数も 98,018 であったと見込むことができる。しかしながら、実際の 10 月出生数は 93,676、11 月出生数は 95,813 であった(図 10)。すなわち、10 月出生数は想定出生数の 0.956、11 月出生数は 0.978 という比率であった。阪神淡路大震災は 17 日、東日本大震災は 11 日と発生日が異なる。阪神大震災の場合は 10 月 10 日以降に影響が出、東日本大震災の場合は 12 月初旬から影響がでることを考慮した結果、この影響を 2012 年 12 月に当てはめると、想定出生数の 0.948 となる。8 月までの概数出生数を用いた 12 月出生数 90,438 について、この係数をかけると 85,753 となり(図 11)、年間推計は震災を加味しない 1,050,856 から震災を加味した 1,046,172 に引き下げられる。この数値に整合的になるよう、2011 年の出生順位別出生数および出生順位別年齢別出生率を推定した。 図 10 阪神淡路大震災時の減少分 図11 2011年の月別出生数予想 注:出生数はセンサス局法 X12-ARIMA による季節調整後の値。 #### 2. 2012 年の出生率予測 #### (1) 自治体へのヒアリングを通じた妊娠届出統計の収集 妊娠届出者数の統計は、各市区町村によって、年に一度(6月末日)、前年度(4月~翌年3月)分がまとめられ、都道府県を通じて厚生労働省大臣官房統計情報部に報告されている。集計結果は翌年2月ごろに、同部によって『地域保健・健康増進事業報告』において公表される。2011年秋の段階で得られる最新のものは2011年2月に公表された2009年度分の統計となる。2009年度分の妊娠届出数は2010年の出生数の先行指標となりうるが、2011年以降の出生数の先行指標とはならない。そこで、妊娠届出数をとりまとめている市区町 村へのヒアリング調査を実施し、2010 年度分および 2011 年度分の 9 月までの月別の届出数情報を収集した。 子育て支援課やホームページ等に記載されている健康増進行政を担当する部署を通じ、月別妊娠届出数に加え、地域の特殊事情、震災後の変化等をヒアリングした。2010年前後に市町村合併などをしていない全国 1703 市区町村の中で、約800 市区町村に問い合わせをし、2010年度については535市区町村が、2011年度については527市区町村から回答を得ることができた。 2011 年度については最長で9月までの統計であるため、都道府県別出生数の月別分布を用いて、市区町村ごとに年間数を推計した。これにより、市区町村ごとに2009年度、2010年度、2011年度の妊娠届出数が得られ、前年度からの変化率を求めることができる。 ### (2) 全国値の推定 市区町村ごとの変化率を全市区町村について単純に平均すると、規模の小さな市区町村の影響が過大に反映されてしまう。そこで、各市区町村における再生産年齢女性人口(15~49歳、2005年国勢調査に基づく)で重み付けした平均値を求めた。その結果、2009年度から2010年度の変化率は0.980、2010年度から2011年度の変化率は0.959との推定結果が得られた。なお、99%の信頼区間に基づく2009-10年度の変化率の上限は0.986、下限は0.974、2010-11年度の変化率の上限は0.967、下限は0.950であった。妊娠数は2年連続で減少傾向にあると言えよう。 | 表2 市区町村の妊娠届出数に基づく妊娠届出数 | |------------------------| |------------------------| | 年度 | 回答市区町村数
(全1,703) | | 前年度妊娠 | 数からの変化 | 前年度妊娠数から」 | | | |--------|---------------------|---|----------------|----------------|-------------------------------|-------|-------| | | | 回答市区町村におけ
る15-49歳女性人口
(2005年国勢調査) | 前年より増えた
(%) | 前年より減った
(%) | の変化率
(再生産女性人口を
用いた加重平均) | 99%上限 | 99%下限 | | 2010年度 | 535 | 11,904,130 | 38.3 | 61.7 | 0.980 | 0.986 | 0.974 | | 2011年度 | 527 | 11,025,697 | 32.1 | 67.9 | 0.959 | 0.967 | 0.950 | #### (3) 妊娠届出数に基づいた出生数の推定 2011年の妊娠届出数が推計されると、過去の妊娠届出数と出生数との比率を使って 2012年の出生数を予想することができる。ここでは 2010年の実績に基づく比率を使った。その結果 2012年の出生数(日本における日本人)は 1,005,322件と推計された(図 12)。出生率が 2010年と同じだった場合に想定される出生は 1,015,295であるため、それよりも数が少なく、TFR も 2010年より低下する見通しとなる。 図 12 推定された全国妊娠届出数および出生数予測 #### 3. まとめ 以上のように東日本大震災の影響を加味した 2011 年、2012 年の出生数に基づき、コーホート要因法によって別途推計された年齢別出生率を調整することによって、東日本大震災の影響を加味した年齢別出生率および合計特殊出生率を推定することができる。図 13 では平成 24 年推計における中位仮定設定のためのモデル値(震災の影響を加味しない)と震災の影響を加味した合計特殊出生率の中位仮定を示した。2011 年はわずかにモデル値より低い値となり、2012 年については、前後の年よりも低い値となっている。ただし、過去における年次の期間変動に比べ、それほど大きな減少ではない。 阪神淡路大震災時は、婚姻や離婚、出生が一時的に減少する影響が見られた。東日本大震災についても、離婚が減少し、出生が減少する兆しが観察されている。婚姻などの家族形成については、精神面、価値観等に震災が影響する可能性が指摘されているが(白河2011)、現時点で婚姻数に対するはっきりした影響は現れていない。 今回の方法による予測は、実績値が得られた段階で評価を行う必要がある。今回は阪神大震災時の経験を用いて東日本大震災の影響を推定したが、両震災は規模や被災地の状況が異なる。人口動態にどのような特徴がより大きく影響するのかなど、比較研究を通じて明らかにしていく必要があろう。 図 13 平成 24 年推計出生率中位仮定モデル値と震災を加味した合計特殊出生率予測 ### 参考文献 Cohan, C.L.and S.W. Cole. 2002. "Life course transitions and natural disaster: Marriage, birth, and divorce following Hurricane Hugo." Journal of Family Psychology 16(1):14-25. Nakonezny, P.A., R. Reddick, and J.L. Rodgers. 2004. "Did divorces decline after the Oklahoma City bombing?" Journal of Marriage and Family 66(1):90-100. Pfefferbaum, B.and C.S. North. 2008. "Children and families in the context of disasters: Implications for preparedness and response." The Family psychologist: bulletin of the Division of Family Psychology (43)/APA Division of Family Psychology (43) 24(2):6-10. Rodgers, J.L., C.A.S. John, and R. Coleman. 2005. "Did fertility go up after the Oklahoma City bombing? An analysis of births in metropolitan counties in Oklahoma, 1990–1999." Demography 42(4):675-692. 石川晃・別府志海.2011.「年途中までの月別統計を用いた年間合計特殊出生率推計の検討」金子隆一(編著) 厚生労働科学研究費補助金政策科学推進研究事業『人口動態変動および構造変化の見通しとその推計手法に関する総合的研究』平成 22 年度総合研究報告書: 319-335. 