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In 2009, a swine-origin HIN1 influenza virus caused the first pandemic of the 21st century. To understand
the molecular basis of pandemic influenza virus adaptation to new host species, we serially passaged
the pandemic (H1N1) 2009 virus strain A/California/04/09 in mouse lungs. After ten passages, the virus
became lethal to mice. We found eight amino acid differences between the wild-type and mouse-adapted

viruses: one in PB1, three in PA, three in HA, and one in NP. By using reverse genetics to generate mutant

Keywords:

Pandemic (H1N1) 2009 influenza virus
Virulence

New host species

Mouse-adaptation

viruses, we determined that the amino acid substitutions in PA (at positions 21 and 616), HA (at positions
127 and 222), and NP (at position 375) play independent roles in the increased pathogenicity in mice.
Among these five substitutions, an aspartic acid-to-glutamic acid substitution at position 127 in HA
contributed to efficient viral replication in mouse lungs. Our results suggest the importance of the viral
polymerase complex and of HA in viral adaption to a new host.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Influenza viruses in poultry, pigs, humans, and other mam-
malian species are thought to have originated in migratory
free-flying birds (Webster et al., 1992). During repeated infection
and replication, the viral genomes of these viruses evolve and adapt
to their new hosts. In the spring of 2009, a swine-origin HIN1
influenza virus caused an outbreak in Mexico (Perez-Padilla et al.,
2009) and rapidly spread worldwide. The pathogenicity in humans
of this pandemic (H1N1) 2009 influenza virus was not as severe as
that of the 1918 Spanish influenza virus; in most cases, the virus
infection was self-limiting, although some patients were hospi-
talized with pneumonia, respiratory failure, or acute respiratory
distress syndrome during the first wave (Dawood et al., 2009; Louie
et al,, 2009).

To adapt to new hosts, influenza A viruses must acquire amino
acid substitutions in their proteins (Brown, 1990; Narasaraju et al.,
2009). Previous studies have shown that repeated passages of
influenza viruses from various animal species (e.g., birds, humans,
horses) in mice, which are routinely used to evaluate anti-viral

* Corresponding author at: Division of Virology, Institute of Medical Science, Uni-
versity of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
Tel.: +81 3 5449 5310, fax: +81 3 5449 5408.
E-mail address: kawaoka@ims.u-tokyo.ac.jp (Y. Kawaoka).

0168-1702/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.virusres.2011.03.022

agents and vaccine candidates, results in increased virulence with
mutations in HA, NP, NA, M, NS, and viral polymerase genes (Brown
and Bailly, 1999; Brown et al., 2001; Dankar et al,, 2011; Kaverin
et al., 1989; Ping et al., 2010; Rudneva et al,, 1986; Smeenk and
Brown, 1994). Mice infected with pandemic (H1N1) 2009 viruses
develop moderate symptoms, although a high dose of some 2009
pandemic strains can cause lethal infection (Itoh et al., 2009;
Maines et al., 2009). Recently, a study with mouse-adapted pan-
demic (H1N1) 2009 viruses, which were established by serial
passage in mouse lungs, revealed that optimization of both the
receptor specificity of HA and the interaction of the viral poly-
merase components with cellular factors play key roles in the
increased virulence in mice (Ilyushina et al.,, 2010; Ye et al., 2010).
These studies, however, did not address the roles of specific amino
acids in these viral proteins in this increased pathogenicity in mice.

Here, to understand the molecular basis for host adaptation
of pandemic influenza viruses, we serially passaged a pandemic
(H1N1) 2009 virus (A/California/04/09) in mice and identified
mutations critical for its adaptation to mice.

2. Materials and methods
2.1. Virus and cells

A/California/04/09 (H1N1; CA04) was propagated in
Madin-Darby canine kidney (MDCK) cells at 35°C. MDCK cells
were maintained in Eagle’s minimal essential medium (MEM)
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supplemented with 5% newborn calf serum (Sigma-Aldrich, Inc.,
St. Louis, MO, USA), and 293T human embryonic kidney cells were
maintained in Dulbecco’s Modified Eagle Medium supplemented
with 10% fatal calf serum; both cell types were cultured at 37°Cin
5% CO;.

