Analysis of multiple compound-protein interactions
H Yabuuchi et a/

Table I Compound IDs and names (see Supplementary Table S4 for the chemical structures)

Compound GLIDA ID Bionet ID Compound name
1 Looo0117 BIBP3226
2 L003700 Granisetron
3 L002023 Tropisetron
4 L000152 BW723C86
5 MS-2742 2,5-Dimethyl-1-(2,2,4-trimethyl-2,3-dihydro-1-benzofuran-7-yl)-1H-pyrrole
6 L001048 Codeine
7 L000315 Iodocyanopindolol
8 L001311 12L-933 1-(Tert-butylamino)-3-[(2-methyl-1H-indol-4-yl) oxy]-2-propanol
9 MS-2807 (2-Aminophenyl) (4-methylphenyl)amine
10 1013420 Phentolamine
11 L001089 Desipramine
12 7W-0360 Ethyl 1-(4-chlorophenyl)-4-[ (4-methoxybenzyl)amino]-3-methyl-1H-pyrazolo[3,4-b] pyridine-
5-carboxylate
13 L001167 Cartazolate
14 3-(6-Aminopyridin-3-yl)-2-(diphenylacetamido)-N-(4-methoxybenzyl)-N-methylpropionamide
15 3H-950 Diethyl 2-(3,5-dimethyl-1H-pyrazol-1-yl)-6-hydroxy-3,5-pyridinedicarboxylate
16 L000717 Nicergoline
17 3-Ethyl-5-[4-(4-fluorophenyl)-4-(6-fluoropyridin-3-yl)- 5-methyl-4,5-dihydro-1H-imidazol-2-yl]-1-
methylpyridin-2(1H)-one
18 11N-058 6,7-Dimethoxy-N-phenyl-4-quinazolinamine
19 1-(5-Tert-butyl-isoxazol-3-yl)-3-[4-(2-chloro-6,7-dimethoxy-quinazolin-4-ylamino)-phenyl]-urea
20 5-[6-Methoxy-7-(pyridin-4-ylmethoxy)-quinazolin-4-ylamino]-2-methyl-phenol
21 12N-063 N-{2-[(4-chlorophenyl)sulfanyl]ethyl}-6,7-dimethoxy-4-quinazolinamine
22 1-(6,7-Dimethoxy-2-pyridin-4-yl-quinazolin-4-ylamino)-indan-2-ol
23 MS-2894 [2-(4-Fluorophenyl)-5,6,7,8-tetrahydroimidazo[2,1-b][1,3]benzothiazol-3-ylJmethanol
24 2-Methyl-6-[6-(6-methyl-pyridin-2-yl)-imidazo[2,1-b]thiazol-5-yl]-3a,7a-dihydro-benzooxazole
25 1-{4-[4-Amino-5-(2,6-difluoro-benzoyl)-thiazol-2-ylamino]-piperidin-1-yl }-8-methyl-
non-6-en-1-one
26 7N-773 [4-Amino-2-(tert-butylamino)-1,3-thiazol-5-yl] (4-chlorophenyl) methanone
27 (4-Amino-2-phenylamino-thiazol-5-yl)-(4-chloro-3-methyl-phenyl)-methanone
28 9X-0942 2-[2,5-Dimethyl-4-(morpholinomethyl) phenoxy]acetamide
29 2W-0814 N-(tert-butyl)-N'-(4-methoxybenzyl)thiourea
30 MS-0062 2-Ethyl-2-{[(2-fluorobenzyl)oxy]methyl}-5,5-dimethyltetrahydrofuran
31 MS-3556 2-(3-Isopropoxyphenyl)-1-ethanamine
32 3F-004 2-Morpholino-2-oxoacetohydrazide
33 1M-918 1-[(3-Methoxypropyl)amino]-3-[(2-methyl-1H-indol-4-yl) oxy]-2-propanol
34 6W-0328 Ethyl 4-chloro-1-(4-chlorophenyl)-3-methyl-1H-pyrazolo[3,4-b]pyridine-5-carboxylate
35 10N-835 7-Chloro-N-(3-methoxybenzyl)-4-quinazolinamine
36 12N-055 6,7-Dimethoxy-N-(2-thienylmethyl)-4-quinazolinamine
37 4X-0854 2-{[4-(2-Chloroacetyl)-1H-pyrrol-2-ylJmethylene } malononitrile

limitations of LBVS in identification of novel structures and
of SBVS in accurate scoring. Figure 2B-D shows that use
of CGBVS resulted in the identification of the majority of the
novel active compounds (green dots), few of which were
identified by LBVS or SBVS. Four of these compounds (1-4 in
Table I and Supplementary Table S4) contained novel scaffolds
compared with known ADRB2 agonists (catecholamine or
isoprenaline derivatives) or ADRB2 antagonists (arylalkyl-
amine derivatives). Notably, these compounds included a
neuropeptide Y-type 1 receptor (NPY1R) antagonist (1). This
observation suggests that only CGBVS could identify this
unexpected cross-reaction for a ligand developed as a target to
a peptidergic receptor that has low protein homology to
ADRB2 (Figure 2E).

Polypharmacology map of the GPCR family

To identify possible polypharmacological relationships among
GPCRs, we constructed polypharmacology maps, first based
on multiple interactions between GPCRs and their ligands
predicted by CGBVS, and second based on previously reported
interactions (Figure 3). CGBVS predicted many unexpected
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multiple interactions between GPCRs and ligands, including,
interestingly, interactions shared by members of distantly
related subfamilies. (See Supplementary Figure S2 for a
correlation map of ligands and orphan GPCRs with no known
ligands.) To better understand the propensity for ligand
promiscuity, we extracted chemical substructures character-
istic of the putatively promiscuous ligands (Supplementary
Figure S3), as described in the Supplementary information.
This analysis has shown that tertiary amine and sulfur-
containing heterocycles are recurring substructures in the
promiscuous ligands when compared with selective ligands
(Supplementary Table S6). For example, these substructures
are typically seen in antidepressants used to treat depression
and anxiety disorders, which interact promiscuously with a
range of dopamine and serotonin receptors (Roth et al, 2004a).
This observation suggests that the ligands containing such
substructures can be non-selective.

Unlike CGBVS, SBVS cannot predict CPIs for multiple
GPCRs, because only limited three-dimensional structural
information is available. LBVS is applicable only to targets
with known reference ligands and is therefore unsuitable for
identifying polypharmacological interactions, particularly

Molecular Systems Biology 2011 5



Analysis of multiple compound-protein interactions
H Yabuuchi et a/

A B
Score
2 2 1.0
s [=
%, §) 0.95
0.9
0.85
Previously reported CGBVS prediction
[ I 08
e QQQ o $\)° o GPCRs
GPCRs
C Polypharmacology map
Previously| reported
4 /
§ [0 | o ol 12 eSIY
a

*NPYIR
GPCRs

*ADRB2

Figure 3 Comparative polypharmacology maps for GPCRs. (A) Map of previously reported compound-GPCR interactions. Vertical and horizontal axes represent the
compounds and the GPCRs, respectively. The reported CPls are depicted as red dots. CGBVS used the CPIs as training data. The colored bars along each axis indicate
the classes to which the compounds and GPCRs belong. Am, amines; Pep, peptides; PN, prostanoids; Nuc, nucleotides; and Glu, glutamates. (B) Map of predicted
compound-GPCR interactions based on CGBVS. The CPls are plotted with colors ranging from blue (low) to red (high), according to prediction scores. (C) Comparative
polypharmacology map of GPCRs showing the number of shared compounds within a receptor family. The polypharmacology map was constructed as described by
Paolini et al (2006) by plotting the numbers of common ligands for two given receptors. Previously reported and CGBVS-predicted interactions are shown in the upper-
left and the lower-right diagonal halves, respectively. Each value indicates the number of common ligands for each GPCR subfamily. For example, 1081 compounds
were reported to be ligands for amine receptors that cross-reacted with other amine receptors, and 14 amine receptor ligands were reported to cross-react with peptide

receptors.

between distantly related GPCRs (Supplementary Figure S4).
The cross-reactivity predictions provided by CGBVS also offer
a promising approach for scaffold hopping in drug discovery.
For example, many small ligands for non-peptidergic GPCRs
were predicted to interact with peptidergic GPCRs as well,
indicating that CGBVS has further potential in the discovery of
novel non-peptidergic compounds for peptidergic receptors by
using these small ligands as reference molecules.

GPCR ligand screening

Although preliminary results indicated that CGBVS was useful
for identifying polypharmacological relationships among
ligands for the GPCR family, all of the analyzed compounds
were known GPCR ligands and, therefore, represent a very
limited number of examples within the vastness of chemical
space. The true value of CGBVS in lead discovery must be
tested by assessing whether this method can identify scaffold-
hopping lead compounds from a set of compounds that is
structurally more diverse. To assess this ability, we analyzed
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11500 compounds from the Bionet chemical library (Key
Organics Ltd, Cornwall, UK) to predict compounds likely to
bind to two GPCRs from different subfamilies, ADRB2 and
NPY1R (Supplementary Table S7).

The 30 highest-scoring compounds for ADRB2 were tested
in calcium mobilization assays, in which nine compounds (hit
rate=30%) exhibited either half-maximal effective concentra-
tions (ECso) or half-maximal inhibitory concentrations (ICsg)
between 0.7 nM and 65 uM. These results suggest that CGBVS
is highly capable of mining of general chemical libraries
(Figure 4A and B, Supplementary Figure SSA and B, and
Supplementary Table S8A). For NPY1R, the 20 highest-scoring
compounds were tested in cAMP assays. Of these compounds,
three (hit rate=15%) exhibited agonist activity with ECs,
values of 16, 16, and 63 uM (Figure 4C, Supplementary Figure
S5C and D, and Supplementary Table S8B).

