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Fig. 4. Rates of increased alveolar bone heights. Placebo
(group A) and recombinant human basic fibroblast growth
factor at 0.03% (group B), 0.1% (group C) and 0.3% (group
D) were applied to root surfaces associated with infrabony
defects. Standardized radiographs were compared pre- and
post-treatment (9 months) and the increased bone heights
were assessed by five individual oral radiologists for in-
creased alveolar bone heights. No statistical differences
were noted with the exception of group D (*P = 0.02).

Application of tissue engineering
principles: implant site preparation

A second area of focus is applying tissue engineering
principles for implant site preparation. Whereas the
challenge for periodontal regeneration is the simul-
taneous regeneration of the three tissues to recon-
struct the periodontal apparatus, the challenge for
implant site preparation is to regenerate adequate
volume of hard and possibly soft tissue. Though
much of the focus in this field has centered on the
use of recombinant human bone morphogenetic
protein, some preliminary data are available which

suggest that recombinant human platelet-derived
growth factor-BB may be used for this purpose.

The use of recombinant human platelet-
derived growth factor for implant site
preparation

Preliminary data are now available which suggest
that recombinant human platelet-derived growth
factor-BB may be used for implant site preparation.
In a standardized dog model, recombinant human
platelet-derived growth factor was used in conjunc-
tion with an anorganic bone block for vertical ridge
augmentation (149). Surgically created defects were
grafted with block grafts infused with recombinant
human platelet-derived growth factor with and
without collagen membrane. Better healing and an
increased amount of regenerated bone were observed
in sites grafted with recombinant human platelet-
derived growth factor-infused block in the absence of
a barrier membrane. When these blocks were ana-
lyzed utilizing backscattered electron microscopy,
the percentage of weight and volume calcium:phos-
phorus ratios of the regenerated and native bone
were found to be similar (125). This suggests that the
regenerated bone would have a similar bone-implant
interface compared with native bone.

Recently, recombinant human platelet-derived
growth factor-BB [from a GEM-21® kit (Osteohealth,
Shirley, NY)] was used in conjunction with freeze-
dried bone allograft and a barrier membrane to aug-
ment both hard and soft tissues simultaneously in
preparation for implant placement (29). Following

Fig. 5. (A) Tooth #20 presented with a clinical attachment
loss of 10 mm and a pocket depth of 5 mm. The defect was
treated with 0.3% recombinant human fibroblast growth
factor. (B) After 9 months post-surgically, the clinical
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attachment loss was 7 mm and pocket depth was 2 mm
(photographs courtesy of Dr Matsuyama, Kagoshima
University, Kagoshima, Japan).
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Fig. 6. The extraction defect for tooth #9 was treated with
recombinant human platelet-derived growth factor-
freeze-dried bone allograft and a titanium-reinforced
membrane (A). On re-entry, the defect was filled with

extraction, the bony defect was filled with
recombinant human platelet-derived growth factor-
freeze-dried bone allograft and covered with expanded
polytetrafluoroethylene membrane (Fig. 6A,B). The
soft-tissue deficiency was grafted with a pediculated
graft from the palate and the soft tissue site was
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bone (B). Histologic analysis (C, D) showed the new bone
formation. FDBA, freeze-dried bone allograft; LB, linear
bone formation; WB, woven bone.

irrigated with recombinant human platelet-derived
growth factor prior to closure. After healing, the
amount of both bone and soft tissue volume in-
creased. At the time of implant placement, the site
was trephined for histological analysis, which
revealed the presence of bone regeneration. The
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microscopic field contained approximately 48% wo-
ven bone and 19% mineralizing osteoid (Fig. 6C,D).
This report emphasizes the potential of the use of
recombinant human platelet-derived growth factor
for simultaneous soft and hard tissue implant site
preparation.

The use of bone morphogenetic protein
for implant site preparation

Recent attention has focused on recombinant human
bone morphogenetic protein-2 as a replacement for
autogenous bone grafts because it reliably induces
bone formation and large quantities can be produced
using recombinant DNA technology (167). Using var-
ious animal species, including nonhuman primates,
recombinant human bone morphogenetic protein-2
absorbed into bovine type-1 collagen sponges con-
sistently induced bone at graft sites (16, 38, 107, 160,
171). The recombinant human bone morphogenetic
protein-2-soaked collagen sponges reliably induced
bone formation in critical sized defects, whereas the
defects repaired with sponges without recombinant
human bone morphogenetic protein-2 did not fill with
bone. Continuity defects and deficient alveolar ridges
and maxillary sinuses were successfully reconstructed
with recombinant human bone morphogenetic
protein-2 (16, 107). Much higher concentrations of
recombinant human bone morphogenetic protein-2
were needed to induce bone formation in nonhuman
primates than in rodents and rabbits.