2.2. Establishment of mouse-adapted pandemic (H1N1) 2009
virus

Four- to six-week-old female BALB/c mice (Japan SLC, Hama-
matsu, Japan) were infected with 10? plaque-forming units (PFU)
of CA04 (50pl) via the intranasal route. On days 3-5 post-
infection (pi), mice were euthanized and their lungs were collected
in a 9-fold volume of MEM supplemented with 0.3% bovine
serurn albumin (BSA: Sigma-Aldrich, Inc., St. Louis, MO, USA).
Lung homogenates were then diluted 1000-fold with MEM sup-
plemented with 0.3% BSA and inoculated (50l) into naive
mice via the intranasal route. This procedure was repeated ten
times.

2.3. Sequence analysis

Viral RNAs were extracted from viruses in the homogenates
of mouse lungs or the supernatants of MDCK cells infected with
plaque-purified mouse-adapted CA04 by using a QlAamp Viral RNA
mini kit (Qiagen, Hilden, Germany) and reverse transcribed with
Superscript™ Il reverse transcriptase (Invitrogen, Carlsbad, CA,
USA) and an oligonucleotide complementary to the 12-nucleotide
sequence at the 3’ end of the viral RNA (Katz et al., 1990). The cDNA
products were amplified by using PCR with Phusion High Fidelity
DNA polymerase (Finnzymes, Espoo, Finland) and primers specific
foreach segment of the pandemic(H1N1)2009 virus. The PCR prod-
ucts were purified by use of a MinElute PCR purification kit (Qiagen,
Hilden, Germany) and sequenced with the BigDye terminator kit on
an AB13130xI (Applied Biosystems, Foster City, CA) by following the
manufacturer’s instructions.

2.4. Plasmid constructs and reverse genetics

Reverse genetics (rg) systems for CA04 and MA-CA04 viruses
were established as described previously (Neumann et al., 1999).
Briefly, the cDNAs of the CA04 viral genes were cloned into the
pHH21 vector. The characteristic mutations found in MA-CA04
were introduced into the plasmid constructs of CAO4 by using
site-directed mutagenesis. The eight plasmids for the synthesis of
viral RNA and the four expression plasmids for A/WSN/33 (H1N1)
virus-derived PB2, PB1, PA, and NP were transfected into 293T
cells. Forty-eight hours later, the transfectant viruses were har-
vested and propagated in MDCK cells to produce stock viruses.
Virus titers were determined by using plaque assays in MDCK
cells.

2.5. Virulence and replication in mice

Four 6-week-old female BALB/c mice (Japan SLC, Hamamatsu,
Japan) per group were intranasally infected with 10° or 108 PFU
(50 1) of viruses. Body weight and survival were monitored daily
for 14 days. Mice with body weight loss of more than 25% of
their pre-infection values were euthanized. For virological anal-
ysis, six mice per group were infected with 105 PFU of viruses
and three mice per group were euthanized on days 3 and 6
pi. Viruses in lungs, nasal turbinates, brains, livers, spleens, kid-
neys, and colons were titrated by using plaque assays in MDCK
cells.

2.6. HA molecule mapping

The sites of the amino acid mutations identified in the
HA of MA-CA04 were mapped on the HA crystal structure of
A/California/04/2009 (H1N1), which was obtained from the Pro-
tein Data Bank (PDB; http://www.rcsb.org/pdb/home/home.do,
PDB ID: 3LZG) (Xu et al, 2010) by using Pymol software
(http://www.pymol.org/).

