Research question

Patient: Patients with severe asthma

Intervention: Omalizumab + standard therapy

Comparison: Standard therapy alone

Outcome: Cost, QALY

If omalizumab is not cost-effective

 What is needed to improve the costeffectiveness of omalizumab?

QALY: quality-adjusted life year

5

Previous research

Author	Clinical input	Perspective	Model	Results (ICER)
Campbell et al. ¹	INNOVATE study ⁶	US payer	Markov	\$287,200/QALY
Wu et al. ²	Pooled data	US societal	Emphasis on lung function	\$821,000/QALY
Brown et al.3	ETOPA study (open-label) ⁷	Canadian societal	Markov	€31,200/QALY
Dewilde et al.4	INNOVATE study ⁶	Swedish societal	Markov	€56,090/QALY
Oba et al. ⁵	two RCTs	US payer	Cost per controlled day	\$523/successfully controlled day

¹Campbell JD, et al. Allergy 2010.

²Wu A, et al. J Allergy Clin Immunol 2007.

³Brown R, et al. Allergy 2007.

⁴Dewilde S, et al. Curr Med Res Opin 2006.

⁵Oba Y, et al. J Allergy Clin Immunol 2004.

⁶Humbert M, et al. Allergy 2005.

⁷Ayres J, et al. Allergy 2004.

Objectives

To perform economic evaluation of omalizumab in the Japanese setting

To investigate the efficient use of omalizumab

7

2. Methods

Study design

Cost-utility analysis from the societal perspective

Estimating ICER per QALY gained

• omalizumab + standard therapy vs standard therapy

ICER (incremental cost-effective ratio) = $\frac{\Delta Cost}{\Delta QALY}$

Discount rate

3% per annum

Software

 TreeAge Pro 2009, Healthcare

Markov model structure 2

Cycle length

1 week

Time horizon

- Lifetime horizon
 - 5-year omalizumab therapy
 - Standard therapy alone for the rest of lives

Study cohort

- · Starting at the age of 50 years
- 50% men

11

Clinical input

A randomized controlled trial (RCT) in Japan*

- Placebo-controlled & double-blinded
 - [omalizumab + standard therapy] vs [placebo + standard therapy]
- Enrolled 315 patients, aged 20–75 years, with severe asthma

The RCT assessed the number of

- Symptom-free weeks
- · Mild exacerbation weeks
- Severe exacerbation weeks
- Hospitalizations

Rates and risk ratios

Transition possibilities

*Ohta K, et al. Respirology 2009.

Response to omalizumab 1

Omalizumab provides

- Great benefit for some patients (responders)*
- Little benefit for the others (non-responders)*

Predicting the response is possible?

· No prediction methods at present

*Bousquet J, et al. Respir Med 2007.

13

Response to omalizumab 2

Identifying the response*

16-week omalizumab therapy Response identified by physicians

Responders

Continue omalizumab

Nonresponders Revert to standard therapy

*Bousquet J, et al. Respir Med 2007.

Response to omalizumab 3

Clinical outcomes of responders

- Response percentage = 60.5%*
- Parameters from another large trial conducted outside Japan*

Responders as a subgroup

 The ICER of omalizumab in responders as a subgroup analysis

*Humbert M, et al. Allergy 2005.

15

Mortality estimate

Mortality risk given a hospitalization

- Estimated from Japan's two official databases*†
- Risk = 1.55%

Mortality risk from other causes

Estimated from Japan's official database

*Patient survey in 2008. †Vital statistics in 2009.

Utility estimate

Utility values came from another study* because of the lack of detailed HRQoL measures in the RCT.

Markov states in our model	Asthma control level described by another study*	
Symptom-free	Good control	
Day-to-day	Mildly reduced control	
Mild exacerbation	Moderately reduced control	
Severe exacerbation	Poor control	
Hospitalization		

*Szende A, et al. Pharmacoeconomics 2004.

17

Cost input

Cost	Source		
Direct medical cost			
Omalizumab	Dose distributions observed in the RCTOfficial price		
Standard therapy	Model case		
Healthcare resource use	 Survey of medical care activities in public health insurance in 2009 QIP* 		
Indirect cost			
Productivity loss	 Labour force survey in 2009: annual report 		

*QIP: Quality Indicator/Improvement Project, which our department manages to collect clinical and claims data from more than 200 hospitals in Japan.

