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tion of single Gag,pe.,,6 epitope-specific CTL responses,
Gagyos.216-specific CTL responses were induced dominantly but
Gag,,1049-specific CTL responses were undetectable at week 2. In
contrast, Gag,,;_,4o-Specific CTL responses were induced domi-
nantly at week 2 in group III. Both groups showed Gag,og.»16-
specific and Gagyy,.,49-specific CTL responses equivalently at
week 6. It may be difficult to compare these results with those in
group II animals inducing whole Gag antigen-specific CTL and
CD4™* T-cell responses before challenge; the group II animals elic-
ited Gagygs..16-specific and Gag,y, ,40-specific CTL responses
equivalently at week 2. Our results indicate that prophylactic vac-
cination results in dominant induction of vaccine antigen-specific
CTL responses and may delay CTL responses specific for viral
antigens other than vaccine antigens (referred to as nonvaccine
antigens) after viral exposure.

A significant difference between groups III and IV is the pat-
tern of selection of CTL escape mutation. All group IV animals
showed rapid selection of a Gag,s..1¢-specific CTL escape muta-
tion, while most group III animals showed no gag mutation at
week 5 but selection of the Gag,¢_,6-specific CTL escape muta-
tion later, at week 12. Thus, prophylactic vaccination may affect
the patterns of viral genome diversification, possibly accelerating
selection of CTL escape mutations. Interestingly, Gag,s; 549
specific CTL mutations were not detected even at week 12 in group
I animals, although a previous study observed not only the
Gag,gg.216-specific CTL escape mutation (Gagl216S), but also a
Gagyyy_p4o-specific CTL escape mutation (GagD244E) in the
chronic phase of SIV infection in 90-120-Ia-positive macaques
(9). These results indicate that delayed, naive-derived Gag,s.»;6-
specific CTL responses, as well as preceding Gag,,;_,45-specific
CTL responses, exert strong suppressive pressure on SIV replica-
tion in group III animals, implying cooperation between vaccine
antigen-specific and non-vaccine antigen-specific CTL responses
for virus control.

Rapid selection of the Gag,¢.,14-specific CTL escape mutation
(GaglL216S) in group II and delayed selection of this muta-
tion without a detectable Gag,,,_,4-specific CTL escape mutation
(GagD244E) in group III suggest that the virus with Gagl216S
(SIVmac239Gag216S) replicates more efficiently than the virus
with GagD244E (SIVmac239Gag244E) under both Gag,gs 56"
specific and Gag,,;,40-specific CTL responses. Our previous
competition assay did not find a significant difference in viral
fitness between these mutant viruses. Possibly, escape of
SIVmac239Gag216S from Gag,oe.5,6-specific CTL pressure may
be more efficient than that of SIVmac239Gag244E from
Gag,,;_»40-specific CTL pressure.

Our analysis revealed that the decline of plasma viral loads
from week 3 to week 5 in group II+1V with rapid selection of the
Gagl216S mutation was significantly less than that in group III
without the mutation at week 5, possibly reflecting viral escape
from suppressive pressure by Gag,ge.5,6-specific CTL responses in
the former groups around weeks 3 to 5. Even the comparison
between groups II and III, both showing dominant Gag,,;_»49-
specific CTL responses at week 2, revealed a significantly sharper
decline in the latter (P = 0.0087). Thus, our results suggest three
patterns of Gag,oe.,16-specific and Gag, 4, ,40-specific CTL coop-
eration for virus control after STVmac239 challenge. First, as ob-
served in group II, dominantly induced Gag,s.,;¢-specific and
Gag, 4, a40-specific CTL responses both work against wild-type
SIV replication around week 2, but then a mutant virus escaping
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from the former CTL responses is selected, and the responses work
against this mutant virus replication. Second, as observed in group
III, dominantly induced Gag,,;_,40-specific CTL responses work
against wild-type SIV replication around week 2 and then contrib-
ute to virus control, together with delayed, naive-derived
Gagype.216-specific CTL responses. Third, as observed in group IV,
dominantly induced Gag,os.,6-specific CTL responses work
against wild-type SIV replication around week 2, but then a mu-
tant virus escaping from Gag,ge_,;6-specific CTL responses is se-
lected, and delayed, naive-derived Gag,,; ,4q-specific CTL re-
sponses instead work against this mutant virus replication. Viral
loads at week 3 in group I1I looked higher than those in group IV,
implying that Gag,ge.,,6-specific CTL responses may exert a
stronger suppressive effect on SIV replication in the acute phase
than Gagy,;_,40-specific CTL responses. However, viral loads at
week 5 in group III looked lower than those in group IV, and the
comparison between the two groups showed significantly less de-
cline in the latter (P = 0.0303). It is speculated that the third
pattern observed in group IV is prone to failure in virus control.
Indeed, two of five animals in group IV failed to control SIV rep-
lication. Even if vaccines are designed to express multiple anti-
gens, of the vaccine-induced CTLs generated, only several
epitope-specific cells may recognize the incoming HIV because of
viral diversity and host MHC polymorphisms (18), and coopera-
tion of these vaccine antigen-specific and non-vaccine antigen-
specific CTL responses would be required for viral control. Thus,
our results may imply a rationale of inducing escape-resistant,
epitope-specific CTL memory by prophylactic AIDS vaccines.

In summary, this study showed dominant induction of vaccine
antigen-specific CTL responses and delay in non-vaccine antigen-
specific CTL responses in the acute phase of SIV infection, clearly
describing the impact of prophylactic vaccination on CTL immu-
nodominance and cooperation after virus exposure. Our results
indicate that the patterns of cooperation of vaccine antigen-
specific and non-vaccine antigen-specific CTL responses affect vi-
rus control and selection of CTL escape mutations. These findings
provide great insights into antigen design in the development of a
CTL-inducing AIDS vaccine.
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INTRODUCTION

Virus-specific CD8F cytotoxic T lymphocyte (CTL) responses
play a central role in the control of HIV and simian immun-
odeficiency virus (SIV) replication (Borrow et al., 1994; Koup
et al., 1994; Matano et al,, 1998; Jin et al,, 1999; Schmitz et al,,
1999; Goulder and Watkins, 2008). CTLs recognize viral antigen-
derived peptides (epitopes) presented by major histocompatibil-
ity class I (MHC-I) molecules on the surface of viral-infected
cells. Under the CTL pressure, viral mutations in and around
epitope-coding regions which result in viral escape from CTL
recognition are frequently selected with the cost of viral fit-
ness (Phillips et al, 1991; Borrow et al,, 1997; Goulder et al,,
1997; Price et al., 1997). Thus, analysis of structural and func-
tional constraints in viral proteins could facilitate determination
of effective CTLs that can limit viral escape options, contribut-
ing to immunogen design in development of CTL-inducing AIDS
vaccines.