3. Resuits

3.1. Adaptation of a pandemic (H1N1) 2009 influenza virus to
mice

Pandemic (H1N1) 2009 influenza virus A/California/04/09
(CA04) showed mild pathogenicity in mice [MLDsq (dose required
to kill 50% of mice): >106 PFU] (Itoh et al., 2009; Maines et al.,
2009). To produce a mouse-adapted pandemic (H1N1) 2009 virus,
we passaged CA04 in mice by intranasally infecting mice, making
lung homogenates 3-5 days pi, infecting naive mice with those
homogenates, and repeating the process. After ten serial passages,
the viruses exhibited high virulence in mice (MLDsg: 1.5 x 104 PFU)
(Fig. 1A and B).

We then plaque-purified the mouse-passaged virus and com-
pared three of the plaque-picked clones. These three virus clones
possessed identical viral genomes (see below) and exhibited com-
parable pathogenicity in mice (data not shown). We, therefore,
selected one of these clones to represent mouse-adapted CAO4
(MA-CA04) for subsequent experiments. We then investigated the
tissue tropism of the parental and mouse-adapted viruses. The
replication of both viruses was restricted to the respiratory tract
(lungs and nasal turbinates); no virus was recovered from spleen,
kidney, liver, colon, or brain (Fig. 1C).

3.2. Amino acid substitutions in viral proteins during adaptation
to mice

To identify amino acid substitutions introduced during virus
passaging in mice, the sequences of all of eight segments of
MA-CA04 were compared with those of wild-type virus CA04.
We found eight amino acid differences between CA04 and MA-
CAO04 [one in PB1 (a threonine-to-alanine substitution at position
291: PB1-T291A), three in PA (PA-M211, PA-A70V, and PA-S616P),
three in HA (HA-D127E, HA-K142N, and HA-D222G), and one
in NP (NP-D375N)] (Table 1). Threonine at position 291 in PB1
(PB1-291T), PA-21M, PA-70A, and PA-616S are highly conserved
among human, swine, and avian isolates, although PAG616A is
conserved in human seasonal H1N1, but not H3N2, viruses. There-
fore, the amino acids found at these positions in MA-CA04 were
unique to this mouse-adapted virus. Interestingly, about half of
the classical swine isolates and one-third of avian-like swine iso-
lates possess HA-127E, HA-142N and HA-222G. By contrast, most
pandemic (HIN1) 2009 isolates possess HA-127D, HA-142K, and
HA-222D. Most avian H1 HAs possess HA-127E and HA-222G,
indicating that during adaptation of CAO4 in mice, the virus
acquired amino acids commonly found in avian viruses. NP-375D,
found in CAO4, is observed in most pandemic (H1N1) 2009 virus,
most of swine and avian isolates, whereas only a limited num-
ber of seasonal isolates (both HIN1 and H3N2) possess D at this
position.

3.3. Mutations in PA, HA, and NP contribute to virulence in mice
To identify amino acid substitutions in MA-CA04 responsible for

virulence in mice, we used reverse genetics to generate single-gene
CAO04-MA-CAO04 reassortants that possessed the PB1, PA, HA, or NP
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Fig. 1. Virulence of CAO4 and MA-CA04 in mice. Survival rate (A), body weight changes (B), virus titers in respiratory organs (C) of mice infected with either CAO4 or MA-CA04.
Ten mice per group were infected with 10° PFU of CA04 or MA-CA04 and survival (A) and body weight (B) of four mice per group were monitored daily for 14 days. Three
mice per group were euthanized and virus titers in the lungs, nasal turbinates, brains, livers, spleens, kidneys, and colons were determined by using plaque assays in MDCK
cells (C). The results are expressed as the mean + SD. Viruses were not detected in brains, lungs, spleens, kidneys, or colons.

gene of the MA-CA04 virus and the remaining genes from CA04 (e.g.,
CA04-MA-PB1 had the PB1 gene from MA-CA04 and its remain-
ing seven genes from CA04), as well as both original viruses, CAO4
and MA-CA04. We then infected mice with 105 or 10 PFU of these
viruses and monitored their body weight and survival. None of