Sensitivity analysis

Probabilistic sensitivity analysis

5000 Monte Carlo simulations

One-way sensitivity analyses

- Risk ratios for exacerbation risk
- Utility values
- Asthma-related mortality
- Omalizumab cost
- · Standard therapy cost
- Indirect cost
- Unit cost of emergency department visit
- · Unit cost of hospital stay

19

Value of information 1

What EVPI means

- Expected value of perfect information (EVPI)
- The price that the society would be willing to pay for further research to gain access to perfect information

Why is the society willing to pay?

 Eliminating the possibility of making a wrong decision based on existing information

Value of information 2

How is perfect information for patients' response to omalizumab useful?

Responders

Great benefit

Perfect information for the response ahead of omalizumab therapy

> Nonresponders

Little benefit

Wasteful healthcare cost

21

Value of information 3

How to calculate EVPI

Individual EVPI

Individual EVPI for the omalizumab response

= NMB (the responder subgroup) - NMB (the omalizumab group)

Population EVPI

Population EVPI per year

= Individual EVPI \times the annual incidence of eligible patients in Japan

NMB: net monetary benefits

Omalizumab group: the overall patients treated with omalizumab

3. Results

23

Lifetime outcomes and costs

	Standard therapy group	Omalizumab group* (95% CI)	Responder subgroup†
QALYs	16.00	16.10 (16.050–16.118)	16.19
Total costs (¥)	5,230,000	13,080,000 (13,060,000–13,120,000)	17,620,000
ICER (¥/QALY, vs baseline)	Baseline	83,350,000 (67,450,000–145,220,000)	65,160,000

^{*}Omalizumab group indicates the overall patients treated with omalizumab plus standard therapy.

[†]Responder subgroup indicates a subgroup of patients who obtain great benefit from omalizumab plus standard therapy.

Tornado diagram summarizing one-way sensitivity analyses

- Parameters that had less than a ¥5,000,000 difference in the ICER are not displayed.
- RR: risk ratio of omalizumab plus standard therapy relative to standard therapy.

25

Cost-effectiveness acceptability curve

EVPI for omalizumab response

Individual EVPI = ¥435,000

Given a threshold value of ¥5,000,000 per QALY*

Population EVPI = ¥3.1 billion per year

The entire Japanese eligible population = 7200

*Shiroiwa T, et al. Health Econ 2010.

27

4. Discussion

Key results 1

The ICER of omalizumab add-on therapy relative to standard therapy alone

= **¥83,350,000** per QALY gained.

Omalizumab was **not cost-effective** given a willingness-to-pay of ¥5,000,000 per QALY in Japan.*

*Shiroiwa T, et al. Health Econ 2010.

29

Key results 2

The ICER was sensitive to omalizumab cost.

The ICER for the responder subgroup was **22% lower** than that for the overall patients treated with omalizumab.

The value of research investigating prediction methods for identifying responders

= ¥3,100,000,000

How to improve the cost-effectiveness

Decreasing the price of omalizumab

• The ICER was sensitive to omalizumab cost.

Selective patients to be treated with omalizumab

- Confining omalizumab therapy to previouslypredicted responders identified based on pretreatment patient characteristics
- This confinement is impossible now.

31

Research implications

What research should be done?

 Research for developing omalizumab response prediction methods

If prediction methods are developed

 Prediction methods will help physicians decide whether to begin omalizumab add-on therapy.

Reason for inconsistency in results between our study and others

Including symptom-free state in the model

 For suiting the model to the endpoints that were assessed in the RCT

Asthma-related death state linked with the other states in the model

- Linked with hospitalization in our study and Campbell et al.
- Linked with severe exacerbation in Dewilde et al. and Brown et al.

33

Limitations

Utility values from another study

- The results were sensitive to utilities
- Further research to assess HRQoL in detail among patients treated with omalizumab in Japan

Clinical parameters from different clinical trials

- Parameters of the overall patients treated with omalizumab from the RCT in Japan
- Parameters of responders from another trial outside Japan
- Little is known about the effect of race on the response to omalizumab

Summary

Is omalizumab cost-effective?

· Not cost-effective given a WTP per QALY in Japan.

What is needed for the efficient use?

- Discounting the price of omalizumab
- Confining omalizumab therapy to previouslypredicted responders

What future research should be aimed at?