We previously developed an AIDS vaccine using a Sendai virus
vector expressing Gag (SeV-Gag), which induces Gag-specific CTL
responses efficiently. Our analysis showed vaccine-based con-
trol of a SIVmac239 challenge in a group of Burmese rhesus
macaques possessing the MHC-I haplotype 90-120-Ia (Matano
et al., 2004; Kawada et al,, 2008). Gagyge—16 (IINEEAADWDL)
epitope-specific CTL responses exert a suppressive effect on SIV
replication and select for a CTL escape mutation, GagL2168S, lead-
ing to a leucine (L)-to-serine (S) substitution at the 216th amino
acid (aa) in Gag capsid (CA) with viral fitness costs (Kobayashi
et al., 2005). Our studies starting with this finding revealed viral
genome changes in persistent SIV infection, providing insights
into HIV/SIV evolution.

LOSS OF VIRAL FITNESS BY ESCAPE MUTATIONS AND ITS
RECOVERY BY COMPENSATORY MUTATIONS

In contrast to the SIVmac239 challenge experiment, 90-120-
Ia-positive vaccinees failed to control a challenge with another

pathogenic SIV strain, SIVsmE543-3 (Hirsch et al, 1997),
which has the same Gagype-21¢ amino acid sequence with SIV-
mac239. SIVsmES543-3 has a different amino acid (glutamate [E])
from SIVmac239 (aspartate [D]) at Gag residue 205, and this
GagD205E change resulted in escape from Gagygs-216-specific
CTL recognition, leading to failure in control of SIVsmE543-
3 replication in 90-120-Ia-positive vaccinees (Moriya et al.,
2008).

Theoretically, Gagoe-216-specific CTL responses can select for
either GagD205E or GagL216S mutation. SIVmac239-infected 90-
120-Ia-positive macaques, however, select the latter Gagl216S
mutation but not GagD205E in a year postchallenge. This
suggests a possibility that the GagD205E substitution in SIV-
mac239 results in larger reduction of viral fitness than GagL2168.
Indeed, our analysis in vitro revealed much lower replicative
ability of the virus with this GagD205E substitution, SIV-
mac239Gag205E, compared to the wild-type SIVmac239 (Ina-
gaki et al, 2010). On LuSIV cells, which contain a luciferase
indicator gene under the control of the SIVmac239 long ter-
minal repeat, STVmac239Gag205E infection showed significantly
lower luciferase activity compared to wild-type SIVmac239, indi-
cating suppression of the early phase of this mutant virus
replication.

Further passage of STVmac239Gag205E-infected culture super-
natants in vitro found an additional mutation, GagV340M, result-
ing in a valine (V)-to-methionine (M) substitution at the 340th
aa in Gag. Interestingly, STVmac239 has V while SIVsmE543-3
has M at the Gag residue 340. SIVmac239Gag205E340M showed
similar replication kinetics with wild-type SIVmac239, indicat-
ing compensation for loss of viral fitness in SIVmac239Gag205E
by addition of the GagV340M substitution. Thus, CTL escape
mutations resulting in loss of viral fitness could be selected
with compensatory mutations. Figure 1 is a schema indicat-
ing the interaction between escape and compensatory muta-
tions.
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viral fitness ++++ viral fitness +/-
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at xx

FIGURE 1 | Schema of recovery of viral fitness by a
compensatory mutation. {A) Functional interaction between amino
acid X at residue xx and Y at residue yy in wild-type viral protein is
critical for viral replication. (B) A CTL escape mutation leading to an

A B

amino acid X af residue xx amino acid U at residue xx
wild type CTL escape mutation

amino acid Y at residue yy amino acid Y at residue yy
wild type wild type

Cc

amino acid U at residue xx
CTL escape mutation

amino acid V at residue yy
compensatory mutation

viral fitness +++

Y (wt)
atyy

amino acid change from X to U at residue xx results in loss of viral
fitness. (C) An additional compensatory mutation leading to an amino
acid change fromY toV partially or fully restores viral function and
replication.

GAG CA INTERMOLECULAR INTERACTION

The Gag CA is comprised of the N-terminal (NTD) and the C-
terminal domains (CTD) (Momany et al., 1996; Gamble et al,,
1997; Berthet-Colominas et al., 1999). Modeling of CA monomer
structure showed that the Gag 205th residue is located in the helix
4 of CANTD and the 340th is in the loop between helices 10 and
11 of CTD. A possibility of intramolecular contact between Gag
residues 205 and 340 is not supported by this modeling. However,
CA molecules are known to form hexamer lattice in mature virions
(Ganser et al,, 1999; Li et al., 2000; Ganser-Pornillos et al, 2007,
2008; Pornillos et al., 2009). Modeling of CA hexamer structure
revealed that the Gag 205th residue is located in close proximity
to the 340th of the adjacent CA molecule. The molecular model
of CA hexamers incorporating the GagD205E substitution sug-
gested shortening of the distance between Gag205 and Gag340
residues, which appeared compensated by GagV340M substi-
tution. Thus, there may be intermolecular interaction between
Gag residues 205 and 340 in CA hexamers. This is consistent
with our results obtained by viral core stability assay. The core
stability was reduced by the GagD205E substitution but recov-
ered by the GagV340M substitution. Loss of viral fitness by
GagD205E and its recovery by GagV340M implies a structural
constraint for functional interaction between CA NTD and CTD
involved in the formation of CA hexamers. In addition to pre-
vious reports on intramolecular compensation for loss of viral
fitness by CTL escape mutations (Friedrich et al., 2004a; Crawford
etal., 2007), our results present evidence indicating intermolecular
compensation.

REPLACEMENT OF A CTL ESCAPE MUTATION WITH AN
ALTERNATIVE ESCAPE MUTATION TOWARD HIGHER VIRAL
FITNESS

As stated above, SIVmac239-infected 90-120-Ia-positive macaques
usually select the Gagyos-a16-specific CTL escape mutation,
GagL216S, but not GagD205E in a year postchallenge. After that,
however, we found that the GagD205E mutation together with
GagV340M became dominant instead of GagL216S in a 90-120-
Ia-positive macaque (Inagalki etal,, 2010). In this macaque, neither
GagD205E nor GagV340M was detected until week 123 after SIV-
mac239 challenge, but both became detectable at week 137 and
were dominant at week 150. In contrast, the GagL216S mutation
dominant until week 123 was undetectable at week 150. Thus, in
this animal, STVmac239Gag216S, whose replicative ability is lower
than wild-type SIVmac239 but higher than SIVmac239Gag205E,
became dominant under Gagage-216-specific CTL pressure in the
early phase, while in the later phase, this mutant virus was replaced
with SIVmac239Gag205E340M, whose replicative ability is similar
with the wild-type. This indicates replacement of a CTL escape
mutation with an alternative escape mutation toward higher
viral fitness in the chronic phase, implying persistent Gagaos-216-
specific CTL pressure for more than 2 years after selection of the
CTL escape mutation.