Human clinical trials were initiated following the
promising results in animals. A feasibility study using
an open-label clinical trial demonstrated that re-
combinant human bone morphogenetic protein-2
soaked into a collagen sponge and placed on the
maxillary sinus floor stimulated bone formation (18).
A randomized prospective muticenter clinical trial
(17) was initiated following the open-label study.
Implant survival in the maxillary sinuses augmented
with recombinant human bone morphogenetic pro-
tein-2 absorbed into collagen sponges was similar to
survival of implants placed in sinuses augmented
with autografts. A dose-response performed as part
of the study showed that the greatest bone induction
occurred when 1.5 mg/ml of recombinant human
bone morphogenetic protein-2 was used.

Biopsies of the bone induced by the recombinant
human bone morphogenetic protein-2 were taken
after approximately 7 months of healing. Histological
examination revealed that the recombinant human
bone morphogenetic protein-2 induced new bone
formation. The collagen sponges were no longer

142

100

present and woven, and lamellar bone filled the
grafted sinus floors. The study demonstrated that
recombinant human bone morphogenetic protein-2
could induce adequate bone for the placement and
functional loading of endosseous implants.

The efficacy of bone morphogenetic protein-2 to
augment deficient alveolar ridges has also been
evaluated. A preliminary feasibility and safety study
demonstrated that recombinant human bone mor-
phogenetic protein-2 on a collagen sponge was safe
and might be useful for alveolar ridge augmentation
and preservation of bone following tooth extraction
(68). The preliminary study was followed by a
randomized prospective clinical trial that recruited
patients requiring alveolar ridge augmentation
following tooth extraction (31). The recombinant
human bone morphogenetic protein-2 on the collagen
sponge induced more alveolar bone than the collagen
sponge alone.

Based on the animal studies and the human clinical
trials, the Food and Drug Administration approved
recombinant human bone morphogenetic protein-2
(INFUSE®) for use ‘as an alternative to autogenous
bone graft for sinus augmentations, and for localized
alveolar ridge defects associated with extraction
sockets’ in March 2007 (1). However, the cost of
treatment with recombinant human bone morpho-
genetic protein-2 is high, and less-expensive aug-
mentation materials may be equally as effective as
recombinant human bone morphogenetic protein-2
for the augmentation of the maxillary sinuses and
ridge preservation following the extraction of teeth (2).

A systematic review of the evidence established
predictable augmentation, by alloplasts, allografts,
combinations of allografts and alloplasts, and barrier
membranes, of maxillary sinus and alveolar ridges
for implants (2). Similarly to the biopsies of the sites
augmented with recombinant human bone mor-
phogenetic protein-2, biopsies taken from maxillary
sinuses augmented with alloplasts/allografts and
combinations of materials consistently demonstrated
bone induction (132, 136). Figure 7 shows a biopsy
taken 6 months after augmentation of a maxillary
sinus with freeze-dried cancellous bone allograft
(Northwest Tissue Bank, Seattle, WA) combined with
hydroxyapatite (Interpore®; Interpore Cross Interna-
tional, Irvine, CA); new bone formation adjacent to
the hydroxyapatite and cancellous particles is evi-
dent.

Further studies comparing recombinant human
bone morphogenetic protein-2 with alloplasts and
allographs and combinations of materials are needed
to determine if less-expensive materials are equally



Biologic mediators and tissue engineering in dentistry

Fig. 7. (A) A low-powered photomicrograph of a hematoxylin and eosin-stained decalcified biopsy taken 6 months after
grafting the sinus floor with hydroxyapatite combined with freeze-dried cancellous bone chips. (B) A higher magnification
of the same biopsy. New bone (Bone) can be seen adjacent to the hydroxyapatite / cancellous chip. HA, hydroxyapatite.

as effective as recombinant human bone morphoge-
netic protein-2 before routinely using recombinant
human bone morphogenetic protein-2 to augment
sites with inadequate bone for the placement of
endosseous implants.

Application of tissue—engiheering
principles: maxillofacial surgical
procedures

Tissue regeneration for maxillofacial congenital and
acquired defects involves several elements. Cells,
scaffolds and growth factors are needed to regenerate
a functional replacement for the missing tissue (20,
80). The ideal combination of elements is the current
focus of research related to maxillofacial tissue
engineering. This discussion will focus on recon-
struction of bone defects.

Continuity defects of the mandible frequently
develop following trauma or removal of tumors.
Large defects are usually repaired using autogenous
bone harvested from the iliac crest (80). The auto-
genous graft is considered the ‘gold standard’
because it contains three essential elements that are
needed to regenerate bone: osteoblasts and osteo-
progenitor cells; osteoinductive proteins; and a scaf-
fold of organic and inorganic extracelluar matrix.
Tissue-engineered replacements ideally should con-
tain the three elements present in the autogenous
bone graft (20, 78). Synthetic scaffolds that replace
the structural integrity of the missing bone can be
fabricated from several different materials. However,
the scaffold must be resorbed and replaced with
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normal bone because the synthetic scaffold will
eventually fatigue and fracture from long-term load-
ing. The scaffolds should be porous to allow adher-
ence of cells and osteogenic proteins as well as
vascular invasion into the matrix. Allografts have
been used as scaffolds; however, they are not ideal
because they have the potential to be immunogenic
and to transfer infection (20, 78). The ideal synthetic
scaffold should not be immunogenic or have the
potential to transfer/support infection. Hollister
et al. (64) described an approach to engineer a
craniofacial scaffold that used computational design,
scaffold fabrication, scaffold structural and mechan-
ical evaluation, and in vivo tissue-regeneration tests
to develop scaffolds that meet anatomical, load-
bearing and tissue-regeneration requirements.