10° PFU
Survival (%)

rgCAO4 100
rgMA-CAO4 0
CAO4-MAPB1 (T291A) 100
CAO4-MAPA 25
CAD4-MAHA 50
CAD4-MANP (D375N) 75
CA04-PAM21! 100
CA04-PAA7OV 100
CA04-PAS616P 100
CA04-HAD127E 100
CA04-HAK142N 100
CA04-HAD222G 100

the mice infected with the reverse genetics-derived CA04 (rgCA04)
died and none lost more than 10% of their body weight (Fig. 2). By
contrast, mice infected with the reverse genetics-derived MA-CA04
(rgMA-CA04) and all of the single-gene reassortants tested, except
for CAO4-MAPB1, lost a significant amount of body weight com-

106 PFU
Survival (%)
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1]
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Fig. 2. Pathogenicity of viruses in mice. Four mice per group were infected with 10° or 10 PFU of the indicated mutant viruses. Body weight and survival were monitored
daily for 14 days. *P< 0.05: significant difference compared to rgCA04 (Dunnett’s multiple comparison method).
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Table 1
Amino acid differences between CA04 and MA-CA04.

Protein  Amino acid Amino acid encoded (number of strains possessing mutation/total number of strains examined)?
position
CA04 MA-CAD4 Human Human Human Swine Avian
pandemic seasonal HIN1 seasonal H3N2
(H1N1) 2009
Classical Eurasian
avian-like
PB1 291 T A T(397/397) T(405/409) T(571/571) T(89/89) T(289/293) T(5584/5593)
1(3/409) A(1/293) A(7]5593)
$(1/409) 1(3/293) V(1/5593)
1(1/5593)
PA 21 M 1 M(461/461) M(341/341) M(492/494) M(93/93) M(266/266) M(4597/4602)
1(2/494) R(3/4602)
V(2/4602)
70 A \ A(455/461) A(340/341) A(521/526) A(93/93) A(253/266) A(4500/4621)
V(5/461) V(1/341) V(4/526) V(11/266) V(107/4621)
T(1/526) S(2/266) T(11/4621)
S(2/4621)
M(1/4621)
616 S P 5(460/461) F(341/341) S(544/544) 5(93/93) S(261/266) 5(4605/4621)
P(1/461) T(2/266) T(7/4621)
P(1/266) A(4/4621)
1(2/266) 1(3/4621
P(2/4621)
HAP 127 D E D(667/667) T(825/866) E(165/317)  D(38/127) E(169/177)
N(38/866) D(144/317) E(37/127) D(7/177)
5(2/866) N(5/317) T(35/127) deleted(1/177)
1(1/866) T(2/317) $(11/127)
S(1/317) N(6/127)
142 K N K(665/667) $(791/867) N(214/317) N(39/127) S(162/179)
N(2/667) N(59/867) K(78/317) S(37/127) N(11/179)
R(17/867) S(18/317) R(36/127) K(5/179)
R(3/317) L(7]127) R(1/179)
1(2/317) K(6/127)
A(1/317) H(2/127)
H(1/317)
222 D G D(610/667) D(813/866) D(170/314)  G(52/126) G(171/182)
G(21/667) N(21/866) G(130/314)  D(44/126) D(7/182)
E(28/667) G(31/866) N(8/314) E(28/126) N(3/182)
N(8/667) E(1/866) E(2/314) K(1/126) E(1/182)
K(2/314) T(1/126)
T(1/314)
V(1/314)
NP 375 D N D(335/343) V(186/216) G(497/512) D(221/267) D(92/113) D(4495/4608)
N(5/343) D(14/216) E(114/512) E(19/267) E(20/113) E(47/4608)
B(2/343) G(7/216) D(1/512) G(18/267)  N(1/113) N(35/4608)
G(1/343) E(9/216) N(5/267) 5(19/4608)
V(3/267) G(6/4608)
Y(1/267) V(3/4608)
A(1/4608)
Q(1/4608)
Y(1/4608)

No amino acid differences between the PB2, NA, M, and NS genes of CAG4 and MA-CA04 were observed.