MULTIPLE VIBAL GENOME CHANGES UNDER CTL PRESSURE
In another study (Kawada et al.,, 2006), we observed accumu-
lation of multiple CTL escape mutations in viral genomes in
SIV-infected macaques. SeV-Gag-vaccinated animals possessing
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MHC-I haplotype 90-120-Ia elicited Gagyos-216-specific CTL
responses and controlled viral replication with rapid selec-
tion of the Gagl216S mutation after SIVmac239 challenge.
Among these SIV controllers, two animals (V3 and V5) accu-
mulated additional gag mutations and showed reappearance
of plasma viremia around week 60 postchallenge. Both ani-
mals first selected a Gagai—p49 epitope-specific CTL escape
mutation leading to a GagD244E (aspartic acid [D] to glu-
tamic acid [E] at the 244th aa in Gag) substitution, and then,
a Gagsys_3gp epitope-specific CTL escape mutation leading to
a GagA373T (alanine [A] to threonine [T] at the 373rd) or
GagP376S (proline [P] to S at the 376th) substitution dur-
ing the period of viral control. At the viremia reappearance,
SIVmac239Gag2165244E2471312V373T with five gag mutations,
L216S, D244E, 1247L (isoleucine [I] to L at the 247th), A312V (A
to V at the 312th), and A373T, became dominant in one of them
(V5),and SIVmac239Gag145A2165244E376S with four gag muta-
tions leading to V145A (V to A at the 145th), L216S, D244FE, and
P376S became dominant in the other (V3). These viruses with
multiple gag mutations showed lower replicative ability in vitro
than SIVmac239Gag216S carrying single Gagl216S mutation.
Indeed, STVmac239Gag2165244E247L312V373T carrying five gag
mutations had lower replicative ability in vitro compared to SIV-
mac239Gag2165244E373T carrying three gag mutations. These
results suggest that selection of CTL escape mutations even with
viral fitness costs could be advantageous for viral replication in vivo
under CTL pressure.

SIV TRANSMISSION INTO MHC-MISMATCHED HOSTS
DRIVES FURTHER VIRAL GENOME CHANGES

Previous studies (Friedrich et al., 2004b; Kobayashi et al., 2005;
Loh et al, 2007) reported reversion of CTL escape mutations
in the absence of CTL pressure by transmission of SIVs carry-
ing single escape mutations between MHC-mismatched hosts.
SIVs carrying CTL escape gag mutations selected in 90-120-Ia-
positive macaques showed lower replicative ability in vitro. We
then examined in vivo replicative ability of those SIVs carrying
CTL escape mutations in 90- 120-Ia-negative macaques (Sekietal.,
2008). Coinoculation of macaques with SIVmac239GagL216S and
SIVmac239Gag216S244E373T resulted in rapid selection of the
former; i.e., D244E and A373T mutations were undetectable even
in the acute phase, indicating lower replicative ability in vivo of
the latter carrying three escape mutations than the former. Rever-
sion of L2165 was observed in a few months, confirming lower
replicative ability in vivo of SIVmac239Gag216S than wild-type
SIVmac239. Further competition indicated lower replicative abil-
ity in vivo of SIVmac239Gag216S244E2471312V373T carrying
five gag mutations than SIVmac239Gag216S244E373T carrying
three.

We next examined viral genome changes after challenge of
90-120-Ia-negative macaques with SIVs carrying multiple CTL
escape mutations selected in 90-120-Ia-positive macaques. Chal-
lenge with SIVs carrying five gag mutations, 1.216S, D244E, 12471,
A312V, and A373T, resulted in persistent viremia in all four 90-
120-Ia-negative macaques. Two animals exhibited higher viral

HIV genome

MHC.I
type P

Escape

Escape

Compensatory
mutation

Reversion Reversion

FIGURE 2 | Schema of HIV/SIV transmission resulting in accumulation of
multiple viral mutations. Multiple CTL escape mutations resulting in viral
fitness costs do not always revert rapidly even in the absence of CTL
pressure after their transmission into HLA/MHC-mismatched hosts and such

Compensatory
mutation

mutants can be transmitted further to other hosts. New escape mutations
and compensatory mutations are also observed with transmissions. Thus,
CTL affects HIV/SIV evolution in individuals with divergent HLA/MHC
polymorphisms.
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loads. One of them rapidly developed AIDS at week 18 while the
other developed AIDS 2 years postchallenge. The former showed
reversion of 1247L and A312V but still had three CTL escape
mutations, 1216S, D244E, and A373T at AIDS onset. The latter
showed reversion of four mutations in a year postchallenge, but
the A373T mutation remained dominant without reversion until
AIDS onset. In the remaining two animals that exhibited lower
viral loads, multiple gag mutations including 1.216S and D244E
were still dominant without reversion 1 year after challenge.

Thus, in the experiment of challenge with SIVs carrying mul-
tiple CTL escape mutations, the reversion of all the mutations
was not required for AIDS onset, while transmission with SIVs
carrying single CTL escape mutations showed their rapid rever-
sion. This suggests that even HIVs accumulating multiple CTL
escape mutations with viral fitness costs can induce persistent viral
infection leading to AIDS progression after their transmission into
HLA/MHC-mismatched individuals.

The reversion of the L216S mutation was delayed or not
observed after challenge with SIVs carrying multiple gag muta-
tions, whereas challenge with SIVmac239Gag216S resulted in its
reversion in a few months. This may be due to the predominant
selection of the reversion of other mutations, compensatory muta-
tions, or to lower viral replication efficiency in the former case.
Our results suggest that CTL escape mutations resulting in viral
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Flow cytometric analysis is a reliable and convenient method for investigating molecules
at the single cell level. Previously, recombinant human immunodeficiency virus type 1
(HIV-1) strains were constructed that express a fluorescent reporter, either enhanced
green fluorescent protein, or DsRed, which allow the monitoring of HIV-1-infected cells by
flow cytometry. The present study further investigated the potential of these recombinant
viruses in terms of whether the HIV-1 fluorescent reporters would be helpful in evaluating
viral replication based on fluorescence intensity. When primary CD4* T cells were infected
with recombinant viruses, the fluorescent reporter intensity measured by flow cytometry
was associated with the level of CD4 downmodulation and Gag p24 expression in infected
cells. Interestingly, some HIV-1-infected cells, in which CD4 was only moderately down-
modulated, were reporter-positive but Gag p24-negative. Furthermore, when the activation
status of primary CD4* T cells was modulated by T cell receptormediated stimulation, we
confirmed the preferential viral production upon strong stimulation and showed that the
intensity of the fluorescent reporter within a proportion of HIV-1-infected cells was cor
related with the viral replication level. These findings indicate that a fluorescent reporter
encoded within HIV-1 is useful for the sensitive detection of productively infected cells at
different stages of infection and for evaluating cell-associated viral replication at the single
cell level.

Keywords: HIV-1, flow cytometry, EGFP, DsRed, Gag, productive infection

INTRODUCTION

Human immunodeficiency virus type 1 (HIV-1) interacts with
its primary receptor, CD4, and a co-receptor, usually CCR5
or CXCR4, to infect T cells, macrophages, and dendritic cells
(Mcclure et al., 1987; Berger et al, 1999; Tsunetsugu-Yokota,
2008). Single cell analysis of HIV-1-infected cells is an essen-
tial approach to investigate the differential dynamics of HIV-
1 infection and the cellular consequences for each of the
HIV-1-targeted cell populations. To monitor HIV-1 infection,
a recombinant HIV-1 encoding a reporter luciferase (Luc)
gene, or indicator cells transduced with enzymatic reporters
such as Luc, B-galactosidase, alkaline phosphatase, and chlo-
ramphenicol acetyl transferase, incorporated downstream of the
HIV-1 long terminal repeats (LTR) have been widely used
(Kar-Roy et al.,, 2000). However, these reporters require addi-
tional substrates or co-factors, and lysis or fixation of cells is
required to show reporter activity, which makes the experimen-
tal process more complex. In addition, it is difficult to distin-
guish infected cells from uninfected cells using these reporter
assays.