Despite the fact that these ECs, values were in the
micromolar range, CGBVS could prove highly useful for lead
screening in drug development, as the lead-screening stage is
distinct from the optimization stage. For lead screening, it is

© 2011 EMBO and Macmillan Publishers Limited
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Figure 4 Experimental confirmation of in vitro GPCR activity of compounds and their scaffolds screened from a chemical library. Dose-response curves of the
top-ranked compounds from the Bionet chemical library for (A) ADRB2 agonists, (B) ADRB2 antagonists, and (C) NPY1R agonists. Inactive compounds (cutoff of
100 uM in EC5¢/ICs value) are not shown. Red lines indicate results for compounds exhibiting scaffold hopping based on the criteria explained in the Results section.
Blue lines indicate results from compounds with almost completely overlapping structures. Compounds 29 (N-(tert-butyl)-N'-(4-methoxybenzyl)thiourea), 30
(2-ethyl-2-{[(2-fluorobenzyl)oxy]methyl}-5,5-dimethyltetrahydrofuran), and 5 are corresponding to the curves in A from left to right. Compounds 8, 33, 30, 28
(2-[2,5-dimethyl-4-(morpholinomethyl)phenoxylacetamide), 31 (2-(3-isopropoxyphenyl)-1-ethanamine), 9 ((2-aminophenyl)(4-methylphenyl)amine), and 32
(2-morpholino-2-oxoacetohydrazide) are corresponding to the curves in B from left to right. Compounds 12, 34, and 15 (diethyl 2-(3,5-dimethyl-1H-pyrazol-1-yl)-6-
hydroxy-3,5-pyridinedicarboxylate) are corresponding to the curves in C from left to right. (D) Max-MCSs between identified active compounds (left) and the most
relevant compounds found within the entire training compound data set (center) or within the ligand set of each target protein (right) that exhibited scaffold hopping. The
max-MCSs between compounds are indicated in red. The columns ‘bioactivity’ and figand” indicate the existence of publications regarding the active compound:
‘bioactivity’ indicates whether a publication has already described that the compound is bioactive; ‘ligand’ indicates whether a publication has uncovered the ADBR2/
NPY1R ligand activity, having known the compound is bioactive. All identified active compounds are shown in Supplementary Figure S9. See Table | for compound
names of the numbered compounds.

important to identify bioactive compounds with diverse, novel scaffold hopping through analysis of the structural relation-
structures, rather than compounds with extremely high ships between pairs of newly identified active compounds and
activities in the nanomolar range, because lead candidates known ligands in the training data set by calculating their
are subsequently structurally optimized to generate higher maximum common substructures (MCSs). The number
activity in the lead-optimization process. of constituent atoms and bonds in the MCS is typically used
as a measure of structural similarity between two molecules.
We first calculated MCSs for each Bionet active compound
against all of the GPCR ligands in the training data set. Because
We next wanted to evaluate the extent of scaffold hopping known GPCR ligands have diverse molecular scaffolds, we
achieved in the identification of these novel ligands. However, selected a single ligand with the largest MCS value (max-MCS)
so far no explicit definition of scaffold hopping exists. among all the calculated MCSs as the most relevant structure
Therefore, we began by establishing definitive criteria for for each active compound (shown in the middle column of

Evaluation of ligand scaffold hopping
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Figure 4D). For comparison, we also selected one reference
ligand exhibiting the max-MCS from the subset of the training
data specific for ADRB2 and NPYIR (shown in the right
column of Figure 4D). When the two max-MCSs (shown as the
red colored substructures of Figure 4D) contained in these two
selected ligands did not overlap, the newly identified active
compound in the pair was deemed to have undergone scaffold
hopping. This can be a useful criterion for screening lead
compounds.

We performed scaffold-hopping analysis after having defi-
ned the criterion. For example, compound 5 (2,5-dimethyl-1-
(2,2,4-trimethyl-2,3-dihydro-1-benzofuran-7-yl)-1H-pyrrole),
which showed weak ADRB2 agonist activity (Figure 4A), did
not exhibit overlapping substructure between the max-MCSs
of codeine (6) or iodocyanopindolol (7; Figure 4D), which
were selected from all the GPCRs and ADRB2 ligand sets,
respectively. Therefore, compound 5 was categorized as
representative of scaffold hopping. Indeed, the seven active
compounds (5, 9, 28-32), including scaffold-hopped com-
pound 5, identified as ADRB2 ligands did not contain an
oxypropanolamine moiety, an established constituent of
B-adrenergic blockers (Supplementary Tables S9 and S10A).
No biological activities have been reported for four (5, 28, 29,
and 30) of these compounds, whereas ADRB2 activities of
the rest compounds (9, 31, and 32) have not been reported
previously (see Supplementary information for details). In
contrast, compounds 8 (Sandoz-21-009) and 33 (1-[(3-methoxy-
propyl)amino]-3-[(2-methyl-1H-indol-4-yl)oxy]-2-propanol)
both showed strong ADRB2 antagonist activity and had max-
MCSs that overlapped with that of iodocyanopindolol (7),
a known ADRB2 ligand (Figure 4D and Supplementary Figure
S9A). These compounds were, therefore, categorized as non-
hopping, although these were originally reported as serotonin
receptor ligands and were thus not included in the training
data set for ADRB2. Indeed, this max-MCS contained a
representative moiety of B-adrenergic blockers (Supplemen-
tary Table S9). Compounds, such as this example with heavily
overlapping MCSs, could likely be identified using LBVS.
Nevertheless, max-MCS profiling analysis confirmed the relia-
bility of our criteria for scaffold hopping, the accuracy
of predictions, and the reliability of the in vitro assays.
Furthermore, we identified the three novel active compounds
for NPY1R that have not previously been known to exhibit
biological activity. Of these compounds, compounds 12 (ethyl
1-(4-chlorophenyl)-4-[(4-methoxybenzyl)amino]-3-methyl-1H-
pyrazolo[3,4-b]pyridine-5-carboxylate) and 34 (ethyl 4-chloro-1-
(4-chlorophenyl)-3-methyl-1H-pyrazolo(3,4-b]pyridine-5-carboxy-
late) included examples of scaffold hopping (Figure 4D and
Supplementary Figure S9B).

Overall, CGBVS identified compounds for both GPCRs
analyzed that exhibited scaffold hopping, indicating that
CGBVS can use this characteristic to rationally predict novel
lead compounds, a crucial and very difficult step in drug
discovery. This feature of CGBVS is critically different from
existing predictive methods, such as LBVS, which depend on
similarities between test and reference ligands, and focus on a
single protein or highly homologous proteins. In particular,
CGBVS is useful for targets with undefined ligands, because
this method can use CPIs with target proteins that exhibit
lower levels of homology.

8 Molecular Systems Biology 2011

Application of CGBVS to kinase inhibitor
screening

Having demonstrated that CGBVS is a valuable strategy for
predicting CPIs for GPCRs, we also wanted to show the general
utility of this method for other target proteins. Therefore, we
selected the protein kinase family, another popular chemother-
apeutic target (Manning et al, 2002), for the application of
CGBVS. A CGBVS model for the kinase family was constructed
using a training data set of 15616 CPI samples (including 143
kinases and their 8830 inhibitors) from the GVK Biosciences
Pvt Ltd., (Hyderabad, India) kinase inhibitor database
(Supplementary Table S11). Similar to the GPCR results,
polypharmacological predictions for the kinases indicated
many possible multiple interactions between kinases and their
ligands (Supplementary Figure S6). The analysis of ligand
promiscuity has shown that iodophenyl and polycyclic
aromatic groups (containing five-membered heterocycles)
are characteristic of the putatively promiscuous ligands
(Supplementary Figure S7 and Supplementary Table S12).
In particular, polycyclic aromatic compounds are likely to
interact across kinase subfamilies in a manner reminiscent of
staurosporine, a well-known promiscuous inhibitor (Karaman
et al, 2008).

We focused on two protein kinases, the epidermal growth
factor receptor (EGFR) tyrosine kinase and the cyclin-
dependent kinase 2 (CDK2) serine/threonine kinase. We first
compared CGBVS with LBVS and SBVS by making predictions
using a validation data set that was designed for evaluation of
docking programs (Huang et al, 2006). For both kinases,
CGBVS was able to identify true inhibitors within the top-
ranked compounds more effectively than the LBVS and SBVS
methods (Supplementary Figure S8).

We then made prospective predictions for EGFR and CDK2
from the 11 500 Bionet compounds and selected the 20 highest-
scoring compounds for experimental verification (Supplemen-
tary Table S7). For EGFR, the off-chip mobility shift assay
revealed that 5 of the 20 compounds (hit rate=25%) ranked by
CGBVS were inhibitors, with ICs, values between 0.014 and
13 uM (Figure 5A, Supplementary Figure SSE and Supplemen-
tary Table S13A). However, MCS analysis suggested that these
compounds did not exhibit scaffold hopping (Figure 5C and
Supplementary Figure S9C). Indeed, the max-MCSs of four of
the active compounds (18, 21, 35, and 36) for EGFR were
quinazoline derivatives (Supplementary Tables S9 and S10B),
which are well-characterized EGFR inhibitors that include the
antitumor agent gefitinib. Compound 18 (6,7-dimethoxy-N-
phenyl-4-quinazolinamine) was shown to act as an EGFR
inhibitor. Although compounds 35 (7-chloro-N-(3-methoxy-
benzyl)-4-quinazolinamine) and 36 (6,7-dimethoxy-N-(2-thie-
nylmethyl)-4-quinazolinamine) were known to inhibit other
proteins such as NOD1 and STAT, their inhibitory activities
for EGFR have not been reported. No biological activities
have been reported for the remaining two compounds 21
(N-{2-[(4-chlorophenyl)sulfanyl]ethyl}-6,7-dimethoxy-4-qui-
nazolinamine) and 37 (2-{[4-(2-chloroacetyl)-1H-pyrrol-2-
yllmethylene } malononitrile).