Cells capable of replacing missing tissue are an
essential component of engineered tissue replace-
ments. Osteoblasts and mesenchymal stem cells that
can differentiate into bone-forming cells are found in
bone, bone marrow and periosteum (33, 76, 175).
Unlike osteoclasts, which are derived from circulating
cells, the osteoprogenitor cells must be present at the
graft site or be part of the tissue-engineered graft.
Bone marrow aspirate contains adult mesenchymal
stem cells that can be induced to transform into os-
teoblasts and to replace bone (20, 85). Mesenchymal
stem cells can be harvested from bone marrow or
periosteium and expanded in culture using specific
growth media. Stem cells have also been isolated and
cultured from dental pulp (85). Large bone defects
that no longer have their associated periosteum have
few cells capable of transforming into osteoblasts and
frequently cannot be repaired without including
osteogenic cells in the graft.
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Fig. 8. Correction ~of a mandibular defect with
recombinant human bone morphogenetic protein.. (A)
Panoramic radiograph of the continuity defect of the right
mandible following resection of the patient’s infected
bone. (B) The six sponges contain a total of 12 mg of
recombinant human bone morphogenetic protein. The
cup contains cortical cancellous bone chips mixed with
bone marrow aspirate from the iliac crest. (C) The defect is
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exposed with a single collagen sponge placed at the
medial aspect of the mandible. The wrapped bone
chip / cell mix sponges were placed between the plate and
the collagen sponge. (D) Panoramic radiograph of the
repair after 8 months. The radiograph is suggestive of
bone bridging the defect. (E) Re-entry for the removal of
the reconstruction plate indicates bone regeneration in
the defect.
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Growth factors and morphogens are needed to
stimulate cell differentiation and regeneration of tis-
sue (20, 78). Many signaling factors contribute to
tissue regeneration. Further studies are needed to
determine which factors are essential to regenerate a
defect rapidly. These factors do not appear at the
same time during healing and it may be necessary to
deliver different signaling proteins at particular
points during the healing process to regenerate the
missing tissue reliably.

Currently, some reports of off-label use of osteo-
genic proteins, such as recombinant human bone
morphogenetic protein-2, show promising results
(21, 62, 85). Fig. 8A shows a bone defect resulting
from an infection in a fractured mandible. The pa-
tient lost teeth, and ultimately part of his right
mandible was resected to resolve his infection. An
autogenous graft from the iliac crest was recom-
mended for repair of the defect. Because the patient
was concerned about the recovery from harvesting
bone from the iliac crest, he was informed that
recombinant human bone morphogenetic protein-2,
which was not approved by the Food and Drug
Administration for the reconstruction of mandibular
continuity defects, might stimulate bone healing in
the defect. Because of a previous failure using
recombinant human bone morphogenetic protein-2
alone, a combination graft was used. Bone marrow
cells were aspirated from the patient’s hip (autoge-
nous mesenchymal stem cells) and mixed with
freeze-dried cancellous bone chips (allograft scaf-
fold). The collagen sponges impregnated with
1.5 mg/ml of recombinant human bone morpho-
genetic protein-2 were wrapped around the bone
chip/cell mix. Fig. 8B shows the impregnated
sponges and the bone/chip/cell mix, and Fig. 8C
shows the repair of the defect. Several months after
reconstruction, mandibular continuity was restored
(Fig. 8D). The patient developed pain at the recon-
structed site and the plate was removed 10 months
after surgery using recombinant human bone mor-
phogenetic protein-2. Fig. 8E shows the bone that
bridged the defect. There was inadequate bone
height for implant reconstruction and additional
grafting will be required if the patient is interested in
implant placement.

Reconstruction of continuity defects in the man-
dible with recombinant human bone morphogenetic
protein-2 is not predictable (21). Herford et al. have
reported several cases of successful reconstruction of
cleft palates, mandibular continuity defects and
atrophic alveolar ridge defects using recombinant
human bone morphogenetic protein-2 alone (62, 63).
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A combination of osteoinductive proteins, mesen-
chymal stem cells and synthetic scaffolds must be
developed before reconstruction of bone defects
using tissue-engineering methods will provide pre-
dictable results. Preliminary case reports of off-label
use of the recombinant human bone morphogenetic
protein-2 demonstrate that it is possible to recon-
struct bone defects with an osteoinductive protein
produced using recombinant DNA technology (21,
62, 63). However, more studies are needed to design
the ideal combination of factors, cells and scaffolds to
reconstruct bony defects using tissue engineering in a
reliable manner.

Are we there yet?

As reports of tissue-engineering successes become
more prevalent, clinicians increasingly demand
predictable and faster treatment modalities. But,
have we reached that point? In this article, some of
the concerns regarding tissue engineering are dis-
cussed: Clinicians should be aware of these to
understand in more detail the results they will obtain
in practice.

