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Fig. 2. The tyrosine nitration of proteins in the hippocampus and the cognitive function in mice. A and B, nitrotyrosine in the hippocampus was
measured 5 days after the i.c.v. injection of AR peptides or ONOO™. Protein samples from the hippocampus were subjected to SDS-PAGE, blotted to
a PVDF membrane, and probed with a monoclonal anti-nitrotyrosine antibody. AR peptides induced extensive nitration of protein, which was
prevented by UA, a potent scavenger of ONOO~. ONOO™~ induced marked tyrosine nitration of proteins. The quantified intensity of the bands for
nitrotyrosine was corrected by that of B-actin and expressed as a percentage of that in the naive group. Data are presented as the mean + S.E. (n =

4). #, p < 0.05 versus naive and vehicle; *, p < 0.05 versus AB,5_55 or AR,

10+ C, the novel object recognition task was performed on days 3 to 5 after

the i.c.v. injection of AB peptides or ONOO™. AB peptides induced marked impairments of recognition memory, which were prevented by UA. ONOO~
induced impairment of recognition memory. Data are presented as the mean * S.E. (n = 10). *, p < 0.05 versus naive and vehicle; *, p < 0.05 versus
ABys_35 and AB,_4. D, the panel shows the inverse association of extensive nitration of protein tyrosine in the hippocampus and the level of recognition
memory in mice. E and F, protein samples from the hippocampus were subjected to 4 to 20% SDS-PAGE, blotted to PVDF membrane, and probed with
a monoclonal anti-nitrotyrosine antibody before (E) and after (F) reduction of nitrotyrosine to aminotyrosine by treating the membrane with SD. G,
protein bands in 4 to 20% SDS-PAGE were stained by CBB, and the band of interest was picked up for peptide analysis using LC-MS/MS.

TABLE 1
The identified protein candidates
Protein Name gi Accession Number Peptide Matched % Sequence Coverage Total Score

HSP70 gi 1661134 22 39 724
DRP-2 g1 40254595 7 20 292
NFL g1 200038 4 9 254
ATPase, H"transporting, V1 subunit A, isoform 1 gi 315607 9 17 184
Glycerol-3-phosphate dehydrogenase gi 1339938 1 2 96
Ig superfamily receptor PGRL gi 15593237 1 3 55
Solute carrier family 25 (mitochondrial carrier, gi 27369581 3 8 53

aralar member12)

gi, genlnfo identifier; PGRL, prostaglandin regulatory-like protein.

nitration was observed for NFL in the AB,; 55 group com-
pared with the naive or vehicle group (Fig. 3, A and B). No
differences were observed in the nitration of HSP70 and
DRP-2 proteins among the three groups (Fig. 3, A, C, and D).
The increased nitration of NFL was inversely associated with
recognition memory in mice that received AB,5_55 injections
(Fig. 3E).

Association between Extensive Nitration of NFL and
Serine Hyperphosphorylation. Hyperphosphorylation of
the serine residues of NFL could lead to disruption of the
subtle regulation of the NF network (Hisanaga et al., 1990;
Nixon and Shea, 1992). After being nitrated in vitro, NFL is
not able to form the NF assembly (Crow et al., 1997). The
question of whether extensive nitration of NFL influences
serine phosphorylation of the protein stimulated our interest.
We immunoprecipitated NFL and blotted against nitroty-
rosine and phosphoserine. Equal amounts of NFL protein

—53

were immunoprecipitated in each group (Fig. 4, A and B).
The intensity of the tyrosine nitration and serine phosphor-
ylation of NFL was greater in the ABy5 55 group than in the
naive or vehicle group (Fig. 4, A, C, and D). The authenticity
of the phosphoserine band was confirmed as indicated under
Materials and Methods. Treatment with UA prevented the
ABys_gs-induced intensive tyrosine nitration and serine hy-
perphosphorylation of NFL (Fig. 4, A, C, and D), indicating a
positive association between the extensive nitration of NFL
and the serine hyperphosphorylation (Fig. 4E).
Association between Extensive Nitration of NFL and
Its Reduced Interaction with NUDEL. To examine
whether the extensive nitration of NFL practically influences
its interaction with partner proteins, we focused on the free,
unassembled NFL that could be differentiated from the as-
sembled NFL. The majority of the newly synthesized unas-
sembled NF proteins, including NFL, are Triton X-100-solu-
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Fig. 3. Tyrosine nitration of the identified proteins. A, immunocomplexes, obtained from precleared protein samples of the hippocampus using an
anti-nitrotyrosine agarose-conjugated mouse antibody, were separated by 7% SDS-PAGE, blotted onto a PVDF membrane, and probed with
corresponding antibodies raised against the proteins of interest. B to D, NFL was intensely nitrated in the AR, ,; group, whereas HSP70 and DRP-2
remained unchanged. E, the panel shows inverse association of the extensive nitration of NFL in the hippocampus (B) and the level of recognition
memory in mice (Fig. 1B). The intensity of bands was quantified and expressed as a percentage of that in the naive group. Data are presented as the

mean * S.E. (n = 4). %, p < 0.05 versus naive and vehicle.

ble before being incorporated into the NF assembly, which is
Triton X-100-insoluble (Black et al., 1986). NFL constitutes
the core of the NF network, and without NFL, no filaments
are formed (Zhu et al., 1997). Without binding directly with
NUDEL, the Triton X-100-soluble NFL can barely lead the
assembly of a stable NF network, regardless of its own abun-
dance (Nguyen et al., 2004). We probed equal amounts of
NFL immunocomplexes with antibodies raised against the
nitrotyrosine and NUDEL (Fig. 5, A and B). Less NUDEL
was coimmunoprecipitated in the AR, 55 group that bears
extensively nitrated NFL (Fig. 5, A-D). The protein expres-
sion of NUDEL did not differ among the groups (Fig. 5E). UA
prevented the ABy5_ss-induced increase of NFL nitration as
well as the reduced coimmunoprecipitation of NUDEL (Fig.
5, A, C, and D). The extensive nitration of NFL was associ-
ated with its reduced interaction with NUDEL (Fig. 5F).
These results suggested that the intensive nitration of NFL
could disturb the normal function of the protein.
Association between Extensive Nitration of NFL and
the Reduced Content of NUDEL in the Cytoskeleton
Fraction. A majority of NF proteins, after their synthesis in
the cytoplasm, are rapidly converted to a Triton X-100-insol-
uble filamentous network and move down the axon using the
transport machinery (Nixon and Shea, 1992). After direct
and specific binding with NFL, NUDEL facilitates the assem-
bly of a stable NF network and remains bound to the assem-
bled filaments (Nguyen et al., 2004). Thus, the level of inter-
action between NFL and NUDEL in cytoplasm (Triton X-100-