For CDK2, 2 of the 20 compounds (hit rate=10%) identi-
fied had ICs, values of 4.9 and 19 uM in the off-chip mobility
shift assay (Figure 5B, Supplementary Figure S5F and

© 2011 EMBO and Macmillan Publishers Limited
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Figure 5 Experimental confirmation of the in vitro kinase activity of compounds and their scaffolds screened from a chemical library. Dose-response curves of the top-
ranked compounds from the Bionet chemical library for EGFR tyrosine kinase inhibitor activity (A) and CDK2 inhibitor activity (B). Inactive compounds (cutoff of 100 uM
in ICsq value) are not shown. Color of lines in A and B is the same as in Figure 4. Compounds 18, 36, 21, 35, and 37 are corresponding to the curves in A from left to
right. Compounds 26 ([4-amino-2-(tert-butylamino)-1,3-thiazol-5-yl)(4-chlorophenyl)methanone) and 23 are corresponding to the curves in B from left to right.
(C) Max-MCSs and publication status are similar to Figure 4 for the EGFR and CDK2. See Table | for compound names of the numbered compounds.

Supplementary Table S13B), and bioactivity of these two
compounds also has not been reported previously. One active
compound, 23 ([2-(4-fluorophenyl)-5,6,7,8-tetrahydroimida-
z0[2,1-b][1,3]benzothiazol-3-ylJmethanol), was an example
of scaffold hopping (Figure 5C). This structure shared the
max-MCS of the imidazothiazole moiety with compound 24
(2-methyl-6-[6-(6-methyl-pyridin-2-yl)-imidazo[2,1-b]thiazol-
5-yl]-3a,7a-dihydro-benzooxazole), a known inhibitor of
transforming growth factor-f receptor type 1 tyrosine kinase,
unlike CDK2 serine/threonine kinase (Supplementary Table
S10B).

To assess prospective prediction performance of CGBVS
versus LBVS and SBVS, we have performed additional
experimental validation of the prediction results from LBVS
and SBVS for both EGFR and CDK2. Along with the validation
protocol for CGBVS, the off-chip mobility shift assays
confirmed the bioactivities of the 20 highest-scoring Bionet
compounds that were selected by LBVS and SBVS. Conse-
quently, inhibitors were identified by LBVS for neither EGFR
nor CDK2 (Supplementary Figure S10A and B, and Supple-
mentary Table S14). SBVS identified one EGFR inhibitor
(IC50=0.73 uM) and one CDK2 inhibitor (IC50=26 uM), but
neither exhibited scaffold hopping (Supplementary Figure

© 2011 EMBO and Macmillan Publishers Limited

S10C-G and Supplementary Table S15). The hit rate of
SBVS was 5% (1 hit out of 20 at 10 uM), consistent with the
hit rate of SBVS previously reported (Shoichet, 2004). As
CGBVS exhibited 25 and 10% hit rates for EGFR and CDK2,
respectively, the prediction performance of CGBVS was
superior to those of existing methods (LBVS and SBVS) for
the kinase family as well. These results indicate that CGBVS
not only achieves higher hit rates but also predicts ligands
with scaffolds different from known ligands in the case of
protein kinases, suggesting that CGBVS is applicable to the
identification of novel bioactive compounds for multiple
protein families.

Discussion

Whereas a critical first step in drug development is the
identification of compounds with novel scaffolds, the next
crucial step is assessment of selectivity. Information regarding
the novelty and selectivity of lead candidates obtained by
virtual screening can accelerate the subsequent lead-optimiza-
tion stage of drug development. A paradigmatic advantage of
CGBVS is the incorporation of multiple CPIs, numerically
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represented as vector descriptors, which integrates both
chemical structures and protein sequence data. In contrast,
LBVS uses only chemical descriptors in the feature vector.
This difference appears to provide CGBVS with a relatively
high ability to predict ligand binding to multiple proteins
(a measure of selectivity), while allowing scaffold hopping
through the use of CPIs. In fact, we observed a concomitant
loss of predictive performance when the number of elements
for protein vectors was reduced (Supplementary Figure S11).
The difference in the selectivity predictions of CGBVS and
LBVS can be explained by the absence of vector descriptors for
proteins in LBVS and the related lack of CPI data reflecting
ligand recognition. Machine learning with protein data sets
also enabled CGBVS to identify compounds that exhibited
scaffold hopping because CPIs could be subdivided into
chemical substructures and amino acid interactions, on which
SBVS relies. In CGBVS, CPIs were described as amino acid
versus chemical structure-derived feature vectors. CGBVS
predictions are based on extraction of conserved patterns
from subdivided interaction vectors involving both proteins
and their corresponding ligands. Our successful identification
of novel, scaffold-hopping ligands indicates that these
conserved patterns included as yet undetermined signatures
in the multiple CPIs captured.

Recently, computational approaches conceptually similar to
our CGBVS approach have been proposed (Faulon et al, 2008;
Jacob and Vert, 2008; Wassermann et al, 2009). However,
these studies were limited in scope by the fact that they
focused on computational validation through retrospective
prediction and lacked experimental verification of the concept.
Therefore, the practical utility and general applicability of
these methods, specifically aimed at novel lead identification,
are questionable.

Our present study has demonstrated that chemical genomics
data are of immense practical use for lead discovery.
Importantly, in further comparative analyses of the virtual
screening of 11 500 Bionet compounds, the novel compounds
that we identified using CGBVS were not in the high-scoring
range using LBVS or SBVS (Supplementary Figure S12).
Combining CGBVS with conventional methods, such as SBVS
and LBVS, can significantly enhance the power of in silico
strategies.

In the present form, as a learning machine, we used a SVM,
which models the two class patterns of interacting pairs and
non-interacting pairs by using proteins and their ligands.
Therefore, the quality of these two types of training data has
much effect on the prediction performance. In this study, we
used manually curated protein-ligand interaction data sets
from the GLIDA and GVK Biosciences databases. However,
even curated data sets are likely to contain some factual errors,
which tend to reduce the effectiveness of machine-learning
methods. Therefore, improvement in the quality and quantity
of the training data resource could enhance the prediction
accuracy. A frequent hurdle to overcome when using CPI data
is the acquisition of reliable data representing non-interacting
pairs of ligands and their targets. Our strategy was to generate
the same quantity of negative data from unknown interactions
as that available for known interactions. The potential
drawback is the possible introduction of a small number of
false-negative examples in which the ligand does in fact bind to
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the target. The publication of experimentally confirmed non-
interactions would benefit the CGBVS strategy greatly.

Moreover, it is not easy to comprehensively retrieve enough
reliable activity information (that is, ICso, ECsp, K; value, etc.)
about ligands because our available CPI databases consist of
heterogeneous experimental results from many researchers
who screened different compound sets for their targets of
interest using their original bioassay systems. If we could
obtain sufficient and non-biased quantitative affinity data and
generate a regressor model such as support vector regression,
the prediction performance might be further improved.

Although the traditional drug design process focused on
designing a single ligand specifically for a single receptor
molecule, our results suggest that a systems biology-based
‘integrationist mindset” (Peterson, 2008) is more appropriate
for understanding and computing complex systems in some or
all of their entirety. Although the integrationist view is a
relatively recent approach that drug discovery research has
not embraced completely, the view is beginning to receive
attention for such research. Recently, drugs that target multiple
proteins have been attracting interest for the development of
novel effective therapeutics (Roth et al, 2004a; Fliri et al, 2005;
Morphy and Rankovic, 2007; Apsel et al, 2008). As a predic-
tive model, CGBVS could provide an important step in the
discovery of such multi-target drugs by identifying the group of
proteins targeted by a particular ligand, leading to innovation
in pharmaceutical researches.

Materials and methods

CPI data

Data for 5207 ligand-GPCR pairs (including 317 GPCRs and their 866
ligands) with known CPIs were collected from the GLIDA database
(Okuno et al, 2006), and 15616 inhibitor-kinase pairs (including 143
kinases and their 8830 inhibitors) were collected from the GVK
Biosciences kinase inhibitor database. The GLIDA database was
constructed from several reliable resources, including IUPHAR-RD
(Foord et al, 2005), PubMed (http://www.ncbi.nlm.nih.gov/pubmed/),
PubChem (Wang et al, 2009), DrugBank (Wishart et al, 2006), the
Ki Database (Roth et al, 2004b), and MDL ISIS/Base 2.5. Then, we
carefully checked each compound against the primary literature to
ensure that the chemical structure, target protein name, and binding
and activity information were correct. Although the number of GPCR
ligands was relatively small, the CPI pairs represent a credible data set
because only interactions with relatively high affinities (K;, ECs,, and
IC50<1uM) are deposited in the GLIDA database.