An alternative molecule, green fluorescent protein (GFP)
and/or its derivatives, is a powerful reporter that does not require
any substrates and co-factors to generate a reporter signal (Chal-
fie, 1995; Cubitt et al,, 1995; Heim et al., 1995). Page et al. (1997)
first used a GFP derivative, called enhanced green fluorescent pro-
tein (EGFP), as a fluorescent reporter molecule for HIV-1 and
showed that infected cells were detectable and, more importantly,
distinguishable from uninfected cells using flow cytometry. Fur-
thermore, a red fluorescent protein, DsRed, has been used as an
HIV-1 fluorescent reporter (Weber et al., 2006). The main ben-
efit of such recombinant HIV-1 molecules is that the targeted
cells do not require any modulation (e.g., transfection) of exoge-
nous reporter genes and, therefore, they allow the characterization
of intact HIV-1-infected cells. In most cases of previous recom-
binant HIV-1 strains, the nef gene was replaced with a reporter
gene. Therefore, we previously constructed nef-intact, replication-
competent, recombinant HIV-1 strains encoding either EGFP
or DsRed, and showed that CXCR4-tropic X4 and CCR5-tropic
RS viruses replicate differently in CD4™ T cells simultaneously
infected with X4 HIV-1 encoding EGFP and R5 HIV-1 encoding
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DsRed (Yamamoto et al., 2009). Such recombinant HIV-1 strains
encoding a fluorescent reporter gene will be even more valuable
because of recent advances in multicolor flow cytometry, which
permit more detailed characterization of HIV-1-infected cells.

Flow cytometry is a reliable and convenient method for analy-
sis at the single cell level. Because the transcriptional activity of
HIV-1 can be quantitatively monitored in indicator cells accord-
ing to the fluorescence intensity of an EGFP reporter driven by the
HIV-1LTR (Dorsky et al., 1996; Gervaix et al., 1997; Kar-Roy et al.,
2000), we investigated whether the HIV-1-expressing fluorescent
reporters EGFP and DsRed would allow the quantitative evalua-
tion of viral replication using a flow cytometer. The results show
that a fluorescent reporter signal generated by recombinant HIV-1
strains enables the detection of infected cells at various stages of
the viral life cycle.

MATERIALS AND METHODS

CELL PREPARATION

Human peripheral blood samples were collected from healthy
donors after written informed consent. Sample collection was
approved by the Institutional Ethical Committee of the National
Institute of Infectious Diseases (NIID; Tokyo, Japan). Peripheral
blood mononuclear cells (PBMCs) were separated on a Ficoll-
Hypaque density gradient (Lymphosepal; IBL, Gunma, Japan)
and CD4% T cells were negatively selected from the PBMCs
using an EasySep Human CD4™ T cell Enrichment Kit (StemCell
Technologies, Vancouver, BC, Canada).

CEM cells stably expressing human CCR5 (CEM-CCR5)
were established by transducing CEM cells with the human
ccr5 gene using a conventional mouse retrovirus system. CEM~
CCR5 cells were maintained in complete RPMI medium
(10% heat-inactivated fetal bovine serum, 100 g/ml penicillin,
100 pg/ml streptomycin, and 2 mM r-glutamine) supplemented
with 1 pg/ml puromycin at 37°C.

PREPARATION OF HIV-1 VIRUS STOCKS

We previously constructed pNL432-based proviral clones encod-
ing EGFP (pNL-E) or DsRed (pNL-D) for X4-tropic HIV-1nL.g
or HIV-1n1.p, respectively, and pNLAD8-based proviral clones
encoding EGFP (pNLADS-E) or DsRed (pNLADS8-D) for R5-
tropic HIV-1n1aps-E or HIV-In14Ds-D» respectively (Yamamoto
etal., 2009; Figure 1). To prepare the HIV-1 viral stocks, the human
embryonic kidney cell line 293T was transfected with pNL-E, pNL-
D,pNLADS-E, or pNLADS-D using the calcium phosphate precip-
itation method and then incubated for 48 h. Culture supernatants
were filtered and frozen at —80°C. The amount of virus in each cul-
ture supernatant was measured using an in-house HIV-1 Gag p24
enzyme-linked immunosorbent assay (ELISA; Tsunetsugu-Yokota
et al, 1995).

STIMULATION OF T CELL RECEPTORS

T cell receptors (TCR) were stimulated as described previously
(Yarmamoto et al., 2009) with some modifications. In brief, primary
CD4™* T cells were suspended in complete RPMI medium supple-
mented with 5% human plasma and stimulated with 5 pg/ml of
immobilized anti-human CD3 monoclonal antibody (mAb; eBio-
science, San Diego, CA) and 1 ug/ml of soluble anti-human CD28

gag
LTR LTR
pol
> v Linker

pNL-E ! env (NL432) ¢

pNL-D I env (NL432)
pNLADB-El env (ADB)
pNLADB-D‘ env (AD8)

nefinitiation

FIGURE 1 | Structure of the proviral DNA. The pNL432-based proviral
clones encoded EGFP (pNL-E) or DsRed (pNL:D) for X4-tropic HIV-1y.e or
HiV-1y.0, respectively, and the pNLAD8-based proviral clones encoded
EGFP (pNLADS-E) or DsRed (pNLADS8-D) for R5-tropic HIV-1yapse OF
HIV-1yiacs0. respectively. EGFP or DsRed was not expressed as a fusion
protein with Env due to the insertion of a single base after the Env stop
codon. Nef was also independently expressed under the control of IRES. t
(Thymine) and g (guanine) are additional DNA sequences.

mADb (eBioscience) in U-bottom, 96-well plates at 37°C for 4 (weak
stimulation) or 24 h (strong stimulation).

HIV-1 INFECTION AND CELL CULTURE

Primary CD4% T cells (either unstimulated or pre-TCR-
stimulated) or CEM—CCRS5 cells were infected with 200 ng of
p24-measured amounts of HIV-1xp.g, HIV-1N1-p, HIV-1N1ADS-E>
or HIV-1nraps.p per 1 x 10 cells by spinoculation at 1200 x g
for 2h at 25 (conventional conditions) or 4°C (for CEM-CCR5
cells), as described previously (O’doherty et al., 2000; Dai et al,,
2009). After spinoculation, cells were washed three times with PBS.
Primary CD4" T cells were then suspended in complete RPMI
medium supplemented with 5% human plasma. The cell suspen-
sions derived from unstimulated or pre-TCR-stimulated CD4™
T cells were settled onto U-bottom, 96-well plates with or with-
out TCR-stimulation, respectively, at 37°C for 24 h, After the 24h
culture, cells were washed three times with PBS, suspended in com-
plete RPMI medium supplemented with 5% human plasma and
50 U/ml recombinant interleukin-2, and cultured in U-bottom,
96-well plates at 37°C for up to 4 days.

