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gingivalis ATCC 33277 (10® cells/ml) for 30 min in the presence or absence of envelopes
isolated from wild-type or mutant P. gingivalis. TNF-o-pretreated HUVECs were
incubated with P. gingivalis ATCC 33277 (10® cells/ml) for 30 min in the presence or
absence of purified FimA fimbriae and Pgm6/7.

Measurement of VWF and nitric oxide. HUVECs (3.5 x 10° cells/ml) were
seeded into 12-well plates and grown overnight. Then the cells were stimulated with 10
ng/ml of TNF-o for 3 h. P. gingivalis cells were inoculated into cultures at an MOI of 100
and the cultures were incubated for 30 minand 1 h.  The culture media were then
collected and centrifuged at 13,000 rpm for removing bacterial cells. ~Concentrations of
VWF in the supernatants were measured using ELISA according to the manufacturer’s
instructions (VWF ELISA kit, American Diagnostic Inc, Stanford, CT). The
concentration of NO,/NOj5™ was also measured by 2,3-diaminonapthalene (DAN) assay
(24).

Preparation of P. gingivalis envelope. Separation of whole envelopes and the
outer membrane from P. gingivalis strains was performed essentially as described previously
(30). Briefly, bacterial cells were washed with PBS (pH 7.5) containing 0.15 M NaCl and
then resuspended with PBS (pH 7.5) containing 0.1 mM N-o.-p-tosyl-L-lysine chloromethy!l
ketone, 0.2 mM phenylmethylsulfonyl fluoride, and 0.1 mM leupeptin. The cells were
disrupted by sonication, and the remaining undisrupted bacterial cells were removed by
centrifugation at 1,000 x g for 10 min. The envelope was collected as a pellet by
centrifugation at 100,000 x g for 60 min at 4°C. The pellet was washed once by resuspension
in PBS and recentrifuged. The final pellet waé suspended in PBS.

Purification of FimA. Major fimbriae from P. gingivalis ATCC 33277 was
purified as described previously (52). The purity was ascertained by scanning of the

stained sodium dodecyl sulfate (SDS)-polyacrylamide gel.
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Purification of Pgm6/7 complex. Functional Pgm6/7 complex was purified by
two methods. First, we purified it electrophoretically from bacterial envelopes as
previously reported (32). Briefly, an envelope fraction of P. gingivalis was subjected to
SDS-PAGE under non-reducing conditions. A 120-kDa protein band, corresponding to
Pgm6/7 heterotrimer, was excised, and then the complex was extracted electrically from a
piece of gel. We used these samples for experiments of Figure 3E and supplemental
data#3B. Second, we constructed C-terminally hexahistidine-tagged Pgm6 and purified
Pgm6/7 complex by using a nickel affinity column from a P. gingivalis mutant. Briefly, we
inserted a DNA fragment consisting of pgm6 orf associated with the DNA sequence encoding
Gly-Ser-Ser-hexahistidine into the vector pT-COW (13) bearing a powerful promoter of the
350-bp upper region of rag4 (31).  The constructed plasmid was introduced into a
pgmo6-deletion mutant of P. gingivalis (32). The cell lysate was applied to a nickel affinity
column and the bound proteins were eluted. Although a hexahistidine tag was associated
with Pgm6 alone, Pgm6/7 complex was obtained. We used these samples for experiments

of Figure 3F, 3G, and supplemental data #3C.
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RESULTS

TNF-o augments adherence of P. gingivalis to endothelial cells through
inducing expression of E-selectin. We first examined induction of E-selectin expression
by TNF-o using ELISA and Western blotting in HUVEC cultures. TNF-o induced a
time-dependent expression of E-selectin in HUVECs (supplemental data #1, #2). E-selectin
expression was maximal at 3 h after TNF-a addition. No basal expression of E-selectin was
found. To determine whether E-selectin expression in endothelial cells is involved in
adhesion of P. gingivalis to the cells, we incubated HUVECs with TNF-a (10 ng/ml) for 0.5-3
h, and then P. gingivalis ATCC 33277 cells (10° cells/ml/well) were added to the culture
medium for 0.5-3 h. Cells were then washed and attachment of P. gingivalis to the cells was
observed by fluorescent microscopy. Attachment of P. gingivalis to HUVECs increased
time-dependently without pretreatment of TNF-¢ (Figures 1A, B). Pretreatment with 10
ng/ml of TNF-a significantly enhanced the level of attachment in HUVEC cultures.