Chemical and protein descriptors

Chemical descriptors were calculated using the DRAGONX program
(version 1.2; Talete S.rl., Milan, Italy). Protein descriptors were
calculated from the sequences alone. Specifically, dipeptide composi-
tion-based description (a mismatch-allowed spectrum kernel) was
used to represent GPCRs, providing 400 dimensions (Leslie et al,
2004). For kinases, we used descriptors consisting of 1497 features
provided by the PROFEAT Webserver (Li et al, 2006). Calculations of
these descriptors were applied to the kinase domain, not to full-length
sequences. Finally, these descriptor vectors were separately scaled to
the range —1 to 1.

SVM calculations

SVM calculations for CGBVS used a portion of the LIBSVM suite
of programs (http://www.csie.ntu.edu.tw/ ~ cjlin/libsvm). The
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parameters of the SVM with the radial basis function kernel were
optimized using a grid search.

Retrospective virtual screening for ADRB2 by
CGBVS

A predictive model for ADRB2 was constructed using a 5207-CPI pair
data set, but excluding 40 ADRB2-related CPIs, leaving 5167 pairs.
The number of predicted compounds was 866 (including the 40 known
ligands). We then combined the chemical descriptors for these
compounds and the protein descriptors for ADRB2, and predicted
the probability of interactions. The ligand prediction was repeated 20
times with different negative sample sets, and the prediction score was
set to the maximum probability.

Retrospective virtual screening for ADRB2 by
SBVS

We used the recently published crystal structure of ADRB2 (Cherezov
et al, 2007) as a starting model. The ADRB2 structure and the 866
known ligands were prepared for docking simulations using the
Protein Preparation Wizard and LigPrep script within Maestro
(Schrédinger Inc, Portland, OR), respectively. This protein preparation
procedure involved optimizing contacts by changing hydroxyl group
orientations, flipping Asn and Gln side chains, and selecting His
tautomeric states, followed by refining energy constraints using the
OPLS-AA force field. Glide (SP mode) (Friesner et al, 2004) was used
for grid generation and rigid receptor docking of the ligands. During
the simulations, five docking models for each ligand were predicted,
and the model with the minimum GlideScore was chosen as the final
docking structure. SBVS was performed under two conditions:
(1) without constraints, and (2) with constrained hydrogen bonding
between the compounds and Asp113, aresidue previously shown to be
crucial for ligand binding (Strader et al, 1987). The different screening
approaches were evaluated in terms of the hit rate and the EF
(Supplementary Table S3) using the following equations:

Hitrate = 100x (HiISSJmp]ed/Nsampled ),

where Ng,mpied represents the total number of high-scoring compounds
and Hitsg,mplea represents the number of active compounds, and

EF = (Hitssmnpled/Nsampled)/(Hitslo!al/Nlotal)

where Ny, Tepresents the total number of compounds in the complete
database and Hits,., represents the number of active compounds
therein. These values were calculated based on the assumption that all
compounds reported to interact with ADRB2 were truly active
compounds and that those with unknown activity for the target were
inactive.

Retrospective virtual screening for kinases

EGFR and CDK2 were chosen for model validation. In total, 15616
kinase-inhibitor pairs were used to construct a CGBVS model. First,
validation data sets from the DUD website (http://dud.docking.org/)
were used (Huang et al, 2006). Compounds duplicated in the training
and test data sets were removed from the test data. For comparison,
binding free energy data, calculated by DOCK (Makino and Kuntz,
1997), was downloaded from the DUD site. Grid generation and rigid
receptor ligand docking was performed using another SBVS method,
GOLD (Jones et al, 1997). During simulations, three docking models
for each ligand were predicted, and the model with the minimum
ChemScore (or Astex Statistical Potential) was chosen as a final
docking structure. Prospective predictions were generated for EGFR
and CDK2 using 11 500 Bionet compounds (Key Organics Ltd), and the
20 highest-scoring compounds were selected for experimental
verification (See Supplementary Table S7 for compound ID, names,
and scores, and Supplementary Data Set 1 for chemical structures of
the Bionet compounds).

© 2011 EMBO and Macmillan Publishers Limited
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Polypharmacological prediction and prospective
virtual screening by CGBVS

A prediction model for ADRB2 was constructed for CGBVS as
described for retrospective screening, with the exception that all
interaction data were included in the training data set. A prediction
model for NPY1R was constructed using the 5207 CPI samples and an
additional 3106 CPI samples of peptidergic GPCRs from the Integrity
database (Prous Science S.A., Tokyo, Japan). Similarly, a prediction
model] for kinases was constructed using 15616 CPI samples from the
GVK Biosciences kinase inhibitor database. In each case, 11500
compounds from the Bionet compound set were screened by CGBVS.

MCS identification for active compounds

MCSs for each active compound and every GPCR ligand (or kinase
inhibitor) in the training data set were calculated using the LibMCS
program in the JChem module (Csizmadia, 2000). A single known
ligand with the highest MCS value (max-MCS) was selected as the
most relevant structure for each active compound. For comparison, we
also selected a compound with the max-MCS compared with known
ligands of the test receptor from the training data. Scaffold hopping
was defined as the absence of overlaps between these max-MCSs.

Experiments and the other calculations

A detailed description of the applied experimental and other
computational techniques is given in the Supplementary information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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There is growing interest in computational chemogenomics, which aims to identify all possible ligands of
all target families using in silico prediction models. In particular, kernel methods provide a means of integrating
compounds and proteins in a principled manner and enable the exploration of ligand—target binding on a
genomic scale. To better understand the link between ligands and targets, it is of fundamental interest to
identify molecular interaction features that contribute to prediction of ligand—target binding. To this end,
we describe a feature selection approach based on kernel dimensionality reduction (KDR) that works in a
ligand—target space defined by kernels. We further propose an efficient algorithm to overcome a computational
bottleneck and thereby provide a useful general approach to feature selection for chemogenomics. Our
experiment on cytochrome P450 (CYP) enzymes has shown that the algorithm is capable of identifying
predictive features, as well as prioritizing features that are indicative of ligand preference for a given target
family. We further illustrate its applicability on the mutation data of HIV protease by identifying influential
mutated positions within protease variants. These results suggest that our approach has the potential to
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uncover the molecular basis for ligand selectivity and off-target effects.

INTRODUCTION

The last several years have seen a paradigm shift in
pharmaceutical research from traditional target-specific ap-
proaches to a cross-target approach, offering tremendous
opportunities for establishing novel drug design strategies
to accelerate the drug discovery process. Receptors are no
longer viewed as single entities but grouped into sets of
related proteins or protein classes that are explored in a
systematic manner. Chemogenomics has emerged as an
interdisciplinary field, aiming at comprehensive coverage of
ligand—target interactions, that is, identifying all possible
ligands of all target families.'> Concomitantly, high-
throughput data being accumulated at an ever-increasing rate
have triggered the development of novel in silico methodolo-
gies to comprehensively predict ligand—target interactions
and binding affinities.>

In particular, a ligand—target approach has recently
received much attention.' This approach represents a single-
step process to integrate compounds and proteins into pairs
and predict ligand—target binding on a genomic scale using
machine learning models (e.g., that of Bock and Gough* and
Erhan et al.”). The advantage of the ligand—target approach
lies in that it allows predictions of new interactions even
when neither ligands for a specific target nor targets for a
specific ligand are known. Moreover, the greatest impact can
be expected for targets devoid of structural 3D data, because
classical drug design strategies like structure-based virtual
screening cannot be applied to such targets.' Importantly,
the ligand—target approach also has the potential to reveal

* To whom correspondence should be addressed. E-mail: niijima@
pharm.kyoto-u.ac_jp.

10.1021/ci1001394

ligand selectivity and off-target effects by comprehensive
analysis of cross-reactivity of ligands.

Previous studies on the ligand—target approach have
devoted much effort to the development of prediction models.
Although advanced statistical models often yield better
performance, they are usually constructed in a black-box
way, lacking transparency and interpretability. This signifi-
cantly hinders our understanding of the molecular basis for
ligand—target binding. In order to gain an in-depth under-
standing of the link between ligands and targets, a next step
should then be directed toward the identification of structural
and physicochemical features associated with the binding.
A promising in silico approach to this problem is to apply
feature selection technigues,® which are typically used for
molecular descriptor selection in chemoinformatics (e.g., the
work of Frohlich et al.,’ Byvatov and Schneider,® and Xue
et al.®). However, existing techniques for the ligand-based
approach only consider individual targets and perform feature
selection in the ligand space of a specific target and, thus,
have a major limitation in capturing cross-reactive patterns.
Given the fact that a single compound exhibits different
binding affinities against multiple targets, feature selection
needs to be performed instead in a ligand—target space, into
which compounds are mapped jointly with targets. Because
the ligand—target approach is itself an emerging strategy,
feature selection based on the cross-target view is entirely
an unexplored topic of research, and to our knowledge, no
method exists that enables feature selection in the ligand—
target space.

Here we describe a feature selection approach that works
in a kernel-induced feature space'® representing a ligand—target
space. In particular, we propose using kernel dimensionality
reduction (KDR)''"'? for feature selection with an efficient

© 2011 American Chemical Society
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algorithm, in order to identify molecular interaction features
that contribute to prediction of ligand—target binding affini-
ties. The quality of a prediction model is known to highly
depend on the selected features and, hence, potentially
benefits from feature selection. Indeed, the prediction
performance can be improved by using only informative
features. Reducing the number of features also helps to avoid
overfitting.'> Most importantly, selected features often
facilitate interpretation of the model. For example, selected
features in the ligand—target binding affinity space can serve
to characterize privileged structures—selected substructures
able to provide high-affinity ligands for a set of re-
ceptors'*—and thus have implications for lead compound
optimization for drug design. Furthermore, feature selection
based on the cross-target view may provide insights into the
molecular basis for ligand selectivity and off-target effects
and has the potential to uncover the complex mode of drug
actions. In the present study, we apply the proposed algorithm
to a data set on cytochrome P450 (CYP) enzymes and show
its capability of selecting a small subset of predictive features,
which are further found to be indicative of ligand preference
for a set of targets. We also evaluate our algorithm on the
mutation data of HIV protease and illustrate its applicability
by identifying influential amino acid positions within mutated
variants.