This review should help practitioners understand
that there are many variables of tissue engineering that
need further investigation. Throughout the investiga-
tions conducted to identify the ideal concentration of
recombinant human platelet-derived growth factor for
periodontal regeneration and recombinant human
bone morphogenetic protein for implant site prepa-
ration kits, several concentrations were used (Table 3).
In the case of recombinant human platelet-derived
growth factor, doses that are too high or too low re-
sulted in little or no significant amount of periodontal
regeneration. A similar pattern was observed with re-
combinant human bone morphogenetic protein
studies. This raises concerns of whether each different
type of surgical procedure will require a different
concentration for an optimal response.

Another issue is what are the ideal properties for
the scaffold? Although most clinicians have focused
on the signaling molecules or biologic mediators, the
scaffold may be just as critical in determining the
volume and shape of the regenerated tissue. This is of
paramount importance for implant site preparation
because the desired volume and vertical proportions
are a key to success.

Does the regenerated tissue behave and act like the
original tissue? In a vertical bone-grafting study uti-
lizing recombinant human platelet-derived growth
factor-BB, the investigators analyzed the chemical
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Table 3. In search of the optimal dosage

Dx

rhBMP, recombinant human bone morphogenetic protein; thPDGF-BB, recombinant human plate-derived growth factor-BB.

qualities of the regenerated bone and compared
them with native bone to ensure they were similar to
the implant-bone interface (125). Similarly, clinical
regeneration induced by enamel matrix derivative,
recombinant human platelet-derived growth factor
and recombinant human basic fibroblast growth
factor was confirmed histologically.

Are the regenerated tissues sustainable? For
regenerated  periodontium, the confirmatory
evidence would be long-term studies of the treated
defects. At this point, 5-year data are available for
enamel matrix derivative and 2-year data are avail-
able for recombinant human platelet-derived
growth factor. For bone regeneration for implant
placement, the concerns would be twofold. First, is
the quality of bone that forms similar to that of
native bone? This would be important to achieve a
similar bone-implant interface with regenerated
bone compared with native bone. The ultimate test
would be whether the survival rates of implants
placed in tissue-engineered bone are the same as
those for implants placed in native bone. The sec-
ond issue is whether tissue-engineering applications
are critical for wound healing. Given the added
expense, will the application of tissue engineering
speed the healing process and ensure final healing
results to the point where the added expense is
justified? By contrast, the regeneration of infrabony
defects is a competition between cells that will
result in healing vs. regeneration, and the cells in-
volved in the healing and the healing results of an
extraction socket or a sinus will normally result in
bone formation. Will the addition of a biologic
mediator result in a higher quality of bone, increase
the rate of bone formation, or ensure regeneration
that otherwise would not have occurred? The chal-
lenge will be to have each claim of superior results
justified by a comparative study where tissue engi-
neering was not applied.
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Can the level of response for tissue engineering be
increased by adding multiple signaling molecules (as
suggested by the enamel matrix derivative phenom-
enon), improving the scaffold, or with cell therapy? As
we add each of these variables, the number of studies
increases. The potential projects for researchers are
almost limitless. Clinicians can help direct these .
investigations by being good observers of both posi-
tive and negative therapeutic responses. These
observations can help to determine the design of
randomized clinical trials that can improve our cur-
rent therapeutic approach.

All of the aforementioned issues require significant
funding for investigation. Although the National
Institutes of Health have funded early investigational
efforts, there is currently minimal funding in this
area. As a result, much of the research is currently
being underwritten by the company developing the
product. This ultimately raises the cost of these
materials and limits these investigations, which may
lead to improved application protocols. The concern
is that when the cost is high and the protocol is not
perfect, there is a likelihood that several therapeutic
approaches may not be accepted by the profession.
This, in turn, could lead to an abandonment of tis-
sue-engineering approaches. Of all the surgical fields
where tissue engineering can be applied, the oral
environment is probably the most challenging and
yet a developmental area where limited success, or
even failure, is not life-altering or life-threatening. If
tissue-engineering approaches are to be refined, the
oral environment is the perfect model for this
development.

Summary

Over the past three decades, the dental literature has
been filled with reports related to the regeneration of
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periodontal tissues. This therapeutic goal, although
ideal, has been difficult to achieve. A variety of new
regenerative strategies utilizing tissue-engineering
principles are now available. Despite certain limita-
tions, our ability to provide regenerative therapeutics
continues to evolve. As we do so, we continue to
improve our understanding of the physical and bio-
logic requirements necessary for specific tissue
regeneration. This understanding will help us to im-
prove our manipulation of the various elements of
tissue engineering (signaling molecules, scaffold and
cells) to generate specific regenerative responses.
This knowledge will help us develop better thera-
peutic approaches so tissues will regenerate faster
and provide our patients with more predictable out-
comes.
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ABSTRACT