Investigating prediction methods for the identification of responders

35

Thank you very much for your attention

Contact me morishima.t@ky7.ecs.kyoto-u.ac.jp

平成23年度厚生労働科学研究費補助金(政策科学総合研究事業(政策科学推進研究事業)) (H22一政策——般—028)総括研究報告書

医療・介護政策と地域の資源・連携・受療行動が平均在院日数と費用に影響を及ぼす 要因の分析

研究成果の刊行に関する一覧表

原著論文 (英文)

- 1. <u>Morishima T, Otsubo T, Goto E, Kobayashi D, Lee J, Imanaka Y</u>. Physician adherence to asthma treatment guidelines in Japan: focus on inhaled corticosteroids. *Journal of Evaluation in Clinical Practice* (in press)
- 2. <u>Kunisawa S, Ikai H, Imanaka Y</u>. Incidence and prevention of postoperative venous thromboembolism Are they meaningful quality indicators in Japanese healthcare settings? *World Journal of Surgery* (in press)
- 3. <u>Hamada H, Sekimoto M, Imanaka Y</u>. Effects of the per diem prospective payment system with DRG-like grouping system (DPC/PDPS) on resource usage and healthcare quality in Japan. *Health Policy* (in press)
- 4. <u>Umegaki T, Ikai H, Imanaka Y</u>. The impact of acute organ dysfunction on patients' mortality with severe sepsis. *Journal of Anaesthesiology Clinical Pharmacology*. 2011;27:180-184.
- 5. <u>Fukuda H, Lee J, Imanaka Y</u>. Costs of hospital-acquired infection and transferability of the estimates: A systematic review. *Infection* 2011;39(3):185-199.
- 6. <u>Umegaki T, Sekimoto M, Imanaka Y</u>. Impact of Intensive Care Unit Physician on Care Processes of Patients with Severe Sepsis in Teaching Hospitals. Journal of Anesthesia & Clinical Research. 2011;2:120.
- 7. <u>Lee J, Imanaka Y, Sekimoto M, Nishikawa H, Ikai H, Motohashi T,</u> The QIP Expert Group for Clinical Evaluation. The validation of a novel method to identify healthcare-associated infections. *The Journal of Hospital Infection*. 2011;77(4):316-320.
- 8. Otsubo T, Imanaka Y, Lee J, Hayashida K. Evaluation of resource allocation and supply-demand balance in clinical practice with high-cost technologies. *The Journal of Evaluation in Clinical Practice* 2011; 17(6): 1114-21.
- 9. <u>Ikai H</u>, Morimoto T, Shimbo T, <u>Imanaka Y</u>, Koike K. Impact of Postgraduate Education on Physician Practice for Community-acquired Pneumonia. *Journal of Evaluation in Clinical Practice*. 2011 Jan 5. doi: 10.1111/j.1365-2753. 2010.01594.x
- 10. <u>Fukuda H, Lee J, Imanaka Y</u>. Variations in analytical methodology for estimating costs of hospital-acquired infections: A systematic review. *The Journal of Hospital Infection* 2011; 77(2): 93-105.
- 11. <u>Lee J, Imanaka Y, Sekimoto M, Ikai H, Otsubo T.</u> Healthcare-associated infections in acute ischemic stroke patients from 36 Japanese hospitals: risk-adjusted economic and clinical outcomes. *International Journal of Stroke* 2011; 6(1): 16-24.

学会発表 (海外)

- 1. <u>Imanaka Y, Otsubo T, Lee J, Park S</u>. Practice Variation among Providers and Regions in Japan: Status, Cause and Policy. Wennberg International Collaborative, London, 12 September 2011.
- 2. <u>Lee J, Imanaka Y</u>. Estimation of the Cost of Hospital-Acquired Infections in Gastrectomy Patients: An Exploration of Methodology. The 27th Patient Classification Systems International Conference, Montreal, Canada. 19-22 October, 2011.
- 3. Morishima T, Ikai H, Imanaka Y. Cost-effectiveness of omalizumab for the treatment of adults with moderate to severe persistent asthma: results from a randomized controlled trial in Japan. The 33rd Annual Meeting of the Society for Medical Decision Making, Chicago, IL, USA. 24-26 October, 2011.

原著論文・その他論文(和文)