METHODS

Representation of Ligand—Target Space. A key element
of the ligand—target approach is the construction of
ligand—target pairs, which need to be integrated from
heterogeneous data types of compounds and proteins.'* For
this purpose, unified pair descriptions have been proposed
and applied to search for novel active pairs.*>'¢"2! In
particular, it has recently proven that kernel methods'®
provide a general framework for integrating compounds and
proteins, regardless of how they are represented, respec-
tively.'” Here we describe how a ligand—target space can
be constructed via kernels.

Let us denote compounds and proteins by ¢; and p;
respectively. The binding affinity prediction problem can be
formulated as the following machine learning problem: given
a set of n ligand—target pairs (c;.,p1), ..., (¢,.Py) With known
affinity values, construct a model to make predictions of
activities of candidate pairs. To apply standard regression
models, we first consider representing each ligand—target
pair by a vector. Formally, given a chemical vector @, (c;)
and a protein vector @,(p;), we need to form a single vector
W(c,p;) using ®,(c;) and D,(p)).

To capture interactions between features of the compound

c; and those of the protein p;, previous studies™'®!” proposed
to represent the pair (c;p;) by
W(c,p) = ®fc) @ ®(p) (1

The tensor product operation ® indicates that the pair is
represented by all possible products (crossover) of the
features of c¢; and p; thereby seeking to fully encode
correlations between them. The explicit computation of the
products, however, demands expensive computation time and
storage. Suppose that the number of features for ¢ and p is
d. and d,, respectively, then the pair is composed of d. x d,
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features. Fortunately, this computational bottleneck can be
circumvented under the framework of kernel methods.'®

Kernel methods are a class of algorithms that apply linear
machine learning algorithms for classification or regression
in a high-dimensional, possibly infinite-dimensional, feature
space. Formally, the samples x; € IR? are implicitly mapped
into a feature space as ®(x;) € .7 such that the inner product
between a pair of samples is given by a kernel function
k(x;,x;) = @(x;)* D(x)), which measures the similarity between
x; and x;. If the samples are expressed in terms of inner
products only, the so-called kernel trick allows a variety of
linear algorithms to work in the feature space constructed
via a kernel function, without explicitly computing vectors
comprising many features. In the case of binding affinity
prediction, a ligand—target pair constitutes a single sample,
and the kernel measures the similarity between ligand—target
pairs. It can be shown that the kernel between pairs that are
represented by eq 1 is decomposed as

W(c,p) W(c; p)) (®fc) ® D (p) (Pfc) ® D,(p))
@fc) Rfc) X P(p) P p)

3

It is readily seen that the similarity between two ligand—target
pairs is simply the product of the similarity between the two
compounds and the similarity between the two proteins. This
indicates that eq 2, known as the tensor product kernel, can
be computed easily once ligand and target kernels have been
computed separately, avoiding the explicit computation of
all the products of the features representing compounds and
proteins. More generally, the kernels for compounds and
proteins are not limited to the inner products of vectors
and allow one to define the similarity based on nonvectorial
data such as graphs for compounds, and amino acid
sequences or 3D structures for proteins. Formally, denoting
the kernels for compounds and proteins respectively by

ke c) = ®fc) ®Lc) )

ki p) = Pp) Pp) @
the kernel between the two pairs is given by
k((c;, p)s (¢ p) = kfcic) X k(pyp))

In this way, the kernel-based approach allows versatile
representation of the ligand—target space.

Feature Selection in Ligand—Target Binding Affi-
nity Space. To select informative features in the ligand—target
space as defined above, we need to perform feature selection
in a kernel-induced feature space. Despite a broad spectrum
of existing methods for feature selection® there are few
techniques that can be applied to such a ligand —target space
constructed via kernels.

Here we adapt a semiparametric dimensionality reduction
approach, called kernel dimensionality reduction (KDR),'"*'?
to feature selection for binding affinity prediction. In
particular, we propose an efficient feature selection algorithm
to identify molecular interaction features that contribute to
prediction of ligand—target binding.

KDR is a statistically grounded approach to dimensionality
reduction, which aims to represent new features in the form
of linear combinations of original features. This is achieved
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by minimizing the independence (i.e., maximizing the
dependence) between a set of features of samples and their
labels. KDR can also be used to select a subset of original
features that well captures the dependency. KDR enables us
to measure the (in)dependence in a kernel-induced feature
space, thereby providing a general means for dimensionality
reduction and feature selection. In terms of statistics, KDR
is based on the estimation and optimization of covariance
operators on kernel-induced feature spaces, and the operators
are used to provide a general characterization of conditional
independence. KDR has the advantage that it imposes no
strong assumptions either on the marginal distributions of
samples and labels or on the conditional probability of labels
given samples. This makes it applicable to diverse problems.
Nevertheless, the application of KDR is still limited to typical
machine learning problems'? and yet to be seen in the
chemoinformatics domain. Of note, this study is distinguished
from others in that KDR is adapted to feature selection in a
joint feature space of ligands and targets.

Among possible KDR objective functions, we employ the
following simple function based on the trace of the empirical
conditional covariance operator:'?

Tr[(HKH + Af)"'HLH] (5)

Here, Tr denotes the trace of a matrix, and K, L. € IR"*" are
the kernel matrices for the samples x; and the labels y;,
respectively. I, € IR"™*" is the identity matrix, and A4 denotes
a regularization parameter. H = I, — (1/n)ee” is a centering
matrix, where ¢ = (1, ..., 1)T is an n-dimensional vector. It
is worth noting that this objective function has a close
relationship with the Hilbert—Schmidt independence criterion
(HSIC),?? and eq 5 can be derived from the objective function
of kernel ridge regression.? It is interesting to note that sliced
inverse regression (SIR),?* which is well-known and closely
related to KDR, has recently been extended to kernel SIR
(KSIR)® to overcome some limitations of SIR, yet unlike
KDR, KSIR is sensitive to the number of slices which needs
to be set a priori.

In the context of binding affinity prediction, the kernel
matrix K defines the similarities between pairs, x; = (¢;,p:),
and L is simply computed as L; = y;y;, where y; represents
the affinity value given to x;. Further, if we use the tensor
product kernel eq 2, K can be represented as

K = K,OK,

where the elements of K, and K, are calculated by eqs 3 and
4 and O denotes the Hadamard product (elementwise
product) operation.

As detailed in the work of Fukumizu et al.,'” selection of
relevant features exhibiting high dependence (i.e., low
independence) on the labels reduces to the minimization of
the objective function eq 5. Since exhaustive search is
computationally prohibitive, we aim to achieve this with a
backward elimination algorithm—the relevance of individual
features is evaluated on a leave-one-out basis, and the least
dependent feature maximizing the objective function is
recursively eliminated from a full feature set. Alternative
greedy algorithms such as forward search can also be used,
but the backward elimination algorithm often yields better
features, due to the evaluation of features in the presence of
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all others. To name but a few of this kind, SVM-RFE?¢ and
the BAHSIC algorithm®® have indeed shown successful
results.

Equation 5 can be computed independent of a particular
classifier, yet the objective function involves the inverse of
a sample-sized matrix. Thus, regardless of the search
algorithm used, the computation of eq 5 based on leave-
one-feature-out (LOFO) becomes intractable as the sample
size and/or feature size increases.

Efficient Feature Selection Algorithm. To overcome this
computational bottleneck, we propose an efficient algorithm
for feature selection in the ligand—target binding affinity
space constructed via the tensor product kernel. Specifically,
we seek to improve the computational efficiency of

(H(KOK)H + AL)™"
in the LOFO process, i.e.,
AT = (H(K, — fFNOK)H + AL)™! (6)

when selecting chemical features of ligands, while keeping
protein features of targets unchanged. Here, f\” denotes a
chemical feature to be left out. Note that the proposed
algorithm is valid only when the linear kernel is used for
ligands, but the targets can be represented by various
features implicitly defined by kernels. First, we ap-
proximate the target kernel matrix K, by a matrix G of
lower-rank & as

K ~GG', G = (g, ... g) € IR™ €)

This low-rank approximation can be efficiently done using,
e.g., incomplete Cholesky decomposition.”’ For simplicity,
let us define

P = H(KOK)H + Al € IR™

Q = HFY0g,, ...f 0g,) € IR™*
From eq 6, we have

AT =® - QQ)

Further, from the Sherman—Morrison—Woodbury for-
mula,”® we have

AC) = p~l 4 PTIQU, — Q'PIQ) QP!

Therefore, if & < n, computing the matrix inversion of /;
— Q"P~!Q € IR¥ is efficient, and hence, A"". Equation
7 can be computed independent of the LOFO process, and
P~! can be updated consecutively. In the case of binding
affinity prediction, & is upper-bounded by min(n,.d,),
where s, is the number of proteins. Because binding
affinities are typically measured for a relatively small
number of targets against a series of compounds in
chemical libraries, ¥ < n, < n usually holds, and the
overall computation time can be saved by (n/k)-fold
compared with a naive computation of eq 6. Of note, the
proposed algorithm allows one to use different kernels
for proteins when selecting chemical features. The algo-
rithm can be summarized as follows:
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Input: {((c1,p1).31):---, ((€n,pn) 1) }
chemical feature set .