FLOW CYTOMETRY

Cells were stained with fluorescence-conjugated mAbs as
described previously (Yamamoto et al., 2009). The following mAbs
were used for flow cytometry in various combinations: Pacific
Blue-conjugated anti-human CD3 mAb (BioLegend, San Diego,
CA, USA), phycoerythrin Cy7-conjugated anti-human CD4 mAb
(BioLegend), and Alexa Fluor 700-conjugated anti-human CD8a
mAb (BioLegend); and Nu24 mAb specific for HIV-1 Gag p24
(kindly provided by Dr. T. Sata, NIID, Tokyo, Japan) and conju-
gated to Alexa Fluor 647 using an Alexa Fluor 647 Protein Labeling
Kit (Molecular Probes, Eugene, OR, USA). Dead cells were stained
with propidium iodide or a LIVE/DEAD Fixable Dead Cell Stain
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Kit (134957; Invitrogen, Carlsbad, CA, USA). Intracellular stain-
ing (ICS) by Nu24 mAb was performed using a FIX and PERM
Fixation and Permeabilization Kit (Invitrogen). Data collection
was performed using a FACSCanto II (BD Bioscience, San Diego,
CA, USA) and the data were analyzed using FACSDiva software
(BD Bioscience) and FlowJo software (Tree Star, San Carlos, CA,
USA).

QUANTIFICATION OF REPLICATED HIV-1 IN CELL CULTURE
SUPERNATANTS

Human immunodeficiency virus type 1 replication was quantified
in cell culture supernatants by ELISA and real-time RT-PCR. Gag
p24 was measured using a RETRO-TEK HIV-1p24 Antigen ELISA
(ZeptoMetrix Corporation, Buffalo, NY, USA). For real-time RT-
PCR, viral RNA was extracted using a QIAamp Viral RNA Mini Kit
(Qiagen, Valencia, CA, USA) and subjected to real-time RT-PCR
using a SuperScript I1I Platinum One-Step Quantitative RT-PCR
System (Invitrogen), a set of HIV-1 gag-targeted primers, and a
TagMan probe as previously described (Saito et al., 2010). PCR
was performed in an Mx3000P (Stratagene, La Jolla, CA, USA).

RESULTS

CD4 DOWNMODULATION IS ASSOCIATED WITH HIV-1 FLUORESCENT
REPORTER INTENSITY

The cell surface CD4 molecule is downmodulated in HIV-1-
infected cells in response to the HIV-1 components Env, Nef,
and Vpu (Malim and Emerman, 2008). Therefore, to investi-
gate the correlation between the level of CD4 downmodulation
and the HIV-1 fluorescent reporter intensity, primary CD4% T
cells infected with HIV-1ny-g, HIV-1n1-p, HIV-1N1ADS-E, Or HIV-
InLADs-D followed by TCR-stimulation for 1day and cultivation
for a further 4 days were analyzed by flow cytometry. As shown in
Figure 2 (left panels), HIV-1-infected cells expressing a fluores-
cent reporter signal, EGFP, or DsRed, were detected, although the
numbers varied between individual donors (# = 3-4): about 10—
30% for X4-tropic HIV-1ypp-infected and HIV-1ny.p-infected
cells and 1-10% for R5-tropic HIV-1npaps-g-infected and HIV-
InpaDs.D-infected cells. However, the number of HIV-17 cells
was comparable between HIV-1y1.g and HIV-1np.p (X4-tropic),
and between HIV-1n1aps.g and HIV-1npaps.p (R5-tropic) within
each donor, showing that the fluorescent reporter genes encoded
within the HIV-1 proviral genome did not affect HIV-1 infectivity
as described previously (Yamamoto et al., 2009). When we cate-
gorized CD3+CD8™ T cells into three fractions (HIV-1-negative,
-dull, and -high) based on the fluorescence intensity of EGFP and
DsRed, we found that CD4 was strongly downmodulated in the
HIV-1 high fraction in all the HIV-1 strains (Figure 2, right pan-
els). Interestingly, CD4 was also downmodulated in the HIV-1
dull fraction, but the level was modest compared with that in the
HIV-1 high fraction (Figure 2, right panels). These results indicate
that the level of CD4 downmodulation is associated with HIV-1
fluorescent reporter intensity.

FIXATION/PERMEABILIZATION WEAKENS THE HiV-1 FLUORESCENT
REPORTER SIGNAL

To investigate the correlation between HIV-1 fluorescent reporter
intensity and viral replication levels, we attempted to perform ICS

for Gag p24 in HIV-1-infected cells prepared as described above.
When we observed X4-tropic HIV-1ny-g-infected and HIV-1n1..p-
infected cells from three donors by flow cytometry, we noticed
that fixation/permeabilization, an essential step for ICS, weak-
ened the fluorescent reporter signal for both EGFP and DsRed.
Figure 3 shows the flow cytometry profiles obtained for EGFP and
DsRed at identical photomultiplier tube (PMT) voltages between
intact (untreated) cells and fixed/permeabilized cells to visualize
the differences in fluorescent reporter intensity. DsRed™ cells were
not properly separated from DsRed™ cells within the population
treated by fixation/permeabilization; the frequency of DsRed™
cells was, therefore, markedly decreased. No adjustment of the flow
cytometer settings, including PMT voltage and compensation,
improved the blunted fluorescent reporter signal generated after
fixation/permeabilization. Nevertheless, the number of EGFP"
cells within the intact cell and fixed/permeabilized cell populations
was comparable, Similar results were obtained for R5-tropic HIV-
InraDs-E and HIV-1ypaps.p (data not shown). Taken together,
these results indicate that it is preferable to use an EGFP reporter
when the fixation/permeabilization of cells is required.

HIV-1 FLUORESCENT REPORTER SIGNALS RELIABLY DETECT
PRODUCTIVELY INFECTED CELLS SHOWING DIFFERENT VIRAL
REPLICATION LEVELS

Following the results shown in Figure 3, we next assessed viral
replication levels in the HIV- 1y infection group (5 days culture)
from six donors using Gag p24 ICS (Figure 4). A representative
flow cytometric analysis showed that not all EGFP* cells were
Gag™ and vice versa. When CD4 expression levels were compared
in each of the four cell fractions based on the expression patterns
of EGFP and Gag p24 (EGFP*Gag*, EGFP*Gag™, EGFP~Gag™,
and EGFP~Gag™), the strongest downmodulation of CD4 was
observed in EGFP*Gag™ cells (red fraction). CD4 downmodula-
tion was moderate in EGFP* Gag™ cells (green fraction). However,
CD4 was not downmodulated at all in EGFP~Gag™ cells (blue
fraction) and the expression level of CD4 was the same as that
in EGFP~Gag™ cells (black fraction). We further divided the
EGFP*Gagt cells (red fraction) into Gaghi (brown fraction) and
Gagl® cells (pink fraction) and compared the expression levels of
EGFP and CD4 with those of Gag p24. Gag" cells (brown frac-
tion) showed the strongest expression of EGFP and the strongest
downmodulation of CD4. Gag®® cells (pink fraction) showed an
intermediate level of EGEP expression [between that of Gag™ cells
(brown fraction) and that of EGFP+Gag™ cells (green fraction)]
and CD4 expression [between that of Gagh' cells (brown fraction)
and EGFP~Gag™ cells (black fraction)]. These results indicate that
the expression level of EGFP correlates with that of Gag p24 in
HIV-1-infected cells in which CD4 is downmodulated.