2 Excludes the completely identical sequences.
b H1 HA (H1 numbering).

pared to mice infected with rgCA04. CA04-MAPB1 killed one of the
four mice infected at 106 PFU.

Since the MA-CA04 virus possesses more than one amino acid
substitution in PA and HA, we next generated recombinant viruses
that possessed a single amino acid substitution in PA or HA in the
genetic background of CA04 (e.g., CA04-PA-M211 had an M-to-I
substitution at amino acid position 21 in PA of CA04) and exam-
ined their virulence in mice as described above. Mice infected with
CA04-PA-M211, CA04-PA-A70V, CAO4-HA-D127E, and CA04-HA-
E222G lost a significant amount of body weight compared to those
infected with rgCA04. These results indicate that the single amino
acid substitutions in PA (PA-M211 and PA-S616P), HA (HA-D127E
and HA-D222G), and NP (NP-D375N) each contribute indepen-
dently to the virulence of MA-CA04 in mice. Moreover, the extent
to which these mutations contributed to the virulence varied, for

example, NP-D375N appeared to have a substantial effect on viru-
lence.

3.4. HA-D127E contributes to efficient and prolonged viral
replication in mouse lungs

To evaluate the effect of the mutations found in MA-CA04 on
viral replication in mouse lungs, we infected mice with 10° PFU of
viruses possessing MA-CAQ4-derived single genes or aminoacids in
the background of CA04 and determined virus titers in the lungs on
days 3 and 6 pi. Although there was a significant difference between
rgCA04 and rgMA-CAO4 in virus titers, the lung virus titers of all
of the mutant viruses except CA04-MA-HA and CA04-HA-D127E
were not significantly higher than that of rgCA04 (Table 2). On the
other hand, the titers of CAO4-MA-HA and CA04-HA-D127E were
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Table 2
Virus titers in mouse lungs.

Virus Virus titer (mean
log 10 PFU £ SD/g) in mouse lungs

Day 3 pi Day 6 pi
rgCA04 78+04 6.4+0.1
rgMA-CA04 8.8+0.2° 7.7+02"
CA04-MAPB1 (T291A) 7.7+04 6.5+0.2
CAO4-MAPA 84+0.1 6.5+0.1
CA04-MAHA 84+0.1 79402
CAO04-MANP (D375N) 82+05 64+0.2
CA04-PAM211 83+0.0 64+0.1
CA04-PAATOV 76+02 6.6+0.2
CA04-PAS616P 8.0+0.1 6.6+0.7
CA04-HAD127E 8.0+0.1 74+0.1
CA04-HAK142N 50406 5307
CA04-HAD222G 83+0.1 6.7+0.1

Six mice per group were infected with 10° PFU of virus and three mice in each group
were euthanized on days 3 and 6 pi, Virus in lungs was titrated by using plaque
assays.

* P<0.05: significant difference compared to rgCA04 (Dunnett’s multiple com-
parison method).

significantly higher than that of rgCA04 on day 6 pi, indicating that
the D-to-E substitution at position 127 in HA contributes to effi-
cient viral replication in mouse lungs. By contrast, the virus titers in
the lungs of mice infected with CAO4-HAK142N were significantly
lower than those in the lungs of mice infected with rgCA04.

4. Discussion

Here, to gain insight into influenza virus adaptation to new
host species, we serially passaged CAO4 in mouse lungs and iden-
tified eight mutations in PB1, PA, HA, and NP in a mouse-adapted
strain (Table 1). Five of these mutations, PA-M211, PA-S616P, HA-
D127E, HA-D222G, and NP-D375N, independently contributed to
the pathogenicity and thus adaptation of CA04 to mice (Fig. 2).
Further, we found that HA-D127E contributes to efficient viral repli-
cation in mouse lung (Table 2). These results suggest that the viral
polymerase complex and HA are both important for viral adaption
to anew host species, in agreement with recent studies on the adap-
tation of pandemic H1N1 viruses to mice (llyushina et al., 2010; Ye
et al., 2010).