奥本佳伸.2000.「季節調整法の比較研究:センサス局法 X-12-ARIMA の我が国経済統計への適用 経済分析 政策研究の視点シリーズ 17」経済企画庁経済研究所. 白河桃子.2011.『震災婚』ディスカヴァー携書. 厚生労働省大臣官房統計情報部『地域保健・健康増進事業報告』 # 12 Fewer and older: a common destiny for Japan and Europe? A comparative view at the contribution of migration in ageing populations Giampaolo LANZIERI* ### **Abstract** This paper looks at the past and projected demographic trends of Japan in comparison to European countries to highlight similarities and differences between these low-fertility and ageing populations. The role and impact of the two demographic options (fertility and migration) to counteract the prospected population decline and ageing in Japan are analyzed by means of formal demography results and multistate projections. After having assessed the important but limited potential of the fertility contribution, the study quantifies the consequences of various immigration assumptions on its future population composition and compares those results with the European prospects. It is shown that, within the range of the currently foreseeable assumptions, only a migration inflow comparable to that taking place nowadays towards Europe would avoid an excessive population decline and ageing in Japan, but with a relevant diversification of its population composition. Within five decades, the population of foreign background would be particularly important in the younger ages, where its share could reach from 10 % to 30 % of the population, depending on the future inflows. #### Introduction Several countries in the world are now experiencing, or going to experience, population age structures never seen before. An ever increasing life expectancy combined with below-replacement levels of fertility is modifying the shape of the age profile of the population from a well-known and traditional pyramid, made by larger younger cohorts at the bottom, to an almost *reversed* pyramid, where the larger cohorts are among the elderly. The process of ageing, as measured by whatever indicator, is expected to be particularly relevant in selected European countries and in East Asia, notably in Japan. According to the latest projections from Eurostat, the Statistical Office of the European Union, and from the National Institute of Population and Social Security Research, the population ageing may speed up in the near future, driven by the ageing of the baby boom generations. The ageing may be accompanied by the shrinking of the population size, with further repercussion on the potential labor force, which may be not anymore sufficient to support the economic growth. The demographic solutions envisaged by the countries may differ to this regards, but essentially they target an increase of the fertility levels and/or an increase of the immigration flows. An alternative approach, which would tackle the socioeconomic challenges of a shrinking and ageing population without efforts of influencing the ^{*} JSPS Visiting Research Fellow at the Department of Population Dynamics Research, National Institute of Population and Social Security Research, Tokyo. Affiliation: Statistical Office of the European Union (Eurostat). Address for correspondence: giampaolo.lanzieri@ec.europa.eu, href="mailto:giampaolo.lanzieri@ec.europa.eu">giampaolo.lanzieri@ec.eu, giampaolo.lanzieri@ec.eu, giampaolo.lanzieri@ec.eu, giampaolo.lanzieri@ec.eu, giampaolo.lanzieri@ec.eu, 0, M<0, (N)>(M) | | | Population growth | 2 | Growth due more to natural change | N>0, M>0, (N)>(M) | | | | 3 | Growth due more to net migration | N>0, M>0, (N)<(M) | | | | 4 | Growth due only to net migration | N<0, M>0, (N)<(M) | | | | 5 | Decline due only to natural change | N<0, M>0, (N)>(M) | | | Population | 6 | Decline due more to natural change | N<0, M<0, (N)>(M) | | | decline | 7 | Decline due more to net migration | N<0, M<0, (N)<(M) | | | | 8 | Decline due only to net migration | N>0, M<0, (N)<(M) | | Note: N means natural change, M net migration and () the absolute value. The Figure 6 shows the population changes in Japan and in the European countries over 100 years, split in four periods of 25 years each. The eight categories of population change as described in the Table 1 are identified in each panel by the portion of plan between the bisecting line and one of the axes, and sorted from the top-left part reading clockwise. The position of the countries on the plans is given by the annualized natural change and net migration crude rates in the period of reference. In the first period, going from 1960 to 1984, the population growth is essentially sustained by the natural change. In Europe there are 15 countries whose population growth is ensured only by the natural change, plus other 11 where net migration also contribute, but to a less extent than the natural change. Just few European countries have a population growth sustained more by net migration and only one has a decline due only to net migration³. Japan also reports a relatively high natural change, accompanied by little net migration, being then quite similar, as for the population change, to Slovakia among the European countries. ³ For this latter country (Cyprus, out of the range in the top-left panel of the Figure 6), it must be mentioned that the period includes the year (1974) in which the national authorities lost control of part of the territory. From 1974 onwards the population figures refer therefore only to the government-controlled area, and the drop of population size may enter artificially in the net migration figures as this is calculated as residual component from the demographic balance. Figure 6: actual and projected population change in Japan and in the European countries by 25-year period Note: CY and IS out of range in the top-left panel, respectively in the slices corresponding to category 8 and 1 of the Table 1. In the following 25 years (1985-2009), migration enters into play in Europe. The bulk of countries move right- and downwards on the population change plan: only 2 European countries (Poland and Slovakia) have now a population growth sustained only by the natural change, while for 8 of them net migration is positive as well although less important than the natural change, and for 12 European countries it is actually the most important component of population growth. For a few European countries (the Czech Republic, Germany and Italy), net migration is the only driver of population growth, compensating the natural decline, while in Hungary the positive net migration is not sufficient to ensure population growth. Again, Slovakia is the European country closest to Japan, which has moved downwards along the vertical axis due to the reduction of its natural growth. In the first part of the projections period (2010-2034), natural growth is slowing further down and migration remains the most important component of population change, although on reduced scale. The European countries, besides having moved slightly downward on the plan, are indeed less disperse and closer to the origin, and none presents anymore rates higher than 20 per thousand population. Only in Iceland the population growth is only due to natural change, 13 countries are still growing thanks to both components but now the number of those whose growth is only due to net migration increase to 8. The rest of European countries (9) are now on population decline, the Baltic countries and Bulgaria for both components, in the others despite of the positive net migration. Japan continues moving downward along the vertical axis, entering the area