

34. Histological findings of repaired cartilage

Good safranin-O staining and integration with surrounding
tissue was noted in the transplantation group, which achieved
sufficient cartilaginous repair and regeneration. All animals in the
control group exhibited poor safranin-O staining, and tissue repair
and regeneration were insufficient (Fig. 4a, b). ICRS scores were
compared between the two groups. The mean score in the trans-
plantation group was significantly higher than in the control group
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Fig. 2. Cell proliferation activity was examined by MITT assay. Celi proliferation
increased steadily until day 7; the numbers of chondrocytes had increased approxi-
mately 2.4-fold by day 5 and approximately 6-fold by day 7.

(38.3 points versus 26.3 points, respectively, p < 0.05). Mean
remodeling scores, an indication of subchondral bone condition,
were significantly higher in the transplantation group (3.2 points)
than in the control group (2.4 points; Fig. 5a, b). The ICRS scores in
the transplantation and control groups are shown in Table 2.

In three of the 12 animals, a more detailed histological exami-
nation in the transplantation group revealed that, although
tissue filling was present, safranin-O staining was poor and the
subchondral bone in these animals was poorly repaired and
regenerated (Fig. 4d). A comparison of ICRS scores indicated that
subchondral bone repair was satisfactory (remodeling score 4
points) in the animals in the transplantation group that achieved

adequate cartilage repair (histological score 42 points). However,
subchondral bone repair was poor (remodeling score 2 points) in
animals in the transplantation group with insufficient cartilage
repair (histological score 29 points). These findings indicate that
the degree of subchondral bone repair reflected that of cartilagi-
nous tissue repair.

4. Discussion

Unless treated, full-thickness defects in knee cartilage cause
secondary osteoarthritis and the resulting pain and poor joint
function impact substantially on the activities of daily life. Recent
advances in tissue engineering have prompted research on tech-
niques to repair articular cartilage damage using a variety of
transplanted cells. ACI was the first such technique investigated
and is already used clinically in Western countries. However, the
technique carries problems such as the potential for leakage of
chondrocytes (implanted in suspension) outside the trans-
plantation site, nonuniform distribution of transplanted cells [24]
and damage to donor site tissues. Some have claimed that clinical
outcomes are not superior to microfracture [25]. More effective
treatments must therefore be developed. Ochi et al. [5], hypothe-
sizing that the transplantation of 3D cartilaginous tissues
composed of chondrocytes and matrix would yield better outcomes
than chondrocyte transplantation, developed and clinically applied
the transplantation of cultured chondrocytes embedded in atelo-
collagen gel. Furthermore, realizing the potential for bone marrow
mesenchymal cells to differentiate, Wakitani et al. {26] developed
and applied the transplantation of bone marrow mesenchymal cells
embedded in collagen gel clinically. However, both types of implant
were composites made of periosteum, a scaffold, bone marrow
cells, cultured chondrocytes and numerous other elements and
were thus unsuitable for creating an optimal environment for
articular cartilage regeneration.

Fig. 3. Gross appearance (3, b, ¢, d) in the group receiving layered chondrocyte sheets (a, b) and the control group (c, d). Gross appearance is shown at transplantation (a, ¢) and 3
months later (b, d). The defect in the transplantation group (b) was filled with cartilaginous tissue, but filling in the defect of the control group (d) was insufficient and the
subchondral bone was exposed partially. The defect of 6 mm in diameter and 5 mm deep was made, and outside circle of the defect is 8 mm in diameter, and is used for suturing

chondrocyte sheet.
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Convinced that establishing an environment suited to tissue
repair is essential for proper articular cartilage regeneration, we
began basic research on repair and regeneration using only cells
from bone marrow and cultured chondrocytes, without a scaffold
or periosteum. Analysis of our layered chondrocyte sheets has
shown that the chondrocytes maintain their phenotype, expressing
aggrecan, collagen type II (COL2), SOX9 and COL27. The cells also
express the adhesion molecules integrin 10 and fibronectin. Im-
munostaining confirmed the presence of COL2, integrin 10 and
fibronectin in the cellular sheets [12,27]. Our findings indicate that
these layered chondrocyte sheets demonstrate good adhesiveness
and barrier functionality while maintaining a normal phenotype.