- 猪飼宏, 今中雄一. 社会と健康を科学するパブリックヘルス(7)「データに基づく地域医療 政策・病院政策(その2)」. 日本公衆衛生雑誌 2011; 58(6):471-473.
- 2. 大坪徹也, 今中雄一. 社会と健康を科学するパブリックヘルス(6)「データに基づく地域医療政策・病院政策(その 1)」. 日本公衆衛生雑誌 2011; 58(5):391-394.
- 3. 大坪徹也, 今中雄一. 医療システムにおける評価指標としての再入院率. 日本衛生学雑誌(印刷中).
- 4. 今中雄一. Quality Indicator: 米国の動向. 医薬ジャーナル 2011;47(9): 71-76.
- 5. 江上廣一, 廣瀬昌博, 竹村匡正, 岡本和也, 津田佳彦, 大濱京子, 本田順一, 島弘志, 今中雄一, 吉原博幸. インシデントレポート・医事管理データによる転倒・転落に起因する追加的医療費算出の試み. 日本医療・病院管理学会誌 2011;48(3): 33-45.
- 6. 濱田啓義, 関本美穂, 今中雄一. タイムスタディと DPC データを用いた産婦人科診療の 業務量把握. 日本医療・病院管理学会誌 2011;48(3): 47-55.
- 7. 志馬伸朗,梅垣岳志,関本美穂,今中雄一,阪井裕一,羽鳥文麿,日本集中治療医学会新生児小児集中治療委員会. Diagnosis procedure combination (DPC) データを用いた市中病院における小児敗血症の分析.日本集中治療医学会雑誌 2011; 18: 369-373.

学会発表 (国内)

- 1. 小林大介, 大坪徹也, 今中雄一. 病院の拠点化・集中化がアクセス時間やその公正に及ぼす影響. 第82回日本衛生学会学術総会: 京都, 2012年3月24日-26日.
- 2. 松永京子, 大坪徹也, 猪飼宏, 今中雄一. 診療報酬から見た病院薬剤師の業務量: その可能性と課題. 第82回日本衛生学会学術総会: 京都, 2012年3月24日-26日.
- 3. 國澤進, ジェイスン・リー, 大坪徹也, 猪飼宏, 今中雄一. ジェネリック医薬品の使用状況解析—新しい指標の提案. 第82回日本衛生学会学術総会: 京都, 2012年3月24

日-26 日.

- 4. 佐々木典子, 國澤進, 猪飼宏, 今中雄一. Clinical Profiles of Hospitalized Acute Heart Failure Patients Using DPC Administrative Database. 第 76 回日本循環器学会学術集会: 福岡, 2012 年 3 月 16 日 18 日.
- 5. 本橋隆子. 日本理学療法士協会「提案型管理者育成を目指したワークショップ」:東京, 2012年2月11日・12日.
- 6. 小林大介, 大坪徹也, 今中雄一. 疾病別患者移動時間分析から見た医療提供体制の地域差. 第31回 医療情報学連合大会(第12回日本医療情報学会学術大会): 鹿児島, 2011年11月21日・23日.
- 7. 濱田啓義, 猪飼宏, 今中雄一. 急性期病院における漢方製剤の処方状況に関する検討. 第 31 回 医療情報学連合大会(第 12 回日本医療情報学会学術大会): 鹿児島, 2011 年 11 月 21 日・23 日.
- 8. 宇川直人, 大坪徹也, 今中雄一. 都道府県別歯科医師数が歯科医療費に及ぼす影響の検討. 第70回日本公衆衛生学会総会: 秋田, 2011年10月19日・21日.
- 9. 森島敏隆, 猪飼宏, 今中雄一. Cost-effectiveness analysis of omalizumab for the treatment of severe asthma: results from a randomized controlled trial in Japan and the value of responder prediction methods. 医療経済学会 第 6 回研究大会: 東京, 2011 年 9 月 19 日.
- 10. Sungchul Park、Jason Lee、宇川直人、國澤進、大坪徹也、猪飼宏、今中雄一. 急性 心筋梗塞診療の質と病院の競合状態および症例数との関係. 医療経済学会 第 6 回研 究大会: 東京、2011 年 9 月 19 日.
- 11. 國澤進, 猪飼宏, 今中雄一. 均在院日数を用いた病院の効率性を表す指数の検討. 第49回日本医療・病院管理学会学術総会: 東京, 2011年8月20日-21日.
- 12. 濱田啓義, 関本美穂, 今中雄一, 安川文朗. 時間外受診、高度医療機関受診に関する WTP 調査. 第 49 回 日本医療・病院管理学会学術総会: 東京, 2011 年 8 月 20 日 -21 日.
- 13. 今中雄一, 猪飼宏. 医療の質の評価・公表推進に係わる DPC データの可能性と課題. 第61回日本病院学会: 東京, 2011年7月14日・7月15日.
- 14. 大坪徹也, 今中雄一, ジェイスン・リー, 森島敏隆. 医療療養病床における利用実態の 把握と必要病床数の推計方法に関する検討. 第 19 回日本慢性期医療学会札幌大会: 札幌, 2011 年 6 月 30 日・7 月 1 日.