To clarify the role of E-selectin in P. gingivalis adherence to HUVECs, we examined the
effect of anti-E-selectin antibodies on P. gingivalis adherence to HUVECs. HUVECs were
pretreated with TNF-a and were then incubated with P. gingivalis for 30 min in the presence
of antibodies for E-selectin or control I[gG. An antibody to E-selectin inhibited P. gingivalis
adherence to TNF-o-pretreated HUVECs (Figure 2A).‘

E-selectin mediates the rolling of leukocytes on activated endothelial cells through
binding of the carbohydrate antigen sialyl Lewis X (37). Therefore, we examined the effect
of sialyl Lewis X on interactions between P. gingivalis and endothelial cells. Sialyl Lewis
X inhibited TNF-a-induced P. gingivalis adherence to HUVECs at a concentration of 0.1
pg/ml (Figure 2B). To assess the effect of E-selectin over-expression on the up-regulation
of P. gingivalis adherence to endothelial cells, we transfected a E-selectin-inserted plasmid

into HUVECs. Expression of E-selectin was confirmed by Western blotting 24 h after
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transfection (Figure 2C). Adherence of P. gingivalis significantly increased in
E-selectin-transfected HEK 293 cells (Figure 2D). These results suggest that

TNF-a augments P. gingivalis adherence to HUVECs through inducing expression of
E-selectin.

P. gingivalis interacts with TNF-o-stimulated endothelial cells via its euter-
membrane-protein-Pgm6/7. The initial adherence of P. gingivalis to host cells is mediated
by multiple adhesins including FimA and HagB (44) (45). To determine whether an
interaction between major fimbriae occurs with E-selectin, we examined adherence to
endothelial cells of P, gingivalis defective in FimA alone (AFimA). TNF-a increased the
adherence to endothelial cells of FimA-deficient P. gingivalis as well as wild-type P,
gingivalis and the degrees of adherence were similar (Figures 3A, B). We next examined
whether a major outer membrane protein of P. gingivalis that which is homologous to OmpA
protein in Escherichia coli, Pgm6/7, mediates P, gingivalis mediates adherence to HUVECs.
The Pgm6/7-deficient mutant (APgm6/7) was incubated with TNF-a-pretreated HUVECs
and attachment of P. gingivalis to the cells was observed. TNF-a increased adherence of
wild-type P. gingivalis to endothelial cells but failed to increase adherence of APgm6/7 P,
gingivalis to endothelial cells (Figure 3C). To clarify whether Pgm6/7 mediates P,
gingivalis adherence to HUVECs, we prepared envelopes from wild-type, AFimA, and
APgm6/7 P. gingivalis and examined the effects on interaction between wild-type P,
gingivalis and HUVECs. Envelope peptides from wild-type P. gingivalis or AFimA P,
gingivalis suppressed adherence of P. gingivalis to TNF-o-pretreated HUVECs (Figure 3D).
However, envelope peptides from APgm6/7 P. gingivalis did not affect P. gingivalis
adherence. In addition, the Pgmé6/7 fraction from P. gingivalis ATCC 33277 suppressed
TNF-o-augmented P. gingivalis adherence, but the FimA fraction from the same strain did

not (Figure 3E). Furthermore, purified Pgm6/7 inhibited TNF-a activation of P. gingivalis
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adherence to HUVECs at a concentration as low as 0.25 ng/ml (Figure 3F, G). These results
suggest that the P. gingivalis peptide Pgmé6/7 plays a role in the adherence of P. gingivalis to
endothelial cells.