HIV-1-BOUND OR -INTERNALIZED CELLS ARE ALSO DETECTED BY Gag
p241CS

Because CD4 downmodulation was not observed in EGFP~Gag™
cells (Figure 4; blue fraction), it is possible that these cells may
still be bound by or have internalized HIV-1 but have not pro-
duced virions. Therefore, we next investigated the kinetics of
EGFP~Gag" cells during 5 days post-infection. Primary CD4™
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FIGURE 2 | Flow cytometry analysis of HIV-1-infected cells. Unstimulated the Dead~/CD3*/CD8--gated cell fractions from three donors. Cells were
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and cultured for 5 days (including the initial 1 day culture with reporter intensity. (Right panels) histograms of CD4 expression by the high
TCR-stimulation). (Left panels) representative pseudo-color plot profiles for {red), dull (blue), and negative (black) fractions defined.

T cells from three donors were infected with HIV-1np.g fol-
lowed by TCR-stimulation for 1 day and cultivation for a further

4 days. Figure 5A shows a representative flow cytometric analysis.
At 1 day post-infection, 17.6% of Gag p24™ cells were observed,

Frontiers in Microbiology | Virology

January 2012 | Volume 2 | Article 280 | 4

1m



Terahara et al.

Application of HIV-1 fluorescent reporters

Donor #1
Mock
4 ) A
802
Intact
Q. < . oot 8
L. B om e MO 2 PSS T %
Q a
w
801
Fix/Perm
5 &x mm wmm s ae
SSC-H
Donor #2
Mock
A
8.01
Intact
g: 3
6} B
m %
o 4.8 224
Fix/Perm
Donor #3
Mock Mock
5
o 0.61 8.83
Intact
w
0.6 g.82 374
Fix/Perm
ef
SSC-H .
FIGURE 3 | Influence of fixation/permeabilization treatment on HiV-1 (NLE), and HIV-1,., infection (NL:D) groups from all three donors tested.
fluorescent reporter signals. Pseudo-color plot profiles for the Analyzed cells were prepared as outlined in the legend to Figure 2 and then
Dead-/CD3+/CD8--gated cell fractions from the mock, HIV-1y.e infection either fixed/permeabilized (fix/perm) or not (intact).

despite the fact that no EGFP™ cells were detected. At 2 days post-
infection, the proportion of EGFP~Gag™ cells was decreased and

EGFPT cells including Gag p24™ and Gag p24~ cells became
to be observed, suggesting that initially infecting HIV-1 was
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EGFP+Gag- (green), EGFP-Gag* (blue}), EGFP-Gag~ (black), Gag™ (brown),
and GagP (pink) cell fractions were categorized based on the expression
patterns of EGFP and Gag p24. The expression levels of CD4 and EGFP in
each cell fraction were compared according to their histogram profiles.

degraded and/or replaced with replication-competent proviruses.
After 3 days post-infection, EGFP* cells were clearly visible and
the proportion of EGFP~Gag™ cells turned to be increased, sug-
gesting that progeny virus infection occurred. Because the CD4
expression levels were identical between EGFP~Gag* cells and
EGFP~Gag™ cells throughout the culture period, Gag p24 ICS
must have detected cells that had bound or internalized HIV-1.
CEM~CCRS5 cells, which are almost as susceptible to X4 and
R5 HIV-1 fusion (data not shown), were used to confirm that
Gag p24 ICS did indeed detect HIV-1-bound cells. Also, because
it has been suggested that spinoculation at 25°C may induce
HIV-1 fusion to the targeted cells (Dai et al., 2009), we tested
Gag p24 ICS using CEM~CCRS5 cells immediately after spin-
oculation with X4-tropic HIV-1n1-g or R5-tropic HIV-1aps.k
at 4°C. When cells were not fixed/permeabilized, no Gag p24*

cells were detected by flow cytometry (Figure 5B, upper pan-
els); however, when cells were fixed/permeabilized, a substantial
proportion of Gag* cells was detectable in both the HIV-1n.
and HIV-14pg.g infection groups (Figure 5B, lower panels). Taken
together, these results indicate that cells that have bound or inter-
nalized HIV-1 can be detected using flow cytometry for Gag p24
ICS.

THE INTENSITY OF THE HIV-1 FLUORESCENT REPORTER SIGNAL
DEPENDS ON TCR-MEDIATED ACTIVATION LEVELS

T cell receptors-mediated activation of HIV-1-infected CD4T T
cells increased productive viral replication, although the signaling
pathway responsible may be different for X4 and R5 HIV-1 (Popik
and Pitha, 2000). We investigated whether the intensity of the
HIV-1 fluorescent reporter signal was affected by TCR-mediated
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activation levels. In this experiment, primary CD4" T cells from
four donors were individually pre-stimulated via the TCR for 4
(weak stimulation) or 24h (strong stimulation), infected with
HIV-Inp-g, and then cultured for a further 3 days. First, we con-
firmed that this experimental protocol allowed the preferential
production of HIV-1xyg upon strong stimulation in all donors by
examining the cell culture supernatants by ELISA (Figure 6A) and
real-time RT-PCR (Figure 6B). Flow cytometric analysis of intact
cells showed that HIV-1xp g+ (EGFP™) cells were more preva-
lent after strong stimulation than after weak stimulation, although
the proportion of HIV-1npg* cells varied among individuals
(Figure 6C, upper and middle panels). The PMT voltage was opti-
mized for EGFP to prevent excessive EGFP signaling (Figures 2
and 3). Of note, EGFP expression by HIV-1x; g™ cells was lower in
the weak stimulation group than in the strong stimulation group
(as observed in donors #4 and #5), and EGFP expression in the
weak stimulation group approached that in the strong stimulation
group in parallel with the increase in the number of HIV-1np g
cells (as observed in donors #6 and #7; Figure 6C, lower pan-
els). Taken together, these results show that the intensity of the
fluorescent reporter is highly correlated with the viral replication
level.