Several amino acid mutations in PA (PA-T20A, K22R, T97],
M155T, D216N, P277S, L315F, P355S and K615N) are associated
with virulence in mice (Gabriel et al., 2005; Li et al., 2005; Song
et al,, 2009). Although, we did not find any of these previously iden-
tified mutations, amino acid substitutions at positions 22 and 615
in PA have been reported in mouse-adapted H5N2 and H7N7 virus
strains (Gabriel et al., 2005; Song et al., 2009) and these mutations
may be involved in the virulence in mice together with other muta-
tions (Gabriel et al.,, 2005; Song et al., 2009). These findings suggest
that PA-M21I and PA-S616P in MA-CA04 may play similar roles to
those of the previously identified mutations at positions 22 and 615
in PA.

Three mutations (HA-D127E, HA-K142N, and HA-D222G) were
detected in the HA of the mouse-adapted strain. HA binds to cellular
receptors and mediates cell entry of the virus (Skehel and Wiley,
2000). Avian and human influenza viruses preferentially bind to
a2,3 and 2,6 sialic acid-linked receptors, respectively (Rogers and
Paulson, 1983; Rogers et al., 1983). All three of the HA mutations are
located close to the receptor binding pocket in HA (Fig. 3); suggest-
ing that these mutations may affect receptor binding specificity. In
fact, HA-D222G is known to increase the binding specificity for o-
2,3 sialic acid-linked ‘avian-type’ receptors (Takemae et al., 2010;
Tumpey et al., 2007). Given that the cells in mouse lungs mainly
express avian type receptors (Ning et al., 2009), it is reasonable

Fig.3. Position of the amino acid mutations identified in the HA of MA-CAO4. Amino
acids at position 127 (red), 142 (blue), and 222 (green) in HA were mapped on the
CAO4 HA crystal structure (Xu et al., 2010). Three components of the HA receptor-
binding pocket, the ‘130 loop’ (amino acid positions 131-135), 190 helix’ (184-191),
and ‘220 loop’ (218-225) (Yang et al,, 2010), are shown in pink, light blue, and,
yellow, respectively. The region around the receptor-binding pocket is enlarged in
the picture on the right. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

that an amino acid substitution that increases HA specificity for
avian type receptors would be introduced during adaptation to
mice. Interestingly, a pandemic (H1N1) 2009 virus possessing HA-
D222G was isolated from hospitalized patients, suggesting that this
HA substitution may be associated with iliness severity (Kilander
et al, 2010). Moreover, Ilyushina et al. (2010) recently reported
on ten amino acid mutations, including HA-D222G, in a mouse-
adapted pandemic (H1N1) 2009 virus. HA-D222G was also reported
to decrease the transmissibility of the 1918 Spanish influenza virus
(Tumpey et al.,, 2007). These findings suggest that HA-D222G is a
critical mutation for adaptation and increased virulence of pan-
demic influenza virus in mice and possibly humans. The HA-D127E
mutation also enhances viral replication and pathogenicity to mice.
Although this mutation has not been found in humans yet, it may
affect the pathogenicity of pandemic (H1N1) 2009 viruses.

NP-D375N substantially increased the virulence of CAO4 com-
pared to the other seven mutations we identified in this study
(Fig. 2). NP is implicated in host restriction (Brown, 2000;
Scholtissek et al., 1993). Furthermore, NP-375D is conserved in
avian, most classical swine viruses, and most pandemic (HIN1)
viruses (Dawood et al., 2009; Garten et al., 2009; Smith et al., 2009)
(Table 1), whereas most seasonal viruses possesses V or G at this
position. These findings suggest that the amino acid substitution
at position 375 in NP may play a role in host-range alteration,
especially from avian to mammalian species.