soluble fraction) should be reflected by their protein levels in
the axonal cytoskeleton (Triton X-100-insoluble fraction).
The Triton X-100-insoluble fractions from the previous step
(Fig. 5) were washed twice with Triton X-100 lysis buffer
before being solubilized in urea lysis buffer. Western blot
analysis revealed that the level of NUDEL protein was re-
duced in the ABy5_55 group compared with the naive and
vehicle groups, whereas the treatment with UA prevented
the reduction (Fig. 6, A and D). This was consistent with the
reduced interaction between NFL and NUDEL in the ABy5 55
group (Fig. 5, A and D). However, the level of NFL in the
ABys_g5 group was surprisingly not different from that in
the naive and vehicle groups (Fig. 6, A and B). Considering
the increase of the intensity of the protein nitration in the
ABss_s5 group (Fig. 6, A and C), we examined the nitration of
NFL by immunoprecipitation. Intense nitration for the NFL
protein in the AR, ;- group was observed (Fig. 6E). Applying
the multiplicative inverse (in which the inverse or reciprocal
of “n” is “1/n”), a mathematical method that is useful in
medical science (Silberberg, 1990), the reciprocal level of the
extensively nitrated NFL in the Triton X-100-insoluble frac-
tion was estimated (Fig. 6F). The reciprocal level of exten-
sively nitrated NFL in the AB,;_55 group paralleled with that
of NUDEL in the same group (Fig. 6, D and F), signifying a
negative effect of the extensive nitration of NFL on NUDEL-
dependent NF assembly. The increased nitration of tyrosine
could modify protein function by altering the three-dimen-
sional conformation and hydrophobicity (Dalle-Donne et al.,
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Fig. 4. The association between the increased tyrosine nitration and serine hyperphosphorylation of NFL. A, equal amounts of NFL protein
immunocomplexes were obtained from precleared protein samples of the hippocampus, using anti-NFL antibody. The immunocomplexes were
separated on SDS-PAGE, blotted onto a PVDF membrane, and probed with the indicated antibodies. B to D, tyrosine nitration and serine
phosphorylation of NFL were increased in the AB,; ;. group, whereas UA prevented the increase of both. E, the increased nitration of NFL was
correlated with serine hyperphosphorylation of NFL. The intensity of bands was quantified and expressed as a percentage of that in the naive group.
Data are presented as the mean = S.E. (n = 4). *, p < 0.05 versus naive and vehicle; #, p < 0.05 versus AB,5 5.

2005; Reynolds et al., 2007). It was therefore assumed that
the overnitrated, free NFL would become less Triton X-100
soluble and, as a result, would be detected in the Triton
X-100-insoluble fraction along with the assembled NF pro-
teins. It is hardly practical to separate the unassembled
extensively nitrated NFL from the assembled NFL in the
Triton X-100-insoluble fraction. The majority of the cytoplas-
mic water-soluble proteins could be separated from the Tri-
ton X-100-soluble protein pools by using PBS lysis buffer in
the first step (Aoyama and Kitajima, 1999). After the sepa-
ration of the PBS-soluble and Triton X-100-soluble proteins
as described under Materials and Methods, we examined the
amount of NFL protein in these two different fractions. The
majority of NFL protein in all groups was found in the PBS-
soluble cytoplasmic fraction as indicated by GADPH, a cyto-
plasmic marker (Fig. 7A). The levels of NFL protein in both
the PBS-soluble and Triton X-100-soluble fractions were in-
creased in the ABys 55 group (Fig. 7, A-C). It is interesting to
note that the increase of NFL in both fractions was prevented
by the treatment with of UA, a potent scavenger of ONOO ™,
suggesting that the AB,; s5-induced ONOO™ may increase
the protein synthesis of NFL before extensively nitrating the
protein (Fig. 7, A-C). The Triton X-100-soluble NFL that
became insoluble in PBS in the AB,5 55 group was exten-
sively nitrated (Fig. 7D), and the intensity of nitration was
associated with the level of the PBS-insoluble, Triton X-100-
soluble NFL (Fig. 7E). These results revealed new possibili-
ties for Triton X-100-insolubile NFL in association with ex-
tensive nitration.

The Cell Numbers in the Hippocampus of Mice with
the Impairment of Memory Induced by AB,5 ;5. On day 5
after the i.c.v. injection of AR5 g5, cell numbers in CA1, CA3,

and the granular layer of the dentate gyrus of the hippocampal
formation were examined using cresyl violet staining. The
quantification of the stained cells revealed no cell loss induced
by ABgs_g5 (Table 2). These results were consistent with reports
that at a dose of 3 to 5 pg, ARys_s5 could induce memory
impairment but not cell loss within a time session of 1 month
after its injection in mice (Maurice et al., 1996; Tohda et al.,
2003). These results suggest that cell loss was not involved in
the impairment of memory induced by AB,5 55 in mice.

Discussion

Neuronal oxidative damage has long been hypothesized as
a critical mechanism of cellular dysfunction in neurodegen-
erative ailments (Perry et al., 2002). Reports showing that
antioxidants delay or reduce progressive cognitive decline in
both animal models and humans have emphasized the direct
contribution of oxidative damage to cognitive pathology
(Sano et al., 1997; Yamada et al., 1999; Lim et al., 2001).
Oxidative damage is generally manifested by the increase of
lipid peroxidation, DNA oxidation, protein oxidation, and
peroxynitrite-mediated tyrosine nitration of proteins. The
increased nitration of tyrosine could irreversibly disrupt the
function of proteins (Koppal et al., 1999), and it might play a
key pathogenic role in the progression of cognitive impair-
ment (Smith et al., 1997; Keller, 2006). Until now, various
proteins with tyrosine nitration have been reported in asso-
ciation with neurodegeneration and cognitive decline (Strong
et al., 1998; Castegna et al., 2003; Tran et al., 2003; Sack-
steder et al., 2006; Sultana et al., 2006). The diversity of
nitrated proteins in these reports seems to depend on the
species of the sources of samples (Sacksteder et al., 2006;
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Sultana et al., 2006), the proteomic detections on various
conditions (Castegna et al., 2003; Sultana et al., 2006), im-
munodetections by means of different anti-nitrotyrosine an-
tibodies with the diverse recognition property for nitroty-
rosine (Strong et al., 1998; Tran et al., 2003), or the biological
selectivity of tyrosine nitration (Ischiropoulos, 2003; Sack-
steder et al., 2006). Dissimilar reports about the nitrated
proteins in the brains of humans with Alzheimer’s disease
(AD) (Castegna et al., 2003; Sultana et al., 2006) emphasize
the importance of the sources of protein, even in the same
species or under the same conditions of detection during the
identification process, while illustrating the diversity of ni-
tration due to the dissimilar expression of proteins during
the different stages of the disease.