DISCUSSION

Flow cytometric analysis is a reliable and convenient method for
detecting HIV-1-infected cells at a single cell level. Here, we stud-
ied the potential usefulness of several HIV-1 fluorescent reporters
that have been published previously (Yamamoto et al., 2009). We
examined whether they would be helpful for evaluating viral repli-
cation levels based on their fluorescence intensity. In this study,
we used recombinant HIV-1 encoding either EGFP or DsRed
to show that the fluorescence intensity of the EGFP and DsRed
reporters was associated with the level of CD4 downmodulation
(Figure 2). Furthermore, we showed that EGFP intensity was asso-
ciated with the expression level of Gag p24 (Figure 4). These
findings clearly indicate that fluorescent reporter intensity is useful
for evaluating viral replication levels. To confirm this argument,
we further compared the fluorescent reporter intensity of HIV-
1-infected cells that were strongly or weakly stimulated via the
TCR. As expected, higher levels of HIV-1 replication/production
occurred in strongly stimulated cells from all the donors tested
(Figure 6A,B). Although the proportion and EGFP intensity of
the HIV-1-infected cells varied among individuals, this might be
due to differing susceptibility to HIV-1 and/or TCR-stimulation.
Thus, the variability in EGFP expression is rather favorable to
our argument, as increased EGFP intensity was associated with
an increase in the number of HIV-1-infected cells after weak
stimulation (Figure 6C).

Although Gag p24 ICS is usually used for flow cytomet-
ric analysis of other markers, we showed that it can also be
used to detect cells that have internalized or bound HIV-1
(Figure 5A,B). However, Gag p24 ICS did not appear sensi-
tive enough to detect HIV-1-infected cells because some HIV-
1-infected cells in which CD4 was moderately downmodulated
were identified as positive for EGFP but negative for Gag p24
(Figure 4). Bosque and Planelles (2009) also identified a small
population of such reporter-positive but Gag p24-negative cells

by flow cytometry when CD4™ T cells were infected with EGFP-
encoded DHIV incorporating a small out-of-frame deletion in
the gp120-encoding area and pseudotyped with X4-tropic HIV-
11aL, and assumed that these cells were at an early stage of the
infection process and did not display late viral proteins. There-
fore, our own findings indicate that it is the HIV-1 fluorescent
reporter, rather than Gag p24 staining, that reliably detects HIV-
1-infected cells at different stages of infection in flow cytometry
experiments.

It is known that maturation of DsRed for coloration is usually
slower compared with EGFP (Bevis and Glick, 2002; Maruyama
et al.,, 2004). When we focused on the HIV-1 dull fraction in
Figure 2, we found that CD4 downmodulation was stronger in
DsRed* cells than in EGFPT cells. These results suggest that
the EGFP reporter is preferable to the DsRed reporter for detec-
tion of earlier stage of infection. Furthermore, the detrimental
effect of fixation/permeabilization on fluorescent reporter inten-
sity, particularly when using the DsRed reporter, should be noted
(Figure 3). Although the detailed mechanism remains obscure,
this may result from the lower fluorescence intensity of DsRed
compared with EGFP. A similar phenomenon was described
regarding fixation with 3% paraformaldehyde, which significantly
decreases the fluorescence intensity of DsRed, although specific
data were not provided (Weber et al., 2006). Regardless of the
weakened signal, the EGFP reporter is still compatible with fix-
ation/permeabilization because the proportion of EGFPT cells
was comparable between intact cells and fixated/permeabilized
cells (Figure 3). Therefore, the EGFP reporter still maintains an
advantage for analyses of cytokine/chemokine production and
proliferation assays based on Ki-67 expression, for which ICS is
necessary.

The HIV-1 fluorescent reporter has a potential applica-
tion in molecular biology. In general, ICS-treated cells are not
suitable for analysis using molecular biology techniques, since
formaldehyde-based fixation (required for ICS) makes RNA
extraction and reverse transcription and quantification problem-
atic (Farragher et al., 2008) because of chemical cross-linking
of proteins and nucleic acids (Kuykendall and Bogdanffy, 1992;
Finke et al, 1993; Park et al, 1996), degradation of RNA
(Bresters et al., 1994), and covalent modification of RNA via
the addition of monomethylol groups to the bases (Masuda
et al,, 1999); therefore, by using the HIV-1 fluorescent reporter,
HIV-1-infected cells can be sorted/purified without the need
for fixation, allowing further characterization at a molecular
level.

Given the usefulness of the HIV-1 fluorescent reporter shown
here, it would also be very useful for investigating the mecha-
nisms involved in the selective replication of R5 HIV-1 over X4
HIV-1 during the acute phase in vivo (Wolinsky et al., 1992;
Zhu et al,, 1993; van’t Wout et al,, 1994) and in cell culture sys-
tems in vitro (Schweighardt et al., 2004; Roy et al., 2005). We
previously developed an in vitro dual infection model using EGFP-
encoded X4 HIV-1 (HIV-1x1.r) and DsRed-encoded R5 HIV-1
(HIV-1aps-p) and showed that the increase in the proportion of
X4 HIV-1-infected cells is dependent upon their activation level
(Yamamoto et al,, 2009). Furthermore, the results of the present
study show that the fluorescence intensity of the reporter molecule
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can be used to assess the level of viral replication in infected
cells; therefore, by focusing on the HIV-1-infected cells and the
fluorescent reporter intensity in the dual infection model, the
detailed mechanism(s) of HIV-1 infection/pathogenesis can be
clarified. In this regard, we have been investigating the dynamics
of HIV-1 infection in vivo using humanized mice infected simul-
taneously with EGFP-encoded X4 HIV-1 (HIV-1y1.g) and DsRed-
encoded R5 HIV-1 (HIV-1sps.p; Ishige et al., in preparation). We
believe that the advantages of the recombinant HIV-1 fluorescent
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Abstract

The viral protein Nef is a key element for the progression of HIV disease. Previous in vitro studies
suggested that Nef expression in T-cell lines enhanced TCR signaling pathways upon stimulation
with TCR cross-linking, leading to the proposal that Nef lowers the threshold of T-cell activation, thus
increasing susceptibility to viral replication in immune response. Likewise, the in vivo effects of Nef
transgenic mouse models supported T-cell hyperresponse by Nef. However, the interpretation is
complicated by Nef expression early in the development of T cells in these animal models. Here, we
analyzed the consequence of Nef expression in ovalbumin-specific/CD4* peripheral T cells by using
a novel mouse model and demonstrate that Nef inhibits antigen-specific T-cell proliferation and
multiple functions required for immune response in vivo, which includes T-cell helper activity for the
primary and memory B-cell response. However, Nef does not completely abrogate T-cell activity, as
defined by low levels of cytokine production, which may afford the virus a replicative advantage.
These results support a model, in which Nef expression does not cause T-cell hyperresponse in
immune reaction, but instead reduces the T-cell activity, that may contribute to a low level of virus
spread without viral cytopathic effects.