Macrophages (M®s) exhibit functional heterogeneity and plasticity in the local microenvironment.
Recently, it was reported that M®s can be divided into proinflammatory M®s (M®1) and anti-inflamma-
tory Mds (M®2) based on their polarized functional properties. Here, we report that nicotine, the major
ingredient of cigarette smoke, can modulate the characteristics of M®1. Granulocyte-macrophage
colony-stimulating factor-driven M®1 with nicotine (Ni-M®1) showed the phenotypic characteristics
of M®2. Like M®2, Ni-M®1 exhibited antigen-uptake activities. Ni-M®1 suppressed IL-12, but main-
tained IL-10 and produced high amounts of MCP-1 upon lipopolysaccharide stimulation compared with
M®1. Moreover, we observed strong proliferative responses of T cells to lipopolysaccharide-stimulated
M®1, whereas Ni-M®1 reduced T cell proliferation and inhibited IFN-y production by T cells. These
results suggest that nicotine can change the functional characteristics of M® and skew the M®1 pheno-
type to M®2. We propose that nicotine is a potent regulator that modulates immune responses in

microenvironments.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Macrophages (M®s) exhibit many biological functions. The
functional heterogeneity and plasticity of M®s depend on the local
microenvironment [1,2]. M®s have polarized functional properties
and can be classified into at least two types, namely classical M®
(M®1) and nonclassical M® (M®2) [3,4]. M®1 are differentiated
by granulocyte-macrophage colony-stimulating factor (GM-CSF),
have IL-12M8P[1-10'" phenotype, participate in resistance against
microorganisms and tumors, and are involved in Thl immune
responses. In contrast, M®2 are induced by macrophage colony-
forming factor (M-CSF), produce IL-10 but not IL-12, and promote
anti-inflammatory responses, tissue remodeling and angiogenesis.

Tobacco smoking is associated with increased incidences of
numerous diseases such as cancers, vascular diseases, chronic
obstructive pulmonary diseases and periodontal diseases [5-7].
For example, smoking-induced immunosuppression, reduction of
natural killer cell cytotoxicity, and inhibition of proinflammatory
cytokine production and the microbicidal activity of alveolar mac-
rophages [8,9], have been implicated in the immunopathogenesis
of these diseases, although tobacco smoke may also ameliorate
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inflammation [10-12]. Nicotine is one of the main components of
tobacco smoke and a selective agonist of nicotinic acetylcholine
receptors (nAChRs). Although the expression of nAChRs was first
discovered in the central nervous system, nAChRs are also present
in non-neuronal cells. A recent study suggested that acetylcholine
produced after vagus nerve stimulation inhibits the release of pro-
inflammatory cytokines from M®s, and that nAChRa7 is essential
for the attenuation of proinflammatory cytokine production [13].

In this study, we hypothesized that nicotine exposure can mod-
ulate the differentiation of M®s. We demonstrate that nicotine
promotes monocyte differentiation into IL-12'°" M®1 (Ni-M®1)
with M®2 features. Ni-M®1 are associated with reduced allogenic
T cell stimulatory capacity and Th1 responses, but generate [L-10-
producing T cells. Our findings suggest the possibility that nicotine
exposure is involved in the heterogeneity and plasticity of the
monocyte-macrophage lineage.

Materials and methods

Isolation of monocytes, and generation of M®1 and M®2. The pro-
tocol for this study was reviewed and approved by the Institutional
Review Board of the Osaka University Graduate School of Dentistry.
All the subjects participated in the study after providing informed
consent. Human monocytes were purified from peripheral blood
mononuclear cells (PBMCs) isolated from healthy volunteers by
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standard density gradient centrifugation using Histo-Paque 1077
(Sigma-Aldrich, St. Louis, MO). The cells were further purified by
magnetic cell sorting with anti-CD14 microbeads (Miltenyi Biotec,
Auburn, CA) according to the manufacturer’s instructions. The pur-
ity of the CD14* monocytes was more than 98%. M®1 and M®2
were generated in complete RPMI-10 (RPMI-1640 containing 10%
heat-inactivated fetal calf serum, 20 mM Hepes, 50 j1g/ml gentami-
cin, 100 U/ml penicillin and 100 pg/ml streptomycin) supple-
mented with GM-CSF (5 ng/ml) or M-CSF (25 ng/ml) for 5 or
6 days, respectively. In some experiments, M®1 and M®2 were
generated in the presence of nicotine (10~ M). Nicotine was pre-
pared in PBS and neutralized to pH 7.2. CD4" naive T cells were ob-
tained from PBMC-isolated CD4 T cells using a Human CD4" T cell
isolation kit (Miltenyi Biotec). CD45RA" cells were isolated from
CD4" T cells using CD45R0 Microbeads (Miltenyi Biotec).

Analysis of M@1 and M®2 surface molecules by flow cytometry.
The expressions of surface molecules were evaluated by flow
cytometry. Briefly, the cells were incubated with fluorescently
labeled monoclonal antibodies at 10 pug/ml or isotype-matched
control antibodies for 30 min at 4 °C in the dark. The FITC-conju-
gated antibodies (anti-CD14 and anti-CD163) and PE-conjugated
antibodies (anti-CD1a, anti-CD11b, anti-CD16, and anti-CD206)
used were obtained from BD Biosciences (San jose, CA). The cells
were washed twice and data were acquired using a FACSCalibur
(BD Biosciences). Analyses of viable cells were performed using
the CELLQuest™ software (BD Biosciences).