In the present study, we looked for further evidence for the
pathogenic role of protein nitration as one of the key contrib-
utors to the decline of cognitive function induced by AR.
Using LC-MS/MS and immunodetection, we identified the
hippocampal proteins with nitrated tyrosine residues after
the i.c.v. injection of AR5 55 in mice. Preferentially, in re-
spect with currently examined proteins, intense nitration of
NFL was observed, demonstrating a good correlation with
the severity of cognitive impairment induced by ABys_s5.

NFL, one of the three subunits of NF proteins, is the indis-

ABys3s+ UA

pensable core of the NF assembly (Zhu et al., 1997). Studies
have reported that NFL is selectively nitrated compared with
the majority of other proteins present in brain homogenates,
and they suggested that newly synthesized free NFL is par-
ticularly susceptible to peroxynitrite-mediated nitration
(Crow et al., 1997; Strong et al., 1998). The extensively ni-
trated NFL inhibits the assembly of unmodified NF subunits
(Crow et al., 1997). On the other hand, the extensive serine
phosphorylation of NFL could sufficiently block NF assembly
(Nixon and Shea, 1992; Gibb et al., 1996). Therefore, we have
evaluated the effect of tyrosine nitration on the phosphory-
lation of NFL at serine residues in general. The increased
tyrosine nitration of NFL was associated with its serine
hyperphosphorylation. Prevention of the extensive nitration
of NFL by UA, a scavenger of ONOO ™~ that nitrates proteins,
restrained the serine phosphorylation of NFL at a normal
level. The results indicated that the increased nitration of
NFL could give rise to its serine hyperphosphorylation.
NFL requires direct binding with NUDEL, whereas
NUDEL can not directly bind with other subunits of NF
proteins, to initiate the assembly of NF (Nguyen et al., 2004).
After the assembly of the NF network, NUDEL remains
bound to the assembled Triton X-100-insoluble neurofila-
ments and may promote, in conjunction with molecular mo-
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tors, the axonal transport of the neurofilaments (Nguyen et
al., 2004). Thus, the level of interaction between NFL and
NUDEL in the Triton X-100-soluble cytoplasmic fraction
could be reflected by their protein levels in the Triton X-100-
insoluble cytoskeletal fraction. In the current study, the in-
creased nitration of Triton X-100-soluble NFL proteins in the
AB,5_55 group was associated with its decreased interaction
with NUDEL. In the Triton X-100-insoluble fraction, the
protein level of NUDEL was reduced in the AB,; ;- group,
and the reduction was prevented by treatment with UA. In
the same fraction, the protein level of NFL surprisingly did
not differ among groups, whereas the intensity of the nitra-
tion of NFL was strong in ABy5_55 group. Estimation by the
multiplicative inverse approach indicated that the reduced
level of nonextensively nitrated NFL in the AB,; 55 group
parallels with that of NUDEL. These results required an
explanation for the detection of the extensively nitrated NFL
in the Triton X-100-insoluble cytoskeletal fraction, because
the assembled NFL is nitration-resistant and the intensely
nitrated NFL can not participate in the NF assembly (Crow
et al., 1997). The alteration of the solubility of the overni-
trated NFL might be involved in the detection of the exten-
sively nitrated NFL in the Triton X-100-insoluble cytoskel-
etal fraction in the AB,5 55 group. Interpretation of the

NFL

Fig. 6. The reduced content of NUDEL

in the Triton X-100-insoluble cytoskel-
etal fraction. The Triton X-100-insolu-
ble fraction, including cytoskeletal pro-
teins, was solubilized in 6 M urea. A,
equal amounts of protein were sub-

jected to Western blot analysis. B, the
protein levels of NFL were unchanged
in all groups. C, the intensity of nitro-
tyrosine was increased in the AR, 55
group, and the increase was prevented
by UA, a scavenger of ONOO ™ that ni-
trates tyrosine. D, the protein level of
NUDEL was reduced in the AB, 55

group, and UA prevented this reduc-
tion. The quantified intensity of the
bands was corrected by that of B-actin
and expressed as a percentage of that
in the naive group. E, equal amounts of
NFL protein were immunoprecipitated
and probed with anti-nitrotyrosine an-
tibodies. The intensity of nitrotyrosine

in NFL was increased in the ARy 5
group, whereas UA prevented any in-
crease. F, the reciprocal of the overni-
trated NFL was estimated by applying
multiplicative inverse (or reciprocal, in
which the reciprocal of n is 1/n). The
intensity of bands was quantified and

reciprocal of over-nitrated
NFL

expressed as a percentage of that in the
naive group. Data are presented as the
mean * S.E. (n = 4). %, p < 0.05 versus
naive and vehicle; *, p < 0.05 versus
ABZ5—35‘
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emergence of the intensely nitrated NFL in PBS-insoluble,
but Triton X-100-soluble, protein pools in the AB,s_5- group
indicates that extensive nitration would render NFL protein
to have poor solubility in PBS. By this rate, it is possible that
a considerable level of overnitrated NFL protein in the
ABy5_g5 group would even become Triton X-100 insoluble
over a period of time, and that it would be detected along with
a reduced level of NUDEL-associated assembled NFL, which
is also Triton X-100 insoluble. The observation of detectable
levels of nitration in NFL in the RIPA-soluble, Triton X-100-
soluble, and Triton X-100-insoluble fractions in the naive and
vehicle groups implies that natural nitration of tyrosine, as
serine phosphorylation, might exist as a physiological prop-
erty of NFL and might not be detrimental to the function of
the protein, whereas extensive nitration is detrimental. The
nitration-susceptible tyrosine residues of NFL are identified
particularly as tyrosine 17 in the head region and tyrosines
138, 177, and 265 in the o-helical coil regions of the rod
domain of the protein (Crow et al., 1997). It needs to be
determined which tyrosine residue is the site for natural
nitration or for extensive nitration. It has been reported that,
although the exact mechanism is not clear, the newly syn-
thesized Triton X-100-soluble NF proteins, including NFL,
could separately undergo axonal transport before being in-
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Fig. 7. The association of the extensive nitration of NFL with the alteration of solubility. The hippocampal tissues were homogenated in PBS and
centrifuged at 13000g for 20 min, the washed pellets were solubilized in Triton X-100 as described under Materials and Methods, and equal amounts
of protein were subjected to Western blot analysis. A to C, a majority of NFL and GAPDH proteins were soluble in PBS. NFL protein in the ABys_g5
group in both the PBS-soluble fraction and the Triton X-100-soluble fraction was increased, and the increase was prevented by UA, a scavenger of
ONOO™ that nitrates tyrosine. The quantified intensity of the bands was corrected by that of GAPDH and expressed as a percentage of that in the
naive group. D, equal amounts of NFL from the Triton X-100-soluble proteins were immunoprecipitated and probed with anti-nitrotyrosine antibodies.
The intensity of nitrotyrosine in NFL was increased in the AB,;_,; group, whereas UA prevented the increase. The intensity of bands was quantified
and expressed as a percentage of that in the naive group. E, the level of NFL in the Triton X-100-soluble (PBS-insoluble) fraction was associated with
the intensity of its nitration. Data are presented as the mean * S.E. (n = 4). %, p < 0.05 versus naive and vehicle; *, p < 0.05 versus ABy;_s;.