P. gingivalis interaction with endothelial cells via E-selectin induces
endothelial exocytosis and NO production. Finally, to determine whether
E—selectin—mediated adherence of P. gingivalis activates endothelial cells and increses
vascular inflammation, we investigated induction of vWF and nitric oxide in TNF-o-
pretreated endothelial cells by stimulation with P. gingivalis. HUVECs were incubated with
TNF-a (10 ng/ml) for 3 h and then the cells were washed and incubated with P. gingivalis for
0-1h. Then release of vWF into the media was measured by ELISA. P. gingivalis triggers
endothelial exocytosis, as measured by endothelial release of VWE.  Release of vWF by
stimulation with P. gingivalis was also enhanced by pretreatment of HUVECs with TNF-a
(Figure 4). TNF-a pretreatment of HUVECs before P. gingivalis stimulation for 30 min
significantly increased NO, release into the media (Figure 5). An anti-E-selectin antibody
alse-inhibited activation by P. gingivalis of NO release from TNF-a-pretreated HUVECs.
These results suggest that P. gingivlis interaction with endothelial cells via E-selectin
activates the endothelial cells and enhances proinflammatory responses of the cells to the

bacteria.

12

402



263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

Komatsu et al.
P. gingivalis interacts with E-selectin

DISCUSSION

P. gingivalis adherence to and invasion of endothelial cells has been reported by
several investigators (46) (9) . However, this is the first report on the adhesion of activated
endothelial cells by P. gingivalis. HUVECs activated with TNF-a increased the adherence
of P. gingivalis through E-selectin expression, interacting with the OmpA-like proteins
Pgm6/7 in P. gingivalis.

One of the initial events in atherogenesis is the activation of endothelial cells,
which then express cell surface adhesion molecules such as endothelial leukocyte adhesion
molecule (E-selectin), vascular cell adhesion molecule (VCAM-1), and intercellular
adhesion molecule (ICAM-1) (10) (22) (8). These endothelial adhesion molecules in turn
facilitate the attachment of blood leukocytes to endothelial surfaces (34). In the present study,
we demonstrated that one of the periodontopathogens adhere to endothelial cells via
E-selectin.

| P. gingivalis can invade many cell types, including human oral epithelial cells (33)
(51), human gingival fibroblasts or epithelial cells (3) (26), human coronary artery smooth
muscle cells, and human coronary artery endothelial (HCAE) cells (11). Adhesion of P,
gingivalis to host cells is multimodal (27) and involves a variety of cell surface and
extracellular components, including fimbriae, proteases, hemagglutinins, and
lipopolysaccharides (LPS) (8). Among the large array of virulence factors produced by P,
gingivalis, the major fimbria (FimA); as well as cysteine proteinases (gingipains), contribute
to the attachment to and invasion of many types of mammalian cells including oral epithelial
cells (4) and endothelial cells. P. gingivalis strains deficient in FimA fimbriae had
attenuated capacity to adhere to and invade epithelial cells and endothelial cells (33) (46)
(51) . Invasive P. gingivalis strains and their purified fimbriae activates expression of

cytokines and cell adhesion molecules in endothelial cells (46) . However, our data showed
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that Pgm6/7 rather than FimA is associated with P. gingivalis adherence to TNF-o-treated
endothelial cells. Although we do not know exact mechanisms, P. gingivalis cells adhere to
activated endothelial cells through their Pgm6/7 in a manner different from the
fimbriae-integrin interaction. TNF-a activates endothelial cells to express adhesion
molecules as well as proinflammatory cytokine and chemokine receptors and promotes
synthesis and release of a variety of inflammatory cytokines and chemokines to thereby
support recruitment of activated leukocytes to an inflammatory lesion (38). TNF-o promotes
the inflammatory cascade within the arterial wall during development of atherosclerosis (1).
In addition, P. gingivalis has been detected within atherosclerotic plaques from vascular
tissues (54) (25). Therefore, TNF-a may also augment adherence of P. gingivalis as well as
that of leukocytes in part through inducing E-selectin expression. Weibel-Palade
bodies (WPBé) are endothelial granules that store von Willebrand factor (VWF) and other
vascular modulators (50) (48). Endothelial cells secrete WPBs in response to vascular
injury, releasing VWF, which triggers platelet rolling. Endothelial exocytosis is one of the
earliest responses to vascular damage and plays a pivotal role in thrombosis
and inflammation (29). In this study we demonstrated that P. gingivlis interaction with
endothelial cells via E-selectin activates the endothelial cells and enhances endothelial
exocytosis (Figure 4) and may enhance atherogenesis and thrombosis (e.g., Buerger disease)
(7) (23).