of population decline, and it gets close to Latvia. In the last part of the projections period (2035-2060), positive net migration is not anymore sufficient to sustain the population growth, face to the scale of the natural decline. The European countries are projected to move downward on the plan, and most of them (18) are grouped into the area characterized by a natural decline stronger than the positive net migration. In 11 countries net migration is still the main engine of population growth, while Iceland and Ireland are the only two countries where the population growth is still due more to natural change. Japan continues its vertical fall and, although Latvia is still the closest European country, the distance between them has increased. ### Further insights on the past natural change If natural change is the main factor behind the population change (growth/decline) of Japan, it may be interesting to look at which component between fertility and mortality has played the most important part. The first, most intuitive comparison would be between the respective crude rates. Looking again at the Figure 4 (the two panels have the same scale), it can there be noted how mortality start playing a more important role from the 1990s, while fertility has been declining all time long since the 1970s. The two cross each other during the past decade. However, those crude rates are influenced by the underlying age structure, which has been changing over time. From the theory of stable populations, it is known that if fertility and mortality rates are kept constant, any population would converge to an age structure independent from the original one and defined only by that fertility and mortality schedules, a property called (strong) ergodicity. The growth rate of this ultimate stable-equivalent population is called *intrinsic* growth rate. Preston and Guillot (1997) provides a simple formula to decompose the intrinsic growth rate r into fertility and mortality contributions: $$r = \frac{\ln(TFR) + \ln(S) + \ln[p(A_M)]}{T}$$ [1] where S is the proportion of female births assumed constant across ages of the mothers, $p(A_M)$ is the probability of surviving from birth to the mean age at childbearing and T is the mean length of generation. Assimilating Japan to a closed population, i.e. a population without in- or out-migration, the $\ln(TFR)$ and $\ln[p(A_M)]$ have been estimated for the period 1960-2010 and are shown in the left panel of the Figure 7, together with the approximated estimate of the intrinsic growth rate corresponding to the fertility and mortality schedules of each year. Fertility gives higher contribution to the *level* of the growth rate in the stable-equivalent populations, although its importance is decreasing over time; mortality instead has almost a null influence, at least from 1980 onwards. Due to the (constant) negative effect of the proportion of female births (not shown), the intrinsic growth rate decreases over time down to about -1.5 % in the past decade. Thus, if current fertility and mortality conditions were to stay for a long period, the ultimate stable-equivalent population of Japan would shrink to a rate such to half that population within half a century. Figure 7: theoretical contribution of fertility and mortality to population change and ageing Note: for sake of readability of the graph and given the minor importance for the current analysis, ln(S) from [1] is not shown in the left panel. Taking two points in time and assuming that the proportions of female births as well as the mean length of generation do not change during that period, the contribution to the *change* of the intrinsic growth rate can be expressed as: $$\Delta r = \frac{1}{T} \cdot \left[\ln \left(\frac{TFR^2}{TFR^1} \right) + \ln \left(\frac{p(A_M^2)}{p(A_M^1)} \right) \right]$$ [2] where the indexes 1 and 2 refer to the two successive points in time, respectively before and after the changes. By using [2], it can be estimated that the decline of the TFR from 1960 to 2009 has reduced the intrinsic growth rate by 0.014, while the improvements in mortality have increased it by 0.003, other conditions being equal. In summary, fertility has been playing the major role as for what concerns the influence on both levels and changes of long-term prospects of population growth/decline, i.e. once removed the effect of the contemporary age structure. As for Europe as a whole, whose starting level is higher than in Japan in 1960, the relation above prove that the decline in the intrinsic growth rate, i.e. the annual growth rate that would prevail if fertility and mortality levels remained constant, depends on the proportional reduction of the TFR, and not from the absolute one. As the estimated change in the intrinsic growth rate for Europe as a whole due to the decline in fertility is about -0.017 (other conditions being equal), the fertility reduction occurred in the past 50 years would have had in Europe a largest (negative) impact on the intrinsic growth rate than in Japan. ### Populations momentum As discussed above, the decline of fertility combined with the age structure of the population has had large influence on the actual population trends in Japan, due to the shrinking of the number of women in reproductive ages. Intuitively, in order to oppose these ongoing population decline and ageing, one would then think to increase the size of these cohorts of women. This situation recalls the concept of *population momentum*, originally proposed by Keyfitz (1971), who defines it as the ratio of the size of an ultimate stationary population⁴ to that of an initial stable population when fertility is immediately shifted to replacement level. In its original formulation, Keyfitz was referring to the case of (stable) population growth rather than decline, but the concept has been further elaborated and is now widespread, being applicable also for declining population. Bongaarts and Bulatao (1999) report a simplified analytical expression to compute the population momentum, based on the ratio of the proportion of females under age 30 in the original population to the same proportion in the ultimate population which emerges in the long run with fertility at replacement, mortality fixed, and zero migration. By adopting their method, the population momentum have been computed for Japan as well as for all European countries, and reported in the Table 2. Table 2: momentum multiplier in 2010 in Japan and in the European countries, sorted by ascending order | JP | 0.815 | LV | 0.893 | FI | 0.952 | LU | 0.991 | |----|-------|----|-------|----|-------|----|-------| | IT | 0.823 | PT | 0.894 | DK | 0.961 | MT | 0.993 | | BG | 0.824 | ES | 0.902 | BE | 0.962 | UK | 1.018 | | DE | 0.835 | RO | 0.917 | LI | 0.967 | FR | 1.030 | | EL | 0.851 | AT | 0.918 | SK | 0.972 | NO | 1.040 | | HU | 0.860 | LT | 0.928 | PL | 0.979 | CY | 1.117 | | SI | 0.865 | EE | 0.930 | NL | 0.980 | ΙE | 1.163 | | CZ | 0.880 | СН | 0.933 | SE | 0.985 | IS | 1.190 | It can there be noted that Japan has the lower momentum than any European country, implying that its population would have proportionally the biggest decrease due to its age ⁴ A stationary population is a population whose growth rate is zero and resulting from births, age-specific death rates and age-specific net migration rates all constant over time. It is usually considered the case of net migration rates equal to zero at any age. The stationary population is a special case of the stable population (concept used in the previous paragraph).