Assays for antigen-uptake activity. To examine the endocytic
activity of M®1 and M®2, the cells were incubated with 0.1 mg/
ml FITC-dextran (Sigma-Aldrich) or Lucifer yellow (Sigma-Aldrich)
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for 1 h at 4 °C or 37 °C. Cells were washed with PBS and analyzed
by flow cytometry.

T cell proliferation assay. M®s were cultured under the above-
described conditions for 24 h, treated with mitomycin (50 pg/ml)
for 1h and cocultured with 1 x 10° allogeneic naive CD4 T* cells
for 6 days. The cells were pulsed with 0.5 puCijwell of *H-labeled
thymidine {Amersham Pharmacia, Buckinghamshire, UK) for the
last 8 h of the 6-day culture period, followed by scintillation count-
ing. The results were calculated as the mean cpm values = SD ob-
tained from triplicate cultures.

Assays for cytokine and chemokine production. To measure cyto-
kine secretion, monocytes, M®1 and M®2 were stimulated with
10 ng/mllipopolysaccharide (LPS; Salmonella minnesota; List Biolog-
ical Laboratories Inc., Campbell, CA) for 24 h, and the supernatants
were harvested. The cytokine levels in the supernatants were mea-
sured using IL-8, IL-10, IL-12 and MCP-1 ELISA kits (Pierce Endogen,
Rockford, IL). Each sample was assayed in triplicate. The superna-
tants harvested from the above-described allogeneic T cell prolifer-
ation assays were measured for their IFN-y and IL-10 levels. In some
experiments, T cells were restimulated with a plate-bound anti-hu-
man CD3 antibody (2 pg/ml; BD Biosciences) for 24 h.

Results and discussion

Characteristics of surface markers of M®1 and M®2 in the presence or
absence of nicotine

Monocytes were differentiated into M®s in the presence of GM-
CSF or M-CSF for M®1 or M®2, and GM-CSF or M-CSF plus nicotine
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Fig. 1. Characterization of monocytes, M®1, Ni-M®1, M®2, and Ni-M®2. Monocytes were isolated from PBMCs, and M®1, Ni-M®1, M®2, and Ni-M®2 were generated in
parallel from the same donor by culture for 6 days. (A) The surface molecule expressions of CD14, CD206, CD163, and CD11b on the cells were determined by flow cytometry
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for Ni-M®1 or Ni-M®2, respectively. Following a previously de-
scribed method for differentiation [14], we reproduced similar
characteristics of M®1 and M®2. M®1 and M®2 shared the typi-
cal macrophage phenotype of CD1a~ (data not shown), CD11b* and
CD14". M®1 expressed consistently lower levels of CD14 and
CD163 than M®2, but higher levels of CD206 and CD11b
(Fig. 1A). Although some review papers have documented that
the expression level of CD206 is higher in M®2 than in M®1
[1,2], it seems to depend on the environmental conditions for dif-
ferentiation. After GM-CSF-mediated differentiation, M®1 express
high levels of CD206 [14,15]. In contrast, M-CSF-derived M®2 ex-
press very low levels of CD206 [14]. CD163, a hemoglobin scaven-
ger receptor, is associated with the nonclassical M®2 phenotype
[16]. In the presence of nicotine, the phenotype of the surface mol-
ecules of M®1 (Ni-M®1) was somewhat similar to that of M®2.
Ni-M®1 expressed higher levels of CD14 and CD163 than M®1,
but expressed lower levels of CD206 and CD11b (Fig. 1A). The mor-
phological findings for monocytes, M®1, Ni-M®1, M®2 and
Ni-M®2 are shown in Fig. 1B. M®2 were less adherent, while
Ni-M®2 exhibited a stretched spindle-like morphology. On the
contrary, Ni-M®1 were adherent, but had rounder and more irreg-
ular shapes than M®1.

The findings shown in Fig. 1 suggested that Ni-M®1 retained
the M®1 phenotype but were partially skewed to obtain the char-
acteristics of the M®2 phenotype. Therefore, we speculated that
nicotine could promote M®s to obtain M®2 properties.

Effects of nicotine on antigen-uptake by Ni-M®1

To evaluate the antigen-uptake ability of M®s, lectin-mediated
endocytosis and macropinocytosis were examined using FITC-dex-
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tran and Lucifer yellow, respectively. Although Ni-M®1 expressed
a lower level of CD206 than M®1, their uptake of FITC-dextran was
more efficient than that of M®1 (Fig. 2A). A recent study showed
that M®1 expressed a higher level of CD206 than M®2, but their
uptake of FITC-dextran was comparable to that of M®2 owing to
the involvement of lectin-independent mechanisms such as macr-
opinocytosis [14]. The uptake of Lucifer yellow by Ni-M®1 was
also more efficient than that of M®1 (Fig. 2A). Although the reason
why Ni-M®1 were able to uptake FITC-dextran is unclear, nicotine
may induce presently unidentified molecules involved in receptor-
mediated endocytosis. M®2 have a higher capacity for Lucifer yel-
low uptake than M®1 [14]. Our data confirm that M®2 are active
in macropinocytosis-mediated uptake of Lucifer yellow, and that
Ni-M®1 share a strong phagocytic function with M®2. Unlike
M®1, which have a low capacity for antigen-uptake, Ni-M®1 not
only had a similar capacity to M®2 for macropinocytosis but also
had strong characteristics for endocytosis.