TABLE 2
The Nissl-positive cells in the hippocampus
In each group, n = 4.

Number of Nissl-Positive Cells

Subfields of Hippocampus

Naive Vehicle ABos 35 ABgs_g5 + UA

counts/mm?
CAl 10800 * 230 10900 = 290 10850 = 250 10790 = 270
CA3 6750 = 190 6690 = 210 6698 * 180 6680 = 310
GrDG 21000 = 670 20980 = 590 20990 = 710 20780 = 690

GrDG, the granular layer of the dentate gyrus.

corporated into the Triton X-100-insoluble axonal cytoskele- being incorporated into the Triton X-100-insoluble axonal
ton (Jung et al., 1998). We do not know whether the NFL  cytoskeleton.

proteins with natural nitration undergo axonal transport The observation of no cell loss in CA1, CA3, and the gran-
after the NF assembly or undergo axonal transport before ular layer of the dentate gyrus of the hippocampus in mice
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that received AB,s_ 55 injections favored the contribution of
extensive nitration of NFL to the impairment of memory. A
recent study demonstrated that rapidly formed fresh amyloid
plaques cause axonal and dendritic structural changes
within a minimum of 5 days after the “birth of the plaques”
(Meyer-Luehmann et al., 2008). Given the time windows of
AP neurotoxicity, ABys 55 may require longer time to cause
cell loss in our mouse model of cognitive impairment.

The disrupted interaction between NFL and NUDEL is
regarded as the most important factor for the destabilization
of the NF assembly that leads to the axonal dysfunction,
which is an early event in the cognitive pathology of AD
(Nguyen et al., 2004; Stokin et al., 2005). Therefore, our
results suggest that disrupted interaction between NUDEL
and NFL with extensive nitration could be one of the major
factors that associated with the cognitive dysfunction in-
duced by AB in mice (Fig. 8). However, further studies are
required to investigate whether the extensive nitration of
NFL and the impaired interaction with NUDEL induced by
AR are associated with the disruption of axonal transport.
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Intracellular amyloid-g peptide (AB) has been implicated in neuronal
death associated with Alzheimer's disease. Although Ag is predom-
inantly secreted into the extracellular space, mechanisms of AS
transport at the level of the neuronal cell membrane remain to be
fully elucidated. We demonstrate that receptor for advanced glyca-
tion end products (RAGE) contributes to transport of Ag from the cell
surface to the intracellular space. Mouse cortical neurons exposed to
extracellular human AB subsequently showed detectable peptide
intracellularly in the cytosol and mitochondria by confocal microscope
and immunogold electron microscopy. Pretreatment of cultured neu-
rons from wild-type mice with neutralizing antibody to RAGE, and
neurons from RAGE knockout mice displayed decreased uptake of AS
and protection from Apg-mediated mitochondrial dysfunction. Ag
activated p38 MAPK, but not SAPK/INK, and then stimulated intra-
cellular uptake of AB-RAGE complex. Similar intraneuronal co-local-
ization of AB and RAGE was observed in the hippocampus of trans-
genic mice overexpressing mutant amyloid precursor protein, These
findings indicate that RAGE contributes to mechanisms involved in
the translocation of A from the extracellular to the intracellular
space, thereby enhancing Ap cytotoxicity.

B-amyloid | Alzheimer’s disease | mitochondrial dysfunction |
p38 MAPK

Izheimer’s disease (AD) is a progressive neurodegenerative

process characterized by senile plaques, neurofibrillary tan-
gles, and neuronal loss (1, 2). Deposition of amyloid-B peptide
(AB), a 39-43-amino acid peptide derived from the transmem-
brane amyloid precursor protein (APP), is found in extracellular
senile plaque cores and is associated with neurodegeneration in
later stages of AD. In contrast, recent studies suggest that accu-
mulation of intraneuronal A may be an early event in the
pathogenesis of AD (3-16). Addition of A to human neuronal-like
cells caused significant mitochondrial damage (17). Furthermore,
our recent study revealed that binding of AB to AB-binding alcohol
dehydrogenase (ABAD) or cyclophilin D (10, 11} intracellularly
triggered events leading to neuronal apoptosis through a mitochon-
drial pathway (12, 13, 18, 19). However, mechanisms through which
AP produced at the plasma membrane and released into the
extracellular space reaches the intracellular milieu remain to be
elucidated.

Receptor for advanced glycation end products (RAGE) is a
multiligand receptor of the Ig superfamily of cell surface molecules
(20-22). RAGE acts as a counter-receptor for several quite distinct
classes of ligands, such as AGEs, S100/calgranulins, HMG1 (high
mobility group 1 or amphoterin), and the family of crossed B-sheet
fibrils/macromolecular assemblies, which activate receptor-
mediated signal transduction pathways. These ligand-receptor
interactions are believed to exert pathogenic effects through sus-

www.pnas.org/cgi/doi/10.1073/pnas.0905686 106

tained cellular perturbation in a range of chronic disorders, includ-
ing the secondary complications of diabetes, inflammation, and
neurodegenerative processes (23, 24). RAGE, a cell surface binding
site for AB (25), is expressed at higher levels in an AB-rich
environment (26, 27). Targeted neuronal overexpression of a
wild-type RAGE transgene in AD-type mice also expressing mu-
tant human APP (mAPP) amplified AB-mediated neuronal dys-
function. The latter was shown by early abnormalities in spatial
learning/memory and exaggerated neuropathologic changes not
seen in single transgenics (such as transgenics expressing mAPP
alone at the same ages). These data support the hypothesis that
RAGE might function as a cofactor for Ag-induced neuronal
perturbation in AD (28). Interaction of A with RAGE expressed
on brain endothelial cells initiates cellular signaling leading to the
trafficking of monocytes across the blood-brain barrier (BBB) (29).
Furthermore, RAGE has been shown to mediate AB transport
across the BBB and to contribute to pathologic accumulation of the
amyloid peptide in brain (30). Herein, we demonstrate that RAGE
contributes to translocation of Af across the cell membrane from
the extracellular to the intracellular space in cortical neurons. We
also present evidence that Ap-initiated R AGE signaling, especially
stimulation of p38 mitogen-activated protein kinase (MAPK), has
the capacity to drive a transport system delivering Ag as a complex
with RAGE to the intraneuronal space.