Output: A ranking list # of chemical features

1: Compute H,L,K; and K;;

2: Compute G, O, and P~

3K — 0

Repeat 4-7 until . =0

4: j — argmax;e » Tr {A(“) HLH];
5: Pl — A,

6: 7 — S\ {j}:

7R —RI{j}.

In the above algorithm, a single feature is recursively
eliminated from .7 and added to the end of ¢#, in which the
features toward the end of ¢# have higher dependence on
the labels in the presence of target information. Accordingly,
the top-ranked features can be finally taken from the tail of
AR.

Likewise, in the case of protein feature selection with
chemical features unchanged, the same algorithm is ap-
plicable by simply replacing eqs 6 and 7 with

A(—i) — (H((Kr _ ﬁ(i) r(i)T)OK/)H + lln)_]

K,~ GG"
where f{ denotes a protein feature.

EXPERIMENTS

Data Sets. The CYP data set was taken from the study of
Kontijevskis et al.>” The affinity values of 798 ligand—target
pairs (consisting of 371 inhibitors and 14 CYP enzymes)
were experimentally determined and thus available. Each pair
has a pICsy = —log(ICs,) value, where ICs, represent half-
maximal inhibitory concentrations. The pICs, values range
from 0.46 to 8.70, with a mean value of 4.39. The
distributions of the pICs, values are shown for each CYP
enzyme in Figure 1.

The mutation data of HIV protease were collected from
the literature listed in the work of Lapins and Wikberg.*”
After carefully checking the literature sources, we chose to
use a total of 389 ligand—target pairs with known pK; values,
where pK; = —log (K;) and K; represents inhibition constants.
The ligand—target pairs consist of 21 ligands and 69 mutated
protease variants as well as the wild-type, and the number
of mutated positions amounts to 42 in the variants. The pK;
values range from 5.37 to 11.89, with a mean value of 8.75.
The distributions of the pK; values are shown for each ligand
in Figure 2.

Kernels for Ligands and Targets. A wide variety of
molecular features (descriptors) have been developed thus
far to characterize the chemical structures and the physico-
chemical and molecular properties of compounds.®' Here,
we chose to use a total of 1664 descriptors calculated by
version 1.4 of the Dragon software.*” This descriptor set
contains a range of 1D to 3D molecular features that fall
into the following categories: constitutional descriptors,
topological descriptors, walk and path counts, connectivity
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Figure 1. Boxplots of the pICs, values for 14 CYP enzymes. Shown
in parentheses are the numbers of inhibitors.
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Figure 2. Boxplots of the pK; values for 21 ligands. The ligand
numbers indicate PubChem CIDs. Shown in parentheses are the
numbers of mutated protease variants and the wild-type.

indices, information indices, 2D autocorrelations, edge
adjacency indices, Burden eigenvalue descriptors, topological
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charge indices, eigenvalue-based indices, Randic molecular
profiles, geometrical descriptors, RDF descriptors, 3D-
MoRSE descriptors, WHIM descriptors, GETAWAY de-
scriptors, functional group counts, atom-centered fragments,
charge descriptors, and molecular properties. Before calculat-
ing these descriptors, MOE*> was used to preprocess the raw
macromolecular structures, including elimination of the
crystallographic water molecules, removal of salts, addition
of hydrogen atoms, and charge processing. A variation filter
was then applied to eliminate the descriptors showing little
variation across the compounds, resulting in 1397 descriptors
for the CYP data set and 1378 descriptors for the HIV
protease data set, and the values were scaled in the range of
—1to 1.

There exist several means of representing proteins or
defining protein kernels. Among others, the sequence-based
approach has proven effective when the availability of 3D
structures is very limited. In view of this, we employed two
different kernels in the experiment for CYPs: PROFEAT
feature vectors®* with RBF kernel (PROFEAT+RBF) and
mismatch kernel.*> These kernels can be computed from
sequences alone and have shown good performance in protein
classification and remote homology detection, as well as in
ligand prediction.'”°

The PROFEAT feature vector provided by the PROFEAT
Webserver™ contains 1497 features representing, e.g., dipep-
tide composition and physicochemical properties of se-
quences. The RBF kernel was calculated using the feature
vectors to represent the sequence similarity. The mismatch
kernels are a class of string kernels, which can be computed
as a dot product between two vectors consisting of frequen-
cies of subsequences within the whole sequence. The
mismatch kernels allow for mutations between the subse-
quences. Specifically, the mismatch kernel is calculated based
on shared occurrences of (k,m)-patterns in the data, where
the (k,m)-pattern consists of all k-length subsequences that
differ from it by at most m mismatches. In our experiment,
the typical choice of k = 3 and m = 1 was used in accordance
with the work of Jacob and Vert."?

Whereas the chemical descriptors were subjected to feature
selection for the CYP data set, feature selection was applied
to protein features in the experiment for HIV protease, with
the representation of ligands unchanged. Therefore, different
kernels can be used for representing ligands, and we herein
used the Dragon descriptors with RBF kernel. The targets
were described using three z-scales, z,, 22, and 736 following
the work of Lapins and Wikberg.*® The z-scales are the
leading principal components obtained from 26 measured
and computed physicochemical properties of amino acids and
can be interpreted as hydrophobicity (z(), steric properties
(z2), and polarity (z3) of amino acids. As a result, the total
number of protein features amounts to 42 x 3 = 126.

Performance Evaluation. The proposed algorithm selects
features independent of a specific classifier used. It is
therefore of interest to evaluate the predictive ability of the
selected features using different kernel-based regression
models. In the present study, we employed two representative
models: kernel ridge regression (KRR)*” and support vector
regression (SVR).*® The regularization parameter of KRR
was fixed to the average eigenvalue of the kernel matrix.
For SVR, the regularization parameter C was selected from
{0.01, 0.1, ..., 100}, and the default value of 0.1 was used
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for e of loss function. The y parameter of RBF kernel for
compounds (the CYP data set) and for proteins (the HIV
protease data set) was set to a/(number of features), and o
was selected from {274, 273, ..., 2*}. The parameter A of eq
5 was fixed to the average eigenvalue of HKH, which can
easily be computed as Tr(HKH)/n. We used the LIBSVM
library*® for the implementation of SVR and in-house C
codes for feature selection and KRR.

We used repeated random splitting for performance
evaluation—the whole samples were partitioned randomly
and repeatedly into training and test sets. The ratio of the
training against test set was set to 6:1 for the CYP and HIV
protease data sets, in accordance with previous studies.?*°
Feature selection was performed using only the training set,
and the ¢? value of the learnt regression model was obtained
using the test set. Given » test samples, ¢* is defined as

Z o= )A’i)2
=1

¢=1-——
> o -9
i=1

where y; and ¥, are the true affinity value and estimated value
of sample i, respectively, and ¥ is the average value of y;s.
Thus, the larger value of 42 indicates the better performance.
The random splitting was repeated 20 times, and the g* value
averaged over the 20 runs and the corresponding standard
deviations are reported here. Because the rank of features
can vary depending on the training sets, we calculated scores
as the average ranks of the 20 ranking lists.

The aim of the experiments was to evaluate how the
prediction performance would be affected by eliminating
possibly irrelevant features and whether our algorithm can
identify a small set of informative features. To this end, the
number of features was varied from all features to >50 by
10% decrements, and from 50 to 5 in decrements of 5. The
predictive ability of the selected features was assessed by
KRR and SVR as a function of the number of features. There
exists no competing method that enables feature selection
in a ligand—target space constructed via kernels, but it is
worth making a comparison with random selection as a
baseline to evaluate how well the proposed algorithm
performs in practice. For this purpose, we randomly selected
features from the whole feature set for each data set splitting
and evaluated their prediction performance in the same way
as for the selected features of the proposed algorithm.

RESULTS AND DISCUSSION

Chemical Feature Selection for CYPs. CYPs constitute
a superfamily of heme-containing enzymes, which are
involved in the oxidative metabolism of a large number of
structurally different compounds of both endogenous and
exogenous origin. It is known that more than 90% of all
pharmaceuticals are metabolized by CYPs; CYPLA2,
CYP2C9, CYP2C19, CYP2D6, and CYP3A4 are predomi-
nant among others.*® These enzymes are susceptible to
inhibition due to their broad specificity, giving rise to
unexpected drug—drug interactions and drug toxicity. This
makes prediction of interactions between CYPs and drugs a
challenging problem.
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Figure 3. Average ¢* values as a function of the number of features.
The PROFEAT+RBF kernel was used for CYPs. (a) KRR with
the linear and RBF kernels for compounds. (b) SVR with the linear
and RBF kernels for compounds.

As shown in Figure 1, the distributions of the pICs, values
significantly overlap between the predominant CYPs and
exhibit a wide range of inhibitory activities for most of the
CYP enzymes, albeit biased for a fraction of them (e.g.,
CYPIBI1). When simply estimating the value of a given
inhibitor to be the mean value for the target CYP, we
observed ¢> = 0.18 + 0.07, which clearly indicates the need
for the use of both ligand and target information to make
better predictions, and this can be achieved by the
ligand—target approach.