We also reported achieving robust tissue repair when covering
only the surface layer with a layered chondrocyte sheet in research
on partial-thickness defects in-the articular cartilage of domestic
rabbits [10]. This suggests that liquid factors from the layered
sheets, in addition to the 'basic functionality of the sheets,
contribute to repair. '

. G Ebihara et al. / Biomaterials 33 (2012) 38463851

) and control groups (b). Safranin-O staining was robust and integration with the surrounding tissue was good in the transplantation
> odr safranin-O staining and did not achieve satisfactory regeneration or repair. In (c), safranin=0 staining was robust and subchondral
(International Cartilage Repair Society, ICRS histological grading system 42 points; remodeling score 4 points). Although the defect in (d)
ing was pOoi’ and the subchondral bone was insufficiently repaired (ICRS histological grading system 29 points; remodeling score 2

In this study using chondrocytes from minipigs, which are
large animals, we found that cultured chondrocytes had a high
cell proliferation potential and that—as shown in previous
studies—layered chondrocyte sheets created from these chon-
drocytes also contributed to the repair and regeneration of articular
cartilage in this model of full-thickness defects. However, tissue
having poor safranin-O staining, which was not noted in our
domestic rabbit experiments, was identified in some of the animals
(3/12) and the subchondral bone was poorly repaired in these
animals. Vasara et al. [28] transplanted chondrocytes into a goat
model of full-thickness defects. In animals with poor subchondral
bone repair, the transplanted cells showed poor safranin-O staining,
and integration with the surrounding tissue was insufficient.
Muehleman et al. [29] transplanted chondrocytes into a minipig
model of full-thickness defects and compared a group treated with
risedronate to an untreated group using histology. Safranin-O
staining of the transplanted cells was superior in the treated
group and integration with the surrounding tissues was satisfactory,
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Fig. 5. ICRS histological grading system scores (a) and remodeling scores (b) in the transplantation and control groups. The mean histological score (a) in the transplantation group
(38.3 points) was significantly higher than in the control group (26.3 points). Mean remodeling scores (b), an indication of subchondral bone condition, were significantly higher in
the transplantation group than in the control group (3.2 points and 2.4 points, respectively).
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Table 2
Results of ICRS histological grading system (Hgtot) and remodeling scores (Remod).
Case Weight Age Transplantation Control
(ke) (month) Hgtot Remod Hgtot Remod
(Points) (Points)
1 216 7 42 4 28 3
2 235 7 40 4 22 2
3 242 7 40 4 28 3
4 229 7 42 4 30 3
5 241 8 41 4 26 2
6 240 8 40 3 31 3
7 23.0 8 39 3 24 2
8 25.0 8 39 3 24 2
9 24.0 8 39 3 24 2
10 23.0 8 33 2 33 3
11 238 8 29 2 23 2
12 215 8 35 2 22 2
Average 234 7.7 383 32 26.2 24

These findings indicate that the points awarded in the ICRS histological grading
system reflected the remodeling scores.

but greater than expected bone resorption occurred in this large
animal model. Similarly, animals with poor subchondral bone repair
in the transplantation group in the present study exhibited poor
safranin-O staining in the regeneration tissue and insufficient
integration with surrounding tissue. Risedronate administration
and other measures to suppress bone resorption might thus be
necessary in large animals used in future research to determine
optimal transplantation conditions.

5. Conclusion

The use of layered chondrocyte sheets facilitated the repair and
regeneration of tissue in a minipig model of full-thickness carti-
laginous defects in the knee joints. Good safranin-O staining and
integration with surrounding tissue was noted in the trans-
plantation group, which achieved sufficient cartilaginous repair
and regeneration. Some animals in the group receiving the layered
chondrocyte sheets exhibited poor safranin-O staining of the
repaired and regenerated tissue in the subchondral bone. Trans-
plantation conditions and other factors must therefore be further
investigated.
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