Results

Extracellular Ag Translocates into Mitochondria in Cortical Neurons.
We have recently demonstrated that AB, endogeneously generated
from a mutant APP transgene, interacts with ABAD within mito-
chondria and leads to apoptosis-like cell death in vivo and in vitro
using a murine system (12, 13). Addition of exogenous A, both
1-40 (ABi1-49) and 1-42 (AB1-42), to culture media caused mito-
chondrial dysfunction and apoptotic-like cell death in cortical
neurons prepared from wild-type and transgenic (Tg) ABAD mice
(Fig. S1). However, evidence of AB-induced neuronal perturbation
was significantly enhanced in the ABAD-expressing cells, indicating
that an enzyme in the mitochondrial matrix (ABAD) appears to
exert toxic effects in response to the exogenous AB. These data
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Confocal images of AB, MAP2, NeuN, Hsp60, and calnexin in cortical neurons after exposure to Ag-related peptides. Cells were exposed to the indicated

concentration [or 1uM (J—U)] of human AB1-40, AB1-42, reversed AB (ABao-1 and ABay—1), or vehicle for 60 min, fixed in 3% PFA, and stained by [anti-human AB
(clone 4G8) (A-D, G-/, N, and R), anti-AB1_4 (O-P and S-U), preabsorbed anti-AB (clone 4G8) (E) or non-immune IgG (F))/Alexa Fluor 488 anti-IgG (green),
anti-MAP2/Alexa Fluor 568 anti-IgG (red) (/and R) and [anti-NeuN (K and S), anti-Hsp 60 (L and T), or anti-calnexin (M and U)]/Alexa Fluor 546 anti-IgG (red). Scale
bar, 10 um. Hoechst 33342 staining and phase contrast images of the same field of cells in panels of A, C, H, D, or Fig. 54 4~D are represented in Fig. 54 £~ and

M-P, respectively.

suggested the possibility that AB added to the extracellular milieu
gained access to the intracellular space and, subsequently, inter-
acted with its intracellular target. These findings led us to probe
mechanisms through which AB gains access to intracellular
compartments.

To evaluate cellular uptake of AB, we first measured levels of
intracellular AB in neurons treated with the synthetic human A
peptides by ELISA using an antibody specific for the human form
of Ap to differentiate it from endogenous mouse AB. To remove
Ap bound to the cell surface, cells were treated with trypsin for 5
min before harvest for measurement of the intracellular human AB.
As shown in Figs. S2 and 83, intracellular human AB content was
at background levels in vehicle-treated neurons, whereas levels of
intracellular human AP were significantly increased in mouse
cortical neurons incubated with human AB;_4) and ABi_42. The
accumulation of both AB;_4 and AB;_4> peptides occurred in a
time- (Figs. 52.4 and B and 53 .4 and ') and dose-dependent (Figs.
S2C and 53 4 and €') manner. Biochemical subcellular fraction-
ation further revealed that the majority of the intracellular AB was
detected in the mitochondria-enriched fractions (Fig. S3F) as
compared with plasma membrane (Fig. S3£) and cytosolic fractions
(Fig. S3G). As a complementary approach, we performed confocal
microscopy using double immunofluorescence with antibodies to
ApB and intracellular markers, such as MAP-2 (neuronal marker),
NeuN (neuronal marker), Hsp60 (mitochondrial marker), and
calnexin (endoplasmic reticulum marker). After exposure (60 min)
to human AB;_4 and AB;_s2, but not ABgp_; (Flg 1H) and ABaz—
(Fig. 17), neurons displayed immunoreactivity to anti-human AB
antibody (clone 4G8) in a cytosolic-like distribution, in addition to
a cell surface-like staining pattern (Fig. 1 B, C, G, and H; double
staining images with Hoechst 33342, Fig. S4 J and K). In contrast,
immunoreactivity to anti-human A antibody (clone 4G8) preab-
sorbed with AB;_4y (Fig. 1E) or to non-immune serum (Fig. 1F),
was background level in the cells exposed to human AB;_4. Cells
without AB treatment also showed no specific staining patterns
(Fig. 1A4). Intracellular AB;-4y was observed in cells stained posi-
tively for two neuronal markers, MAP2 (Fig. 1R) and NeuN (Fig.
1S). Further analysis using the mitochondrial marker Hsp60 dem-

20022 | www.pnas.org/cgi/doi/10.1073/pnas.0905686106

onstrated extensive colocalization with AB epitopes (Fig. 1T),
although to a lesser extent with the endoplasmic reticulum marker
calnexin (Fig. 1U). To confirm localization of A to the intracellular
space, we performed immunogold electron microscopy on cultured
neurons. Immunogold particles labeled AB and were present in the
intracellular space, such as the cytosolic compartment and mito-
chondria, after exposure of neurons to AB;_s. In contrast, the
number of immunogold particles was significantly diminished in
RAGE-deficient (RAGE ") neurons (Fig. 2C), as compared with
wild-type (WT) neurons (Fig. 2 A4 and B). Gold particles were
virtually absent when cells were treated with vehicle alone (without
treatment of A, Fig. 85 A and B) or AB;_4 antibody was replaced
by non-immune IgG (Fig. 83 C and £2). Quantification of the total
number of gold particles per field, based on analysis of multiple
images, confirmed a significant decrease Ap-immunogold particles
in RAGE ™~ neurons as compared with WT neurons (Fig. 2D).
These data suggest that exogenous A gains access to intracellular
compartments, such as mitochondria, and that absence of RAGE
reduces A transport to the intracellular compartment. Neurons
exposed to 1 uM AP;_4> (Fig. S6, part 1) and lower concentration
(200 nM) of ABi_49 (Fig. S6, part 2) showed a similar intracellular
distribution of the peptide.