We applied the proposed algorithm to the CYP data set.
Figure 3 and Table 1 show the g values for KRR and SVR
with the linear and RBF kernels for compounds and the
PROFEAT+RBF kernel for CYPs. Using all the chemical
features, KRR and SVR with the RBF kernel yielded ¢*> =
0.59 and 0.66, respectively. The same data set was analyzed
by Kontijevskis et al.>® using a different ligand—target
approach that is based on linear partial least-squares (PLS),
and the PLS-based model yielded g* values of 0.61—0.66.
Although a fair comparison of the performance with the
present study cannot be made due to the difference in
chemical descriptors used, g> = 0.66 obtained by our SVR
is comparable to the reported values in the previous study.
It should be noted that the g* value exceeding 0.60 can be
considered highly predictive, compared with previous in
silico models for predicting CYP inhibition.?

To evaluate whether our algorithm can narrow an abun-
dance of features that possibly include irrelevant ones down

NIJIMA ET AL.

Table 1. Performance Comparison for CYPs Using the
PROFEAT+RBF kernel”

KRR (chemical

KRR (chemical

kernel: linear) kernel: RBF)
no. of
features KDR random KDR random
10 0.41 £ 0.08 0.32 £ 0.09 0.48 £0.07 0.45 £ 0.08
20 0.48 +£0.07 0.38 £ 0.09 0.53 £ 0.06 0.51 £0.08
30 0.49 £ 0.07 0.39 £ 0.09 0.55 £0.07 0.53 £0.08
50 0.50 £ 0.07 0.42 £0.10 0.55 £0.07 0.54 £ 0.07
108 0.52 +£0.08 0.44 £ 0.10 0.57 £ 0.06 0.56 £ 0.07
all (1397) 0.48 £ 0.08 0.59 £ 0.07
0.54 + 0.07 (KDR, 185) 0.60 £+ 0.06 (KDR, 392)
SVR (chemical SVR (chemical
kernel: linear) kernel: RBF)
no. of

features KDR random KDR random
10 0.40 £ 0.09 0.32+0.12 0.50 £ 0.10 0.49 £ 0.11
20 0.46 £+ 0.08 0.39 £0.12 0.58 £+ 0.08 0.56 £ 0.11
30 0.48 £0.10 043 +£0.12 0.60 + 0.08 0.58 £0.10
50 0.50 £ 0.09 0.46 £0.12 0.62 £ 0.07 0.60 £ 0.09
108 0.53 £0.09 0.51 £0.12 0.63 £ 0.07 0.63 £ 0.09
all (1397) 0.59 £ 0.09 0.66 £+ 0.09

0.61 + 0.09 (KDR, 392) 0.67 + 0.07 (KDR, 352)

“ Shown are the average ¢’ values and standard deviations. The
last row shows the best values in bold face (with method and the
number of features in parentheses).

to the most informative features, we compared the perfor-
mance between the proposed algorithm based on KDR and
random selection by varying the number of chemical features.
As the chemical features were removed, the q2 values for
random selection dropped gradually, whereas our algorithm
was able to reduce the number of features while maintaining
the same level of performance. As seen for KRR with the
linear kernel, the performance could even be improved by
reducing the feature size (Table 1); however, this was not
observed for random selection. This result suggests that only
a small subset of features is sufficient for making accurate
prediction, while most of the other features are likely
irrelevant to the prediction. Indeed, it can be seen from Table
1 that the ¢* value for SVR with the RBF kernel decreased
merely from 0.66 with all features to 0.62 with 50 features.

Overall, the proposed algorithm performs better than
random selection, but the difference is less remarkable for
the RBF kernel. This may be because the features were
optimized in the ligand—target space with the linear kernel
for compounds and, hence, are not necessarily optimal in
the ligand—target space with the RBF kernel. In principle,
KDR can be computed in the latter space as well, but the
computational cost is so demanding that our efficient
algorithm can be a compromise between the cost and
performance.

Because our feature selection algorithm is amenable to
various kernels for proteins when selecting chemical features,
the mismatch kernel was also applied in the same way. As
shown in Figure 4 and Table 2, a similar trend was observed
as the features were removed. In particular, we confirmed
again that a small subset of features was as predictive as the
given full feature set.

In the context of binding affinity prediction, the minimiza-
tion of KDR favors chemical features that exhibit high
dependence on affinity values in the presence of protein
information. It is therefore of interest to see whether the
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Figure 4. Average ¢* values as a function of the number of features.
The mismatch kernel was used for CYPs. (a) KRR with the linear
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Table 2. Performance Comparison for CYPs Using the Mismatch
Kernel”

KRR (chemical
kernel: linear)

KRR (chemical
kernel: RBF)

no. of
features KDR random KDR random
10 0.43 £0.08 031 £0.09 0.49 £+ 0.08 0.43 £0.08
20 0.48 £+ 0.06 0.37 £ 0.08 0.54 £ 0.07 0.48 + 0.08
30 0.49 +0.07 0.39 £ 0.08 0.56 4 0.07 0.49 £ 0.07
50 0.52 £0.08 0.42 £ 0.08 0.57 £0.07 0.51 £0.08
108 0.54 +£0.07 0.45 +£0.08 0.58 +£0.07 0.53 +£0.07
all (1397) 0.49 + 0.07 0.57 £0.07
0.54 + 0.07 (KDR, 108) 0.59 + 0.07 (KDR, 134)
SVR (chemical SVR (chemical
kernel: linear) kernel: RBF)
no. of
features KDR random KDR random
10 0.44 £0.08 032 +0.11 0.52 £0.10 0.48 £ 0.09
20 0.48 £0.07 0.39 £0.10 0.58 £0.08 0.54 £0.10
30 0.49 £0.08 0.42 +£0.10 0.59 £0.08 0.56 £+ 0.09
50 0.53 £ 0.09 045 +0.10 0.60 + 0.08 0.58 + 0.08
108 0.56 £+ 0.09 0.50 £ 0.10 0.61 £0.08 0.60 £ 0.08
all (1397) 0.58 £ 0.08 0.62 £ 0.08

0.60 + 0.09 (KDR, 316) 0.63 + 0.08 (KDR, 352)

“ Shown are the average ¢> values and standard deviations. The
last row shows the best values in bold face (with method and the
number of features in parentheses).

selected features can give some explanation about the
characteristics of CYP inhibitors. Table 3 lists the top 30
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features selected from a total of 1397 chemical features. It
can be seen that two features representing the octanol—water
partition coefficient (logP) received relatively high ranks (6th
and 21st). Given that the ligand—target pairs for CYP1A2
and CYP3A4 account for more than 30% of the data set,
this is in line with the fact that inhibitors of CYP1A2 and
CYP3A4 are known to show high lipophilicity.*'*> ARR
(10th) and nBnz (23rd) are likely to reflect that CYP1A2
inhibitors have high aromaticity (number of aromatic car-
bons).*' Also, aromatic groups such as pyridines, imidazoles,
and phenols have been reported to characterize CYP3A4
inhibitors.**** In addition, charge descriptors, qgnmax (9th),
gpmax (14th), RPCG (16th), and RNCG (17th), are indicative
of the involvement of polarizability in CYP3A4 inhibitors.*?
These observations suggest that increasing lipophilicity,
aromaticity, and polarizability would enhance inhibitory
activity.

Taken together, our approach is capable of identifying
predictive features, as well as prioritizing features that are
characteristic of CYP inhibition. Since the feature set used
contains many features that are not easily interpretable, it is
difficult to fully explain the relevance of the selected features.
Nevertheless, predictive features may serve as markers for
triaging compounds with desired affinities. In light of
interpretability, more elaborate description of structural
features of compounds, such as extended connectivity
fingerprints*> may be preferred to the Dragon descriptors.
To explore the predictive ability of such fingerprints, we also
tested ECFP6 and ECFC6 (as calculated by Pipeline Pilot*®)
for the CYP data set. However, we found that ECFP and
ECFC were less predictive than the Dragon descriptors and
that physicochemical and molecular properties of compounds
are better suited to predict the binding affinities of CYP
inhibitors.

Protein Feature Selection for Mutated HIV Protease
Variants. The proposed algorithm was also evaluated on the
mutation data of HIV protease, a major target for highly
active antiretroviral therapy. The ability of the HIV virus to
mutate and develop drug resistance by accumulating muta-
tions severely hinders the treatment of HIV. To guide the
design of new inhibitors that surmount the resistance, it is
of great value to understand the mutational determinants
involved in the interactions between inhibitors and HIV
protease variants. The composite effects of distantly located
mutations and the phenomenon of cross-resistance further
motivate us to explore the mutational space of the protease
in a comprehensive manner.*’

As shown in Figure 2, the distributions of the pK; values
are wide-ranging to varying degrees and heavily overlap
among one another. This suggests that simply estimating the
value of a given protease variant to be the mean value for
the ligand of interest is unsatisfactory (¢> = 0.21 £ 0.09)
and that both target and ligand information is needed for
accurate predictions.