Keywords: AIDS, acquired immunity, humoral response

Introduction

The Nef protein of the primate lentiviruses HIV-1/2 and the components of endocytic trafficking machinery (reviewed in
simian immunodeficiency virus (SIV) is expressed from the ref. 1; refs 2-7).

earliest stage of viral gene expression (reviewed in ref. 1). Nef reduces surface level receptors, including CD4, the
Nef-defective viruses cause a slow progression of clinical primary receptor for HIV and SIV and MHC class | and class |
disease with reduced viral loads in humans and rhesus mac- complex, facilitating HIV immune evasion and thus increases

aques with HIV-1/2 and SIV infection, respectively, indicating viral pathogenesis (reviewed in ref. 1). Additionally, exten-
that Nef plays a crucial role in viral pathogenesis in human sive in vitro studies, mostly carried out by using human T-cell
and non-human primates (reviewed in ref. 1). Nef associates lines, have suggested that Nef expression enhances TCR-
with host cell membranes through N-terminal myristoylation mediated signaling pathways and transcriptional activation
and functions as an adaptor bringing together a large (reviewed in ref. 1; refs 2-5). Such alterations in signaling
number of proteins in host cells, mainly protein kinases and events may lower the TCR activation threshold in CD4*
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T cells and help more responsive to T-cell activation signals,
a process that could support higher virus production upon
stimuli mediated via the TCR (reviewed in ref. 1; refs 2-5).
Moreover, Nef may alter host cell death pathways to prevent
apoptosis of infected cells, thereby fostering their longevity
(reviewed in ref. 1) These observations have led to a model
in which Nef reorganizes the host cell activity so as to opti-
mize viral propagation and cell survival, thus facilitating im-
mune evasion and participating in virus spread.

The consequence of Nef expression in primary cells has
been examined by using Nef transgenic (Tg) mice, in which
Nef was constitutively or transiently expressed under control
of a T-cell-specific promoter-enhancer element (8, 9). In this
model system, Nef promotes T-cell activation, however, inter-
pretation of these findings is complicated by the fact that
expression of Nef early in the development of T cells results
in wholesale depletion of thymocytes and peripheral T cells.
Moreover, it remains obscure whether the T-cell activation
seen in Nef Tg mice is mediated by lymphopenia-induced
mechanisms rather than by an intrinsic effect of Nef expres-
sion on T-cell activation and proliferation (9, 10).

In the present study, to examine the consequence of Nef
expression in primary cells, we established a double
transgenic mouse (dTg), which expresses human coxsackie/
adenovirus receptor (CAR) (11) and an ovalbumin (OVA)-
specific TCR that recognizes the OVA peptide on antigen-
presenting cell (APC) with high affinity under MHC Class I
|-A%-restriction. This system allowed us to analyze the effect
of Nef on antigen-specific peripheral T-cell function by trans-
fer of the nef gene into peripheral T cells using an adenovi-
rus vector. The present study demonstrates that Nef
expression does not cause T-cell hyperresponse but instead
impairs T-cell functions required for immune response.

Methods

Mice

BALB/c and CB17-scid mice were purchased from Shizuoka
Laboratory Animal Center (Hamamatsu, Japan) and Clea
Japan, Inc. (Tokyo, Japan), respectively. Tg mice expressing
the CAR under the control of the Lck proximal promoter
(CAR Tg mice) on the BALB/c background have been
described previously (11). DO11.10 mice express a trans-
genic TCR with specificity for OVA peptide residues 323-
339 (OVAgosaze) restricted by [-A® on the BALB/c
background (12). All mice used in this study were main-
tained under specific pathogen-free conditions and used
at 6-12 weeks of age in accordance with the guidelines of
the Institutional Animal Care and Use Committee, National
Institute of Infectious Diseases.

Adenovirus vector

Recombinant adenovirus vectors were generated using the
AdEasy Adenoviral Vector System (Stratagene) according to
the manufacturer’s instructions. In order to express the nef
gene under the CAG promoter, the pShuttle vector was
digested with Kpnl, blunt-ended with T4 polymerase and
then, the CAG promoter DNA was ligated (pShuttle-CAG).
Next, an Xhol-Xbal fragment of plRES2-EGFP (Invitrogen)
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was inserted into the Xhol-Xbal site of pShuttle-CAG, which
was designated as pShuttle-CAG-12-EGFP. HIV-1 NL4-3
nef wild-type and a mutant (5"WP8L to 3'A%®A) were PCR
amplified from pNL432 and pNL-n57/2A proviral DNA,
respectively, using specific primers containing EcoR! sites
at both ends and then subcloned into pBluscript KS* (Strata-
gene). The EcoRl fragment containing wild-type or mutant
nef was inserted into the EcoRl site of pShuttle-CAG-
|2-EGFP. These shuttle vectors were linearized and co-trans-
formed into Escherichia coli strain BJ5183-AD-1, which
contains the pAdEasy vector, to induce homologous recom-
bination (Supplementary Figure 1 is available at International
Immunology Online). Recombinant adenoviral plasmids were
selected and transfected into 293 cells to produce recombi-
nant adenovirus particles. Recombinant adenovirus were
purified by two rounds of Cesium chloride density gradient
centrifugation as described previously (13). The concen-
trated virus was dialyzed against PBS containing 10%
glycerol. The titer of the virus stock was determined by
a plaque formation assay using 293 cells.

T-cell purification and recombinant adenovirus infection

For recombinant adenovirus infection, CD4* T cells were
enriched by negative selection on a MACS column (Miltenyi
Biotec GmbH, Gladbach, Germany) as previously described
(14). Briefly, cells were blocked with anti-FcyRI/II (2.4G2; BD
PharMingen, San Diego, CA, USA) and incubated with biotiny-
lated mAbs against B220(RA3-6B2), IgM(ll/41), 1gD(11-26),
Gr1(RB6-8C5), CD11c(N418), CD49b(DX5), CD11b(M1/70)
and CD8(53-6.7) (eBioscience, San Diego, CA, USA), fol-
lowed by incubation with streptavidin-coated microbeads
(Miltenyi Biotec GmbH). Purified CD4" T cells (>95%) were
infected with recombinant adenovirus vector at a multiplicity
of infection of 10 (MOI 10) for 2 days in 24-well plates at a con-
centration of 2 X 10° per well in RPMI 1640 medium supple-
mented with 10% Fetal Bovine Serum (FBS), 5 x 10° M 2-
mercaptoethanol, L-glutamine, antibictics and IL-7 (20 ng mi~";
PeproTech, London, UK) at 37°C in an atmosphere of 5% CO..

Proliferation assays and ELISA

Sorted CD4* GFP* T cells were cultured in microtiter wells at
a concentration of 4 x 10* cells per well in the presence of
OVAgzs 330 peptide and 5 X 10° irradiated T-depleted
spleen cells. DNA synthesis of cultured cells in triplicate
was estimated by the incorporation of [°H] thymidine (0.5
uCi) added 12 h prior to cell harvest. The level of IFN-y and
IL-2 in the culture supernatants was measured by a Ready-
Set-Go! ELISA assay kit (eBioscience), according to the
manufacturer’s instruction. In some experiments, CD4* GFP*
T cells (2 x 10%) were cultured for 2-3 days in 96-well plates
immobilized with anti-TCR mAb (5 pg mi~") and anti-CD28
mAb (1 pg mI~") (BD PharMingen).

Chemotaxis assay

Chemotaxis assays were performed in Transwell (Corning
Coster, Coring, NY, USA) with polycarbonate filters (5 pm
pore size) as described previously (15). Briefly, purified CD4*
GFP* T cells were suspended at 5 X 10° cells mI™" in RPMI
1640 medium containing 1% FBS and 25 mM HEPES. One