Blockade of RAGE Diminishes A Uptake and Ap-Induced Mitochon-
drial Dysfunction. To determine the potential role of RAGE in
neuronal AB transport, the effect of a blocking antibody to the
receptor on AB uptake and neurotoxicity was examined in mouse
cortical neuron cultures. Pretreatment of neuronal cultures with
anti-RAGE IgG (N-16) for 2 h attenuated uptake of human AB;_4o

- (Fig. 34) and Aps_s-induced mitochondrial dysfunction, at the

level of MTT reduction (Fig. S74). In contrast, non-immune IgG
had no effect on either uptake of AB or MTT reduction. To further
examine RAGE-dependent neuronal A transport, neurons pre-
pared from RAGE ™~ mice were used. Neurons lacking RAGE
showed a marked decrease in uptake of AB;_49 (Fig. 3B) and
complete preservation of MTT reduction in the presence of AB1-49
(Fig. S78). To examine the effect of RAGE on Ap-induced
mitochondrial dysfunction, we measured mitochondrial respiratory
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Fig.2. Immunoelectron microscopy of AB in cortical neurons after exposure to
AB. Cells were prepared from wild-type (WT) (A and B) and RAGE ~/~ mice (C),
exposed to human 1 uM ABs_s; for 60 min, fixed in 4% PFA and 0.1% glutaral-
dehyde, and the ultra-thin sections were stained with rabbit anti-ABs_sx/donkey
anti-rabbit I1gG conjugated to colloidal gold (18 nm particle). Arrows denote
mitochondria. (Scale bar, 200 nm.) Two negative controls, in which cells were
treated with vehicle or stained with non-immune IgG (NI-IgG), are represented in
Fig. S5. (D) Quantification of AB immunogold particles in WT and RAGE /-
neurons after exposure to AB. Numbers of gold particles were counted per field
of each microscopic image including two negative controls and expressed as
mean = SEM; ***, P < 0.001, versus WT; Unpaired t-test.

key enzyme cytochrome ¢ oxidase (COX IV) activity in RAGE-
deficient neurons as compared with COX IV activity in WT
neurons. After exposure (24 h) to human AB,_4 (Fig. 3 C and E)
and ABi-42 (Fig. 3 D and F), but not their reversed sequence
peptides, neurons displayed a significant dose-dependent reduction
in COX IV activity. Notably, RAGE deficiency completely re-
versed the ABi_40- and ABi_s-induced reduction in COX IV
activity (Fig. 3 E and F), which is in agreement with the results of
MTT reduction activity. These data indicate that RAGE contrib-
utes to transport of AB from the cell membrane to the intracellular
space, and subsequent induction of mitochondrial dysfunction.

AB/RAGE-Mediated Signaling Contributes to Ap Transport and Inter-
nalization. In many contexts, RAGE appears to function as a signal
transduction receptor, activating multiple downstream intracellular
pathways (22, 31). Thus, we sought to determine if RAGE-
mediated cellular activation of such intracellular mechanisms might
impact on neuronal A transport. We started by examining the
effect of AB treatment on phosphorylation of SAPK/JNK and p38
MAPK. Exposure of neurons to ABj_4 for 10 min did not affect
levels of total or phosphorylated forms of SAPK/INK (Fig. S84).
In contrast, neurons exposed to AB;_4 displayed a dose-dependent
increase in phosphorylated p38 MAPK as compared to vehicle-
treated controls (Fig. 4 A4 and D), although AB;_4 did not affect
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Fig. 3. Blocking RAGE or genetic deletion of the receptor suppresses AB
uptake and minimizes AB-induced mitochondrial dysfunction in cortical neu-
rons. Intracellular levels of human ABy_40 (A and B) and COX IV activity (C-F)
were assayed 60 min (A and B) and 24 h (C-F) after exposure to the indicated
ApB peptides. (A) Effect of a neutralizing antibody to RAGE. Cells were pre-
treated with 20 pg/mL of anti-RAGE (N-16) 19G or NI-IgG for 2 h, and then
exposed to 1 uM human ABi-s0. (B, E, and F) Effect of genetic deletion of
RAGE. Cells prepared from WT or RAGE ~/~ mice were exposed to the indicated
concentrations of human ABy_s0 (B and E) or ABi-4z (F). (C and D) AB-related
peptides with the reverse sequence have no effect on mitochondrial function
in cortical neurons. Cells prepared from wild-type mice were exposed to 1 uM
human ABi_s0 or ABso-1 (C), and 1 uM human ABi_a; or ABsoq (D). Data
represent mean = SEM; **, P < 0.01, versus vehicle- and reversed AB-treated
cells (A-D), or AB-treated RAGE~/~ neurons (E and F); ', P < 0.01, versus
control (A and B) or WT (E and F).