Pgm6/7 in P. gingivalis, which shares a low homology with E. coli
OmpA, exists as a heterotrimer comprising Pgmé and Pgm7 and plays a role in the outer
membrane integrity in this organism. OmpA in E. coli K1 has been reported to interact with
a glycoprotein (Ecgp) of human brain microvascular endothelial cells for
invasion. Therefore, P. gingivalis invasion into endothelial cells should be investigated in

the near future, especially as to whether Pgm6/7 is involved in the invasion. How does
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Pgm6/7 bind to E-selectin? The adhesion activity of E-selectin is mediated primarily by the
binding of sialyl Lewis X on the leukocyte to the carbohydrate-binding domain. E-selectin
recognizes the carbohydrate structure of sLeX. Pgm6/7 is also a glycoprotein and therefore
it may bind to E-selectin through its carbohydrate side chain. However, we need additional
experiments for revealing the mechanism.

Collectively, in the present study, we clarified a new host-pathogen interaction: an
interaction between Pgm6/7, a major outerb membrane protein of P. gingivalis, and E-selectin
of activated endothelial cells. This finding raises the possibility that chronic infection of the
vasculature by pathogens such as P, gingivalis could exacerbate systemic vascular diseases,

such as coronary heart disease, stroke, and diabetes mellitus.
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FIGURE LEGENDS

Figure 1. Adherence of P. gingivalis to HUVECs was enhanced by stimulation with
TNF-a. (A) HUVECs were incubated with TNF-a (10 ng/ml) for 0.5-3 h. Then P,
gingivalis ATCC 33277 cells (10® cells/ml/well) were added to the culture medium for 0.5-3
h. Cells were then washed and attachment of P.gingivalis to the cells was observed by
fluorescent microscopy. P. gingivalis was stained with FITC (green), and actin of endothelial
cells was visualized with TRITC (red). Scale bar is 10 pum. (B) HUVECs were incubated
with TNF-0, (10 ng/ml) for 0.5-3 h. Then P. gingivalis ATCC 33277 cells (10® cells/ml/well)
were added to the culture medium for 0.5-3 h. Cells were then washed and attachment of P.
gingivalis to the cells was observed by fluorescent microscopy. The attachment levels were
expressed as number of P. gingivalis cells per 60430 mm? (n = 3, means + SD; *P <0.01 vs

no TNF-a).

Figure 2. Adherence of P. gingivalis to TNF-0i-activated endothelial cells was mediated
by E-selectin.  (A) Inhibitory effect of anti-E-selectin antibodies. HUVECs were
incubated with TNF-o (10 ng/ml) for 3 h. Cells were then washed and incubated with P,
gingivalis ATCC 33277 (10® cells/ml/well) for 30 min in the presence of an antibody for
E-selectin or control IgG. Other procedures are described in the legend to Fig. 1B. (n=3,
means + SD; *P < 0.01 vs no TNF-a, 1P <0.01 vs. no Anti-E-selectin Abs). (B) Inhibitory
effect of sialyl Lewis X. HUVECs were incubated with TNF-a (10 ng/ml) for 30 min.
Cells were then washed and incubated with P. gingivalis ATCC 33277 (108 cells/ml/well) for
3 hin the presence of purified sialyl Lewis X (0-10 ng/ml). Other procedures are described in
the legend to Fig. 1B. (n=3, means + SD; *P <0.01 vs. no TNF-a, 1P <0.01 vs. no sialyl
Lewis X). (C) Adherence of P. gingivalis was augmented in HEK293 cells transfected with

an expression with vector for E-selectin. P, gingivalis ATCC 33277 (10® cells/ml/well) was
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incubated with 293 cells transfected with a human E-selectin-inserted vector for 3 h. Other
procedures are described in the legend to Fig. 1A. Scale bar is 10 um. (D) Adherence of P,
gingivalis was augmented in 293 cells transfected with an expression vector for E-selectin. P,
gingivalis ATCC 33277 (10° cells/ml/well) was incubated with 293 cells transfected with a

human E-selectin-inserted vector for 30 min. Other procedures are described in the legend

to Fig. 1B. (n =3, means + SD; *P <0.01 vs. control).