The cytokine profile of Ni-M®1 differs from that of M®1

To investigate the effects of nicotine on cytokine production by
Md®s, the cytokine production capacities of LPS-stimulated M®s
were examined. M®1 have been reported to produce large
amounts of IL-12, whereas IL-10 and MCP-1 are hardly produced
[2,3]. Ni-M®1 produced significantly lower amounts of IL-12 than
M®1, but maintained the production of comparable levels of [L-10.
Furthermore, Ni-M®1 showed a high MCP-1-producing capacity,
which is typical of M®2. IL-8 was produced at constitutively high
levels by all cell types. These data suggest that Ni-M®1 may not be
as completely polarized as M®2, since Ni-M®1 were unable to
produce IL-10 to the same extent as M®2. However, Ni-M®1 pro-
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Fig. 2. Effects of nicotine on antigen-uptake and cytokine production by M®1, Ni-M®1, M®2, and Ni-M®2. (A) Uptakes of FITC-dextran (0.1 mg/ml) and Lucifer yellow
(0.1 mg/m!) by M®1, Ni-M®1, M®2, and Ni-M®2 after 1 h. The results are shown as the mean fluorescence intensity (MFI) values £ SD obtained from three independent
experiments. The MFI values were calculated as the MFI value at 37 °C minus the MFI value at 4 °C. "P < 0.05 compared with M®s without nicotine. (B) Cytokine productions
by M®1, Ni-Md1, M®2, and Ni-M®2 in the presence or absence of LPS. The dataaregepresent the means + SD from triplicate cultures. The data shown were obtained in one
of three or four independent experiments. *P < 0.05 compared with M®s w;thoill 10&
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duced low amounts of IL-12 and large amounts of MCP-1, suggest-
ing that Ni-M®1 share anti-inflammatory properties with M®2.

Ni-M®1 show hampered T cell stimulatory activities

Next, we examined the induction of T cell proliferation by M®s.
LPS-stimulated M®1 induced strong allogeneic T cell proliferation,
compared with M®2. However, LPS-stimulated Ni-M®1 resulted
in significantly reduced T cell proliferation (Fig. 3A).

[FN-y production by activated T cells cocultured with LPS-stim-
ulated Ni-M®1 was reduced to almost half the level produced by
M®1 (Fig. 3B). In contrast, Ni-M®1 exhibited reduced IL-10 pro-
duction in the presence or absence of LPS stimulation, while
M®1 failed to produce IL-10 (Fig. 3B). M®2 and Ni-M®2 were un-
able to induce IFN-~y production, but produced the same levels of
IL-10 after LPS stimulation. Taken together, Ni-M®1 and M®2
had similar characteristics with respect to the reduction of T cell
proliferation and induction of IL-10 production.
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Fig. 3. T cell stimulation capacities of M®1, Ni-M®1, M®2, and Ni-M®2. (A)
Comparisons of the effects of M®1, Ni-M®1, M®2, and Ni-M®2 on T cell
proliferation. The results represent the mean cpm values +SD obtained from
triplicate cultures. The data shown were obtained in one of three independent
experiments, "P<0.05 compared with M®1 without nicotine. (B) Supernatants
obtained from T cell proliferation assays were measured for their IFN-y and IL-10
levels by ELISA. The results represent the mean values + SD obtained from triplicate
cultures, The data shown were obtained in one of three independent experiments
*P < 0.05 compared with M®1 without nicotine.

M-CSF-derived M®s have been reported to induce poor T cell
proliferation and T cell anergy [17,18], suggesting that M®2 have
anti-inflammatory effects and function in the maintenance of
peripheral tolerance. We confirmed that Ni-M®1 suppressed T cell
proliferation, similar to the case for M®2, and induced IL-10 pro-
duction. In the steady-state condition in peripheral blood, GM-
CSF, a proinflammatory cytokine, is hardly detected [19] whereas
M-CSF is detectable [20]. As an inflammatory condition, ulcerative
colitis (UC) is characterized by epithelial barrier disruption and
abnormal immune responses, which induce the formation of ul-
cer-like lesions [21]. In UC patients, nicotine in cigarette smoke
may be involved in ameliorating the disease severity, although
the mechanisms remain unclear [10]. In the case of periodontal
diseases, smokers tend to demonstrate reduced clinical inflamma-
tory signs (bleeding on probing, tissue redness and edema) [11,12].
These findings for both UC and periodontal diseases suggest that
cigarette smoke including nicotine can conceal the actual signs of
disease severity, although nicotine may also contribute to UC
remission. Our present data suggest that nicotine induces M®s
possessing anti-inflammatory and immunosuppressive properties
in GM-CSF-dominant inflammatory regions. In this study, we have
shown that nicotine modulates M® functions. However, the find-
ings do not completely explain the effects of nicotine on human
health because several kinds of cells express nAChRs and can
respond to nicotine. Further studies are necessary to clarify the

effects of nicotine.
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Abstract