total protein levels of p38 MAPK (Fig. 44). ABi_4; also stimulated
p38 MAPK phosphorylation in a similar dose-dependent manner
(Fig. $8B). Activation of p38 MAPK was observed immediately
after ABy_49 treatment and for up to 30 min (Fig. 4F). Pretreatment
of neuronal cultures with the p38 MAPK inhibitor SB203580
blocked Ap;_4-stimulated p38 MAPK phosphorylation (Fig. 4B).
Consistent with these data, neurons pretreated with SB203580, but
not a SAPK/JNK inhibitor (SP600125), showed strong inhibition of
APBi_40 uptake (Fig. 4F) and MTT reduction in response to AB;_q9
(Fig. S8C). A role for RAGE in AB-mediated activation of p38
MAPK was indicated by inhibition of p38 phosphorylation in
cortical neurons from wild-type mice exposed to AB in the presence
of anti-RAGE IgG (N-16) (Fig. 4B) and in RAGE-deficient
cortical neurons derived from RAGE ™~ mice (Fig. 4C).
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Membrane RAGE Acts as an AB Carrier and Co-Internalizes with Ag. To
determine molecular mechanisms underlying neuronal A trans-
port, we biotinylated neuronal cell surface proteins, incubated the
labeled cells with AB;_40, and then analyzed internalized biotin-
ylated proteins. First, we assessed the distribution of biotin in
labeled cells before AB treatment. Cells fixed immediately after
biotinylation and permeabilized with detergent displayed a cell
surface and focal [the latter were probably surface accumulations
of biotin since they were removed by sodium 2-mercaptoethane-
sulfonate (MesNa) treatment; see below] distribution of the biotin
(Fig. S92J) and, as expected, the absence of AB (Fig. S9 .4 and G).
Next, we examined the intracellular distribution of biotin and A in
the cells after AB treatment. After biotinylation, cells were incu-
bated with vehicle or AB;_40 for 60 min, treated with MesNa (the
latter to remove biotin remaining on the cell surface), fixed and
permeabilized with detergent. Cells exposed to AB;_4¢ displayed an
overlapping intracellular distribution of AB (Fiz. S% " and f) and
biotinylated-proteins (Fig. 89 # and /), while control cells treated
with vehicle alone showed no specific signal (Fig. S9 B, £, and H),
suggesting that AB is able to interact with cell surface proteins.
To analyze internalized proteins in cells exposed to AB, we
performed Western blotting. After biotinylation of surface pro-
teins, cells were incubated with vehicle or AB;_4o for 60 min, treated
with MesNa, and then whole cell lysates were collected and
subjected to immunoprecipitation. Cell lysates contained same
amount of total protein, in each case and from both groups, and
were reacted with streptavidin followed by SDS/PAGE. Silver
staining of gels revealed a broad array of protein bands, especially
in cells exposed to ABi_49, compared with controls (Fig. S10A4).
Interestingly, immunoblotting with anti-RAGE IgG demonstrated
>8-fold more RAGE antigen had been immunoprecipitated from
cells exposed to ABj_49, compared with non-treated control (Fig.
S108). To determine whether RAGE and A were in the cytosol,
we performed immunoprecipitation with anti-Ag IgG-conjugated
beads using the cytosolic fraction from neurons exposed to Ap.
Such cytosolic fractions were obtained by ultracentrifugation (13,
32) and showed virtually undetectable levels of the membrane
marker Na*/K*-ATPase, compared with presence of the latter in
whole cell lysates or membrane-enriched fractions (Fig. S10C).
Immunoprecipitation analysis was also applied to cytosolic frac-
tions using anti-Af IgG-conjugated beads or non-IgG-conjugated
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beads as a control for nonspecific binding. SDS/PAGE of these
immunopreciptates was followed by immunoblotting with anti-
RAGE IgG. While there was only a weak signal with immune
precipitates prepared in the presence of non-IgG beads, the im-
mune precipitates prepared with anti-AB IgG beads demonstrated
astrong immunoreactive RAGE band (Fig. S1()/2). Based on image
analysis, there was >4-fold more RAGE antigen detected in the
immune precipitates with anti-AfB IgG beads compared with non-
IgG beads. These data are consistent with the hypothesis that AB
stimulates internalization of RAGE, and that during this process,
RAGE and AB interact closely.

To further assess possible colocalization of RAGE and AB, and
the spatial topography of these two molecules after internalization
of AB, we performed dual fluorescence confocal microscopy.
Incubation of AB;_4 with neurons for 60 min demonstrated
extensive colocalization of epitopes visualized with anti-RAGE and
anti-AB antibodies (Fig. S11).

Ap Colocalizes with RAGE in Hippocampus of Aged Tg-mAPP Mice. To
extrapolate these findings to the in vivo setting, we turned to a
mouse model of AD-like pathology, transgenic mice overexpressing
the human APP isoforms (APP695 and APP751/770) with the
familial Alzheimer’s dementia mutation (Tg mAPP) and AB.
Immunohistochemical studies were performed to colocalize intra-
cellular AB and RAGE in brains from 9- to 10-month-old mice after
permeabilizing the cell membrane with detergent. Compared with
wild-type controls (Fig. S12 A and (), low power immunofluores-
cence images of brain sections from aged Tg mAPP mice displayed
increased staining for AB (Fig. 5128) and RAGE (Fig. S1202)
antigens in the hippocampus, especially in the pyramidal cell layer.
Plaques in Tg mAPP mice displayed strong staining for AB (Fig.
S12B). High power confocal immunofluorescence images of the
hippocampal CA3 region in Tg mAPP mice further demonstrated
that AB and RAGE co-localized in an apparently intracellular
distribution in pyramidal cells (Fig. S12 F, #, and J).

Discussion

Our studies address a paradigm in which AB binding to cell
surface RAGE translocates the ligand into the cytosolic com-
partment. Our in vitro studies show that: (i) exogenous AfB
translocates from the cell surface to the cytosol, with at least
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some of the peptide eventually localizing in mitochondria; (i)
such translocation is dependent on RAGE, as it is prevented by
blocking antibodies to the receptor and does not occur to an
appreciable extent in neurons devoid of RAGE (from RAGE~/~
mice); (iii) RAGE-mediated cellular activation at the level of
p38 MAPK has a central role in internalization of the receptor-
ligand complex; and, (iv) the presence of AB within the cytosol
and mitochondria is associated with functional consequences,
including mitochondrial dysfunction. Immunoprecipitation of
cytosolic fractions after AB treatment showed that RAGE itself
interacts closely with AB, consistent with the concept that the
receptor may be the actual AB transporter/carrier. As a coun-
terpart to these observations in cell culture, immunohistochem-
ical studies showed colocalization of AB and RAGE in an
apparently intracellular distribution in hippocampal pyrami-
dal cells in the brains of AD-type transgenic mice expressing
mAPP/AB.

Increasing evidence points to a role for intraneuronal A in
the pathogenesis of early neural dysfunction and AD pathology.
Several observations have indicated that APP localizes not only
to the plasma membrane, but also to the trans-Golgi network,
endoplasmic reticulum, and endosomal, lysosomal, and mito-
chondrial membranes (5, 7, 33). Thus, two possible pathways
could underlie the accumulation of intraneuronal AB: (i) AB
secreted into extracellular space is subsequently taken up by
neurons (and/or other cells); and, (ii) AB produced intracellu-
larly remains within the neuron. Our results provide insight into
the former pathway, which involves neuronal internalization of
both ABi_4p and ABi-42. Initially, based on in vitro studies, it was
thought that Af,_4> was more neurotoxic than AB;_q, in part
because of the propensity of AB,_s> to form large aggregates and
fibrils. However, more recently, it has been appreciated that
oligomeric and prefibrillar ABj_4 and ABji_s> have similar
cytotoxic effects (34) and such soluble forms of Ap are believed
to play a critical role in the pathogenesis of AD. Recent work has
demonstrated that oligomeric AB;_4>, at a concentration of 200
nM, is capable of blocking long-term potentiation at cortical
synapses in the hippocampus and entorhinal cortex (10, 28, 35,
36). Taken together, our findings suggest that via RAGE,
neuronal transmembrane transport of AB;_4p and AB_4> carries
soluble assemblies of amyloid peptide into the cell.