The 2009 pandemic spurred the development of new anti-viral
measures, including drugs and vaccines. Our mouse-adapted pan-
demic (H1N1) 2009 virus strain could be of use in the development
and evaluation of novel anti-viral agents and vaccine candidates,
since its high virulence in mice would allow clear-cut efficacy
assessments.
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A new pandemic of influenza virus could result from the
emergence of an unpredictable viral strain in an unexpected
fashion. Thus, developing methods to protect the population
from the spread of a new influenza virus is an urgent and
important public health concern. Although vaccines can -
induce protective and prophylactic immune responses, the
immunityinduced by the current parenteralinactivated vaccine
preparation is less effective in preventing heterologous virus
infection. The induction of cross-protective mucosal immunity
in the respiratory tract, the initial site of infection, is the most
effective method for defending against heterologous influenza
virus infection. Secretory immunoglobulin A plays a critical role
in cross-protective mucosal immunity. Such cross-protective
immunity can be induced by the intranasal administration of a
vaccine together with an appropriate adjuvant that can mimic
natural influenza virus infection. In this review, we describe the
development of mucosal vaccines against influenza viruses
and discuss their advantages. In addition, we describe data
indicating that synthetic double-stranded RNAs, agonists
of Toll-like receptor 3, are effective mucosal. adjuvants for
intranasally administered inactivated influenza virus vaccines.

Introduction

In April 2009, a previously uncharacterized HIN1 influenza virus
emerged in Mexico and the United States and rapidly spread
worldwide."* On 11" June 2009, The World Health Organization
(WHO) raised the level of influenza pandemic alert to “phase 6.”
Wich chis outbreak, we experienced the first pandemic of influenza
virus in the 21" century. Fortunately, genetic analysis revealed that
the pandemic HINT 2009 virus had low human pathogenesis.®
The severity of the pandemic HIN1 2009 virus was moderate and
similar to that of seasonal influenza viruses, with the cxception
of a number of severe cases in pregnant women or patients with
underlying diseases (diabetes, asthma, lung disease and so on).>*
The number of laboratory-confirmed deaths from pandemic flu
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was over 16,000. The WHO announced that the pandemic moved
into a post-pandemic period on August 10, 2010.

Pandemics have occurred throughout history at irregular
intervals with variable severity, from mild to catastrophic. The
pandemics of the past century include the catastrophic HIN1
Spanish influenza of 1918, the H2N2 Asian influenza of 1957
and the H3N2 Hong Kong influenza of 1968.>'° During the
“Sparnsh ﬂu p:mdemle,« more than 50/mxlhon peoplc dled

viruses in domestic poultry and the i mcreasmg number of cases

" of direct transmxssxon of HPAI (ylruses to humans has been a

s
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slgmﬁcant ‘threat to, public health-because of the potential for
pandemic-spread-of these’ viruses™'>In 1997, the infection of
18 individuals (including six fatal cases) with HPAI viruses of
the H5N1 subtype was reported for the first time.'*'* HSN1
HPAI viruses re-emerged in July 2003 in poultry in South Asia’
Sporadic, highly fatal HPAI infections in humans have also been
reported in South China,"” Vietnam,'® Thailand,” Cambodia,”
Indonesia,'® as well as other countries. During the HIN1 2009
pandemic, fatal cases of HSN1 virus infection have subsequently
been reported by the WHO primarily in Egypt, Indonesia and
Vietnam. As of August 31, 2010; 505 human H5N1 infections
have been confirmed, resulting in 300 deaths. The mortality rate
of the HPAI H5NT1 strain in humans is nearly 60%. Most human
cases resulted from spread of the infection by birds, and very few
involved human to human transmission.?*' Alteration of HPAI
viruses into new pandemic viruses is likely to be limited due to
the low ability of these viruses to transmit among humans.

The 2009 pandemic once again highlighted the difficulty in
predicting what subtype and strain of influenza virus will cause
a new pandemic, and that an influenza virus which acquires the
ability to spread from human to human can spread worldwide
more rapidly than expected. Although the threat of a new pan-
demic derived from HPAI viruses still persists, it is impossible
to predict when and how the next pandemic will begin or which
strain will cause it. Thus, it is necessary and important to prepare
useful and effective vaccines that induce cross-protective immu-
nity against not only homologous viruses but also against heter-
ologous strains.
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