Introduction: Homeostasis and tissue repair of dentin-
pulp complex are attributed to dental pulp tissue and
several growth factors. Dental pulp cells play a pivotal
role in homeostasis of dentin-pulp complex and tissue
responses after tooth injury. Among these cytokines,
fibroblast growth factor (FGF)-2 has multifunctional
biologic activity and is known as a signaling molecule
that induces tissue regeneration. In this study, we exam-
ined the effects of FGF-2 on growth, migration, and
differentiation of human dental pulp cells (HDPC).
Methods: HDPC were isolated from healthy dental
pulp. Cellular response was investigated by [*H]-thymi-
dine incorporation into DNA. Cytodifferentiation was
examined by alkaline phosphatase (ALPase) assay and
cytochemical staining of calcium by using alizarin red.
Migratory activity was determined by counting the cells
migrating into cleared area that had introduced with
silicon block. Results: FGF-2 activated HDPC growth
and migration but suppressed ALPase activity and calci-
fied nodule formation. Interestingly, HDPC, which had
been pretreated with FGF-2, showed increased ALPase
activity and calcified nodule formation when subse-
quently cultured without FGF-2. These results suggest
that FGF-2 potentiates cell growth and accumulation
of HDPC that notably did not disturb cytodifferentiation
of the cells later. Thus, FGF-2 is a favorable candidate for
pulp capping agent. Conclusions: These results provide
new evidence for the possible involvement of FGF-2 not
only in homeostasis but also in regeneration of dentin-
pulp complex. {J Endod 2009;35:1529-1535)
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Dental pulp tissue is a loose connective tissue comprising fibroblasts, blood vessels,
nerves, odontoblasts, and extracellular matrix. The tissue has been recently demon-
strated to include a population of putative postnatal stem cells (1-4). In fact, cultured
dental pulp cells have an ability to form calcified tissue that is regulated by a complex
sequence of cytokines iz vitro (5-10). This suggests that cytokines induce regenera-
tion of the injured dentin-pulp complex.

During development of a tooth, a plethora of cytokines contribute to the growth
and differentiation of cells related to hard and soft tissue formation. Likewise, various
kinds of cytokines and extracellular matrices participate during the tissue repair
process after damage or injury caused by mechanical and chemical stimuli or disease
processes. Among the cytokines, fibroblast growth factor (FGF)-2 is known to play an
important role in the early phase of wound repair by influencing proliferation and
migration and production of the extracellular matrix (11, 12).

Recently, FGF-2 localization in dentin was observed (13), suggesting that FGF-2
derived from injured dentin by bacterial, chemical, and mechanical stimuli (14) is
released and might play a pivotal role in wound healing and dentin-pulp complex regen-
eration (15). After injury dental pulp fibroblasts release angiogenic growth factors
including FGF-2 (16). FGF-2, which is embedded in the heparan sulfate matrix, is
also released in dental pulp tissue during the wound healing process (17, 18). After
injury of dental pulp tissue, inflammatory cell accumulation occurs, followed by migra-
tion of cells into the wound area that are responsible for tissue regeneration through
interaction with a chemotactic factor and the extracellular matrix. Therefore, when
dentin-pulp complex is injured and subsequent tissue repair events occur, human
dental pulp cells (HDPC) can be exposed to FGF-2 and undergo activation by this cyto-
kine. Recently, topical application of FGF-2 into experimental 3-wall bone defects or
furcation defects was demonstrated to induce prominent regeneration (19-21), sug-
gesting that FGF-2 potentiates cell activity of periodontal ligament and alveolar bone
through their migration, proliferation, and cytodifferentiation. However, the effects of
FGE-2 on the biologic functions in HDPC still remain to be clarified. On the basis of these
findings, we hypothesized that FGF-2 plays a significant role in HDPC proliferation,
migration, and mineralization. In this study, we investigated the influence of FGE-2
on cell proliferation, migration, and cytodifferentiation of HDPC.

Methods

Human Dental Pulp Cells

HDPC were isolated from healthy dental pulp of first premolar teeth of individ-
uals undergoing tooth extraction for orthodontic treatment. All patients gave informed
consent before providing samples. Healthy dental pulp tissue was removed after resec-
tion of the tooth and the center of the pulp tissue with a surgical scalpel. The tissue
was minced and then transferred to plastic Leighton tubes (Costar, Cambridge, MA)
with 2.5 ug/mL amphotericin B (22). The explants were cultured in o-MEM (ICN
Biomedicals Inc, Costa Mesa, CA) supplemented with 10% fetal calf serum (FCS)
(JRH Biosciences, Lenexa, KS), 60 ug/mL kanamycin (henceforth denoted standard
medium), and medium was changed every 2 or 3 days. Cells were maintained at 37°C
in 2 humidified atmosphere of 95% air and 5% CO,. When cells growing from the
explants had reached confluence, they were separated by treatment with trypsin
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