Figure 5 and Table 4 show the ¢ values for KRR and
SVR with the RBF kernel for compounds and the linear and
RBF kernels for mutated HIV protease variants. Using all
the protein features, KRR and SVR with the RBF kernel
yielded ¢> = 0.70 and 0.78, respectively. A ¢* value of 0.78
is quite consistent with the best g*> values of 0.78—0.83
reported in the study of Lapins andWikberg,*® despite some
differences in the data set and descriptors used.
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Table 3. Top-Ranked Chemical Features of CYP Inhibitors®

NIUIMA ET AL.

rank symbol description score

1 piPC09 molecular multiple path count of order 09 1.70

2 MATS1v Moran autocorrelation—lag 1/weighted by atomic van der Waals 5.15
volumes

3 Hypertens-80 Ghose—Viswanadhan—Wendoloski antihypertensive-like index at 5.90
80%

4 BICO bond information content (neighborhood symmetry of 0-order) 6.05

5 Infective-80 Ghose—Viswanadhan—Wendoloski antiinfective-like index at 80% 845

6 ALOGP2 Squared Ghose—Crippen octanol—water partition coeff (logP?) 9.20

7 RARS R matrix average row sum 9.60

8 G3s third component symmetry directional WHIM index/weighted by 13.25
atomic electrotopological states

9 qnmax maximum negative charge 13.40

10 ARR aromatic ratio 14.60

11 GATS3v Geary autocorrelation—lag 3/weighted by atomic van der Waals 15.35
volumes

12 MATS1p Moran autocorrelation—lag 1/weighted by atomic polarizabilities 16.40

13 BEHp6 highest eigenvalue n. 6 of Burden matrix/weighted by atomic 16.80
polarizabilities

14 gpmax maximum positive charge 19.00

15 C-015 =CH, 20.00

16 RPCG relative positive charge 20.70

17 RNCG relative negative charge 21.15

18 REIG first eigenvalue of the R matrix 21.50

19 GATSIm Geary autocorrelation—lag 1/weighted by atomic masses 2235

20 R3e+ R maximal autocorrelation of lag 3/weighted by atomic Sanderson 24.95
electronegativities

21 ALOGP Ghose—Crippen octanol—water partition coeff (logP) 27.00

22 BLTF9%6 Verhaar model of Fish baseline toxicity for Fish (96 h) from 27.15
MLOGP (mmol/L)

23 nBnz number of benzene-like rings 28.55

24 Mor23v 3D-MoRSE—signal 23/weighted by atomic van der Waals volumes 28.95

25 SICO structural information content (neighborhood symmetry of 0-order) 30.05

26 BEHm7 highest eigenvalue n. 7 of Burden matrix/weighted by atomic 31.80
masses

27 BEHvV6 highest eigenvalue n. 6 of Burden matrix/weighted by atomic van 32.70
der Waals volumes

28 GATS3p Geary autocorrelation—lag 3/weighted by atomic polarizabilities 32.85

29 BLTA96 Verhaar model of Algae baseline toxicity for Algae (96 h) from 33.60
MLOGP (mmol/L)

30 G3e third component symmetry directional WHIM index/weighted by 3425

atomic Sanderson electronegativities

“ The PROFEAT+RBF kemel was used for CYPs.

We then compared the performance between the proposed
algorithm based on KDR and random selection with varying
numbers of protein features. As the protein features were
removed, the ¢° values for random selection dropped
markedly. In contrast, the proposed algorithm successfully
reduced the number of features to less than 30 while
maintaining high ¢* values, clearly outperforming random
selection. Indeed, in the case of SVR with the RBF kernel,
the performance slightly drops from ¢ = 0.78 t0 0.73 using
the top 30 features of KDR, yet this value is significantly
higher than ¢g*> = 0.60 obtained by random selection.

The selected protein features are those exhibiting high
dependence on affinity values in the presence of chemical
information, and the performance curve in Figure 5 suggests
the biological relevance of the top 20—30 features. Table 5
lists the 20 top-ranked mutated positions with amino acid
properties (z-scales). This list indicates that the most
influential positions are 36, 48, 50, 63, 82, 84, and 90. Indeed,
positions 48, 50, 82, and 84 are known as the active site of
the protease.*’ It is thus likely that mutating these positions
has a great effect on decreasing inhibitory activity of a group
of inhibitors. The proposed algorithm is a multivariate
approach and hence can detect composite effects of multi-

mutations. Consistent with this, positions 48, 82, 84, and
90 have been identified as being interrelated with each
other.*® Interestingly, position 90 is located in the dimer-
ization region of the protease, but such a distantly located
mutation has been shown to prevent ligands from binding
the protease by changing the geometry of the active site.*®
On the other hand, positions 36 or 63 are prone to natural
genetic variations and may not by themselves confer
resistance to inhibitors.*® Our analysis identified them as
informative, and this may be due to composite effects with
other mutated positions, an observation that has also been
suggested in the previous study.*® For most of the top-
ranked mutated positions, all the three amino acid proper-
ties seem to be relevant, but this is not the case for position
82. Specifically, 82 (z,) and 82 (z3) representing hydro-
phobicity and polarity were ranked the 14th and Sth,
respectively, whereas 82 (z;) representing steric properties
was ranked the 48th and hence less relevant. This is also
in good agreement with the previous study,* but the
relevance of other top-ranked mutations such as 37 (z)
and 71 (z3) remains elusive. Overall, these results illustrate
that the proposed feature selection approach serves as a
useful tool not only for identifying informative chemical
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Figure 5. Average ¢” values as a function of the number of features.
The RBF kernel was used for mutated HIV protease variants. (a)
KRR with the linear and RBF kernels for compounds. (b) SVR
with the linear and RBF kernels for compounds.

Table 4. Performance Comparison for Mutated HIV Protease
Variants®

KRR (protein kernel: KRR (protein kernel:

linear) RBF)
no. of
features KDR random KDR random
10 0.55 + 0.08 036 £0.12 0.58 £ 0.08 0.38 £0.13
20 0.64 £+ 0.07 0.46 £0.12 0.67 £ 0.07 0.49 +0.12
30 0.65 £ 0.06 0.53 £0.09 0.69 £+ 0.06 0.57 £0.10
all (126) 0.63 £ 0.06 0.70 £ 0.05
0.67 + 0.06 (KDR, 50) 0.70 £ 0.06 (KDR, 50)
SVR (protein SVR (protein
kernel: linear) kernel: RBF)
no. of
features KDR random KDR random
10 055£0.11 035+£0.14 0.61 +0.08 0.37 £0.15
20 0.66 £ 0.08 048 £0.13 0.71 £ 0.07 0.50 +0.13
30 0.70 £ 0.07 0.57 £0.12 0.73 £ 0.06 0.60 £0.12
all (126) 0.75 £ 0.04 0.78 £ 0.04

0.76 + 0.05 (KDR, 72) 0.78 + 0.04 (KDR, 101)

“Shown are the average ¢ values and standard deviations. The
last row shows the best values in bold face (with method and the
number of features in parentheses).

features but also for analyzing the effect of multimutations
on their affinity to a series of inhibitors. Importantly, the
selected positions and properties have implications for
engineering new mutations at the same positions.
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Table 5. Top-Ranked Protein Features of Mutated HIV Protease
Variants

mutated position mutated position

rank (z-scale) score rank (z-scale) score
1 90 (z3) 1.00 11 71 (z3) 10.15
2 36 (z3) 200 12 50 (z) 11.95
3 84 (7)) 460 13 54 (z3) 12.40
4 63 (z3) 485 14 82 (z1) 13.20
5 84 (z3) 6.90 15 90 (z2) 15.20
6 50 (z3) 820 16 50 (zy) 15.50
7 36 (22) 835 17 30 (z3) 18.15
8 48 (z3) 855 18 84 (z22) 19.20
9 82 (z3) 895 19 37 (z3) 19.35
10 37 (z2) 9.75 20 46 (z2) 19.75
CONCLUSION

We have proposed an efficient feature selection algorithm
based on KDR to identify molecular interaction features that
contribute to prediction of ligand—target binding. Unlike
existing feature selection techniques for chemoinformatics,
our approach performs chemical (protein) feature selection
coupled with protein (compound) information. In particular,
the proposed algorithm works in a ligand—target space
defined by kernels, allowing one to use various kernels for
proteins (compounds) in selecting chemical (protein) features
and, thus, provides a useful general approach to feature
selection for chemogenomics.

The experiment on CYPs has shown that the algorithm is
capable of identifying predictive features, as well as prioritiz-
ing features that are indicative of ligand preference for a
given target family. Notably, using only the relevant features
can lead to an improved performance. We have further
illustrated the applicability on the mutation data of HIV
protease by identifying influential amino acid positions within
mutated variants. These results suggest that our feature
selection approach based on the cross-target view can not
only aid in drug design but also provide clues as to the
molecular basis for ligand selectivity and off-target effects.
We envision that this study will encourage further research
in computational chemogenomics and contribute to a better
understanding of the mechanism of molecular recognition.
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The gonadal primordium first emerges as a thickening of the embryonic coelomic epithelium,
which has been thought to migrate mediodorsally to form the primitive gonad. However, the early
gonadal development remains poorly understood. Mice lacking the paired-like homeobox gene
Emx2 display gonadal dysgenesis. Interestingly, the knockout (KO) embryonic gonads develop an
unusual surface accompanied by aberrant tight junction assembly. Morphological and in vitro cell
fate mapping studies showed an apparent decrease in the number of the gonadal epithelial cells
migrated to mesenchymal compartment in the KO, suggesting that polarized cell division and
subsequent cell migration are affected. Microarray analyses of the epithelial cells revealed signif-
icant up-regulation of Egfr in the KO, indicating that Emx2 suppresses Egfr gene expression. This
genetic correlation between the two genes was reproduced with cultured M15 cells derived from
mesonephric epithelial cells. Epidermal growth factor receptor signaling was recently shown to
regulate tight junction assembly through sarcoma viral oncogene homolog tyrosine phosphory-
lation. We show through Emx2 KO analyses that sarcoma viral oncogene homolog tyrosine phos-
phorylation, epidermal growth factor receptor tyrosine phosphorylation, and Egfr expression are
up-regulated in the embryonic gonad. Our results strongly suggest that Emx2 is required for
regulation of tight junction assembly and allowing migration of the gonadal epithelia to the
mesenchyme, which are possibly mediated by suppression of Egfr expression. (Endocrinology 151:
5893-5904, 2010)
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