The present study revealed that intraneuronal accumulation of
Ap could be sustained during exposure to the peptide, especially in
mitochondria, as previously reported (10, 12, 37-40). Considerable
studies over the past decade have emerged indicating that some
intracellular enzymes, insulin-degrading enzyme, endothelin-
converting enzyme (ECE)-1b and ECE-2, as well as membrane
enzymes, such as neprilysin, ECE-1a, ECE-1c, ECE-1d, matrix
metalloproteinase (MMP)-2, MMP-3, and MMP-9, can cleave AB
at either a single or multiple sites and cleavage products of AB
resulting from such catabolism are less likely to aggregate and are
less neurotoxic than AP itself (41). Moreover, a mitochondrial
peptidase, PreP peptidasome, has been recently shown to be
capable of degrading A (42). As these various amyloid-degrading
enzymes have distinct subcellular localization, AB metabolism may
influence the subcellular accumulation of AB and its neurotoxicity.
The mechanism through which intraneuronal AB is metabolized
will require further study to elucidate.

Recent studies demonstrate that several plasma membrane
receptors, such as N-methyl-D-aspartate receptors (14), a7
nicotinic acetylcholine receptors (15), and low-density lipopro-
tein receptor-related proteins (LRP) (16), have the capacity to
bind to AB and, potentially, promote intracellular accumulation
of AB. Previous studies have shown that RAGE binds mono-
meric, oligomeric, and even fibrillar forms of A at the neuronal
cell surface (22, 27, 43). Moreover, RAGE promotes ApB-
induced neuronal dysfunction in a mouse model of AD-type
pathology (28). Subsequent to AB binding to RAGE on the cell
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surface, we have found that the amyloid peptide is internalized
in a RAGE-dependent manner; blocking RAGE or deletion of
the receptor attenuates AP internalization and Ap-induced
mitochondrial dysfunction in cortical neurons. These findings
strongly suggest a role for RAGE as a cell surface-binding site
and a potential transporter for AB which facilitates intracellular
transfer of the peptide.

RAGE-ligand interaction has been shown to activate multiple
intracellular signaling pathways including the MAPKs (ERK1/2,
p38 MAPK and SAPK/JNK), rho-GTPases, phosphoinositol-3-
kinase, and the JAK/STAT pathway in various cells (23, 43). In
addition, the RAGE-ligand interaction has been shown to
directly cause generation of reactive oxygen species via NADPH
oxidases (44). As a consequence of AB—RAGE interaction,
activation of p38 MAPK, SAPK/INK, and NF-«B was observed
in sporadic AD cybrids (45). In addition, Arancio et al. (28)
reported increased phosphorylation of CREB, ERK1/2, p38
MAPK, and CaMKII in hippocampal extracts from Tg mice
overexpressing RAGE and mAPP. RAGE-dependent activation
of p38 signal transduction also plays an important role in
Ap-mediated synaptic failure (35, 36). However, direct links
between RAGE-mediated signaling pathways and A neurotox-
icity remain to be fully elucidated. The present study indicates
that the AB-RAGE interaction rapidly activates p38 MAPK, but
not SAPK/INK, and further demonstrates a link between acti-
vation of p38, intracellular AB accumulation, and AB-induced
cytotoxicity in cortical neurons.

In the BBB endothelial cells, RAGE and LRP1 have shown to
be critical for regulation of AB homeostasis in the central
nervous system (46). RAGE binds soluble AB at the apical side
of human BBB, and promotes transport of soluble AB from
blood to brain via endocytosis and transcytosis. These events
promote AB accumulation in brain parenchyma (29, 47). Our
biotinylation study revealed that AB stimulated internalization
of neuronal plasma membrane proteins, including RAGE, and
that RAGE—-AB complex was present intracellularly. These
finding suggest that the interaction of AB with RAGE activates
an endocytosis-like pathway that causes rapid internalization of
AB—RAGE complex. Consistent with these in vitro results,
recent studies in brains of AD patients (48) and another mouse
AD model (49) displayed striking accumulation of A in hip-
pocampal pyramidal cells.

In conclusion, our study demonstrates that AB induces a
RAGE-dependent pathway that involves activation of p38
MAPK, resulting in internalization of AB and leading to mito-
chondrial dysfunction in cultured cortical neurons. We propose
that Ap internalization may be associated with RAGE-mediated
endocytosis and that RAGE itself may act as a carrier in
transmembrane A transport. The mechanism through which
AP gains access to the cytosol and enters mitochondria will
require further study to elucidate. Cytosolic AB may enter
mitochondria through the TOM pathway as recently reported
(39) leading to mitochondrial stress. The results of our studies
contribute to a growing body of evidence demonstrating that
RAGE can act as a receptor magnifying intraneuronal AB
cytotoxicity. Blockade of RAGE may have a beneficial effect by
limiting intracellular accumulation of amyloid in AD brain and
serves a potential therapeutic target for AD.

Materials and Methods
For full description of this study’s materials and methods, see S Materials and
Methods.

Animals. RAGE knockout (RAGE ~/~) mice have been described previously (35, 50).
Cell Culture. Cortical neurons were prepared from embryos at 17 days of

gestation of C57BL/6J mice, transgenic mice overexpressing the human full-
length ABAD (Tg-ABAD mice) and homozygous RAGE~/~ mutant mice.
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Biochemical Determination of Neuronal Perturbation. Neuronal perturbation
after AB treatment was determined by generation of reactive oxygen
species (ROS), mitochondrial membrane potential, caspase activity, DNA
fragmentation, MTT reduction, and cytochrome ¢ oxidase (COX IV) activity
assays.

Determination of Membrane AB Transport. Transport of AB into cytosol
through the plasma membrane was measured by ELISA and detected by
confocal immunofluorescence and immunoelectron microscopies using
anti-AB IgG.

Measurement of Phospho-MAPKs. Ap-stimulated phosphorylation of SAPK/JNK
and p38 MAPK was detected by Western blot analysis or measured by ELISA.

Analysis of Internalization of Membrane Surface Proteins. Internalization of
membrane surface proteins after Ag treatment was detected by Western blot
analysis using biotinylation and immunoprecipitation.
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Immunohistochemistry. Immunohistochemistry was executed in hippocam-
pal sections from Tg mAPP mice (9- to 10-month-old) and age- and strain-
matched wild-type mice using anti-AB 1gG and anti-RAGE IgG.

Statistics. Statistical analysis of the experimental data were carried out
using GraphPad Prism 4 for Macintosh (GraphPad Software). The signifi-
cance of differences was determined by a one-way ANOVA, followed by the
Dunnett’s or Tukey’s multiple comparison test for multigroup comparisons.
Unpaired t-test was used for two-group comparisons. The criterion for
statistical significance was P < 0.05.
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