Figure 3. Pgm6/7 in P. gingivalis mediated the interaction with activated endothelial
cells. (A) P. gingivalis ATCC 33277 (wild type), FimA-deficient mutant (AFimA), and -
Pgm6/7-deficient mutant (APgm6/7) (10° cells/ml/well) were incubated with
TNF-a-pretreated HUVECs for 3 h, respectively. Other procedures are described in the
legend to Fig. 1A. Scale bar is 10 pm. (B) P. gingivalis ATCC 33277 (wild type) and
FimA-deficient mutant (AFimA) (10 cells/ml/well) were incubated with TNF -a-pretreated
HUVEC:s for 30 min, respectively. Other procedures are described in the legend to Fig. 1A.
Scale bar is 10 um. (C) P. gingivalis ATCC 33277 (wild type) and Pgm6/7-deficient mutant
(Pgm6/7) (10® cells/ml/well) were incubated with TNF-a-pretreated HUVECs for 30 min,
respectively. Other procedures are described in the legend to Fig. 1B. (n=3, means =+ SD;
*P <0.01 vs. no TNF-0). (D) Inhibitory effects of P. gingivalis envelopes on
TNF-a-induced adhesion of P. gingivalis to HUVECs. HUVECs were incubated with
TNF-a (10 ng/ml) for 30 min. Cells were then washed and incubated with P. gingivalis ATCC
33277 (10® cells/ml/well) for 30 min in the presence or absence of envelopes isolated from
wild-type or mutant P. gingivalis. Other procedures are described in the legend to Fig. 1B.
(n=3, means £ SD; *P <0.01 vs. no TNF-q, 1P <0.01 vs. control). (E) Effects of extracted
OmpA-like-protein Pgm6/7 and FimA on TNF-a-induced adhesion of P. gingivalis to
HUVECs. HUVECs were incubated with TNF-a (10 ng/ml) for 30 min. Cells were then
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washed and incubated with P. gingivalis ATCC 33277 (10 cells/ ml/well) for 30 min in the
presence or absence of purified Pgm6/7 and FimA. Other procedures are described in the
legend to Fig. 1B. (n= 3, means + SD; *P < 0.01 vs. no TNF-q, 1P <0.01 vs. Pgm6/7
fraction). (F) Inhibitory effect of P. gingivalis’Pgm6/7 on TNF-a (10 ng/ml)-induced
adhesion of P. gingivalis to HUVECs. HUVECs were incubated with TNF-a (10 ng/ml) for
30 min. Cells were then washed and incubated with P. gingivalis ATCC 33277 (10° cells/
ml/well) for 30 min in the presence or absence of purified Pgm6/7. Other procedures are
described in the legend to Fig. 1B. (n =3, means = SD; *P < 0.01 vs. no TNF-a, 1P <0.01
vs. Pgm6/7 0 ng/ml). (G) Inhibitory effect of P. gingivalis Pgm6/7 on TNF-o-induced
adhesion of P. gingivalis to HUVECs. HUVECs were incubated with TNF-a (10 ng/ml) for
30 min. Cells were then washed and incubated with P. gingivalis ATCC 33277 (10°
cells/ml/well) for 30 min in the presence or absence of purified Pgm6/7. Other procedures

are described in the legend to Fig. 1A. Scale bar is 10 pm.

Figure 4. Endothelial vWF exocytosis to P. gingivalis were augmented by pretreatment
with TNF-a. HUVECs were incubated with TNF-o. (10 ng/ml) for 3 h. Cells were then
washed and incubated with P. gingivalis ATCC 33277 (10® cells/ml/well) for 0-1 h. Then

the release of vWF into media was measured by ELISA. (n =3, means + SD)

Figure 5. P, gingivalis-induced nitric oxide release from activated endothelial cells was
mediated by E-selectin. HUVECs were incubated with TNF-o. (10 ng/ml) for 3 h. Cells

were then washed and incubated with P. gingivalis ATCC 33277 (10® cells ml™/well) for 30
min in the presence or absence of an antibody for E-selectin.  Then the release of nitric oxide

into media was measured by DAN assay (n = 3, means = SD; *P <0.01 vs no TNF-a).
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