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Fig. 2 The change of surface hydration of various PEGylated liposomes as
monitored by laurdan generalized polarization(GP) 30 min and 24 hr after
dilution with PBS
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Fig. 3 The change of surface hydration of OH-Chol:DOPE:DSPE:DSPE-PEGz000
liposomes as monitored by laurdan generalized polarization(GP) 30 min and
24 hr after dilution with PBS (A) or Milli-Q water (B)

B )R —L (FIR%30min)
QYRTLYI R (FR%30min)

DYRTLvH R (FIR%Omin)

GP(Ex340)

0% 1%
PEGI&EH =

Fig. 4 The change of surface hydration of OH-Chol:DOPE:DSPE:DSPE-PEGz000
liposomes and their lipoplexes as monitored by laurdan generalized
polarization(GP) 0 min or 30 min after dilution with PBS
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Molecular Mobility of Freeze-Dried
Formulations as Determined by NMR
Relaxation Times, and Its Effect on
Storage Stability

Sumie Yoshioka
University of Connecticut, Storrs, Connecticut, U.S.A.

Yukio Aso
National Institute of Health Sciences, Tokyo, Japan

INTRODUCTION

Freeze-drying is a useful method for preparing dosage forms of thermally
unstable pharmaceuticals without the deleterious effect of heat. The method can
also provide a dry product of pharmaceuticals with longer shelf life than solutions
or suspensions. Although glassy-state formulations obtained by freeze-drying
generally exhibit sufficient storage stability for pharmaceuticals, degradation
during storage has been observed in various freeze-dried formulations.

Many studies have demonstrated that storage stability of freeze-dried for-
mulations is related to molecular mobility (1-15). Chemical and physical degra-
dation of small molecules and proteins is enhanced by an increase in molecular
mobility associated with moisture sorption. Additives that decrease the molecular
mobility of formulations are often effective for the stabilization of the formulation.

This chapter describes molecular mobility of freeze-dried formulations as
determined by NMR relaxation times and discusses the relationship between
storage stability and NMR-determined molecular mobility.

MOLECULAR MOBILITY AS DETERMINED BY NMR

RELAXATION TIMES

NMR has been used to determine molecular mobility of freeze-dried formulations
(16-20), along with other techniques like calorimetry, dielectric relaxation spec-
trometry, and dynamic mechanical measurement (21-25). NMR can determine the
mobility of atoms in pharmaceutical molecules such as 'H, 2H, 3¢, ®N, 0, and F.
To determine the mobility of a specific site in the molecule, high-resolution solid-
state NMR with high sensitivity is necessary. Especially, high sensitivity is inevitable
for °C and N, which have low natural abundance. In contrast, low-frequency
solid-state NMR, which is easier to operate than high-resolution NMR, can be used
to determine the mobility of 'H and '°F, which have high natural abundance. This
section addresses the molecular mobility of 'H, *C, and 'F measured by each of
low-frequency solid-state NMR and high-resolution solid-state NMR.

Molecular Mobility as Determined by Low-Frequency NMR

Spin-Spin Relaxation Time of Proton

Spin-spin relaxation time (T) of protons present in freeze-dried formulations
can be determined from free induction decay (FID). Figure 1 shows the FID of
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450 (A) 10°C 450 (B) 60°C

0 20 40 60 80 100 0 20 40 60 80 100
Time (us) Time (us)

FIGURE 1 Free induction decay of proton in freeze-dried y-globulin formulation containing
dextran at 10°C (A) and 60°C (B) at 60% RH. Abbreviation. RH, relative humidity.

proton in freeze-dried formulation containing y-globulin as a model protein
drug and dextran (molecular weight of 10 kDa) as a polymer excipient, measured
by a low-frequency NMR using “solid echo” in the detection stage (26). The FID
shows two relaxation processes at 10°C and 60% relative humidity (RH) (Fig. 1A);
a slower decay described by the Lorentzian equation (equation 1) and a faster
decay described by a Gaussian-type equation (the Abragam equation, equation 2
with a constant ¢ of 0.12). This slower decay is attributed to protons with higher
mobility, that is, water protons, and the faster decay is attributed to protons with
lower mobility, that is, protons of y-globulin and dextran. The contribution of
protein protons to the FID is not significant because the content of protein was
50 times less than that of dextran. Therefore, the Abragam decay can be con-
sidered to be due to dextran protons. The observed FID is describable by an
equation representing the sum of the Abragam and Lorentzian equations
(equation 3). The T, of water protons can be calculated from the FID signals at
the latter stage. Subsequently, the T, of dextran proton with lower mobility can
be calculated from the FID signals at the former stage by inserting the calculated
T, of water proton into equation (3).

F(t) = Aexp (_ Tz(im)) M
£\ sin(ct
F(t) = Aexp (‘ 2Ty (m) 2) Smc(tc ) @
~ 12 sin(ct) ¢
F(#) = (1 - Phun)exp (_ 2T2(im) 2) ot tPmeP (— Tz(hm)) ®

where Tygm) and Toqrm, are the spin-spin relaxation times of protons with higher
mobility and lower mobility, respectively. Py, is the proportion of protons with
higher mobility.
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As shown in Figure 1B, the decay due to dextran protons at 60°C cannot be
described by a single Abragam equation, and therefore requires further solving
by the Lorentzian equation. This indicates that at 60°C, the dextran protons in
the freeze-dried formulation exhibit a slower relaxation process due to higher
mobility in addition to a faster relaxation process due to lower mobility. In other
words, dextran protons having higher mobility exist in the formulation at 60°C,
in addition to solid-like dextran protons with lower mobility. Thus, the FID at
60°C is described by an equation representing the sum of the Abragam and
Lorentzian equations for dextran protons as well as the Lorentzian equation for
water protons. The proportion of dextran protons having higher mobility can be
calculated by fitting FID signals into equation (3) after subtracting signals due to
water protons.

The temperature at which the spin-spin relaxation of proton begins to
involve the Lorentzian relaxation process due to polymer protons having higher
mobility in addition to the Gaussian-type relaxation process due to polymer
protons having low mobility is considered to be a glass/rubber transition
temperature. Basically, this is a critical temperature of molecular mobility as
determined by NMR relaxation measurements and is analogous to glass tran-
sition temperature (T) determined by differential scanning calorimetry (DSC).
This critical mobility temperature is referred to as Tp,c. The Ty, of formulations
containing polymer excipients increases as the molecular weight of the polymers
increases. The T, of a formulation containing dextran with a molecular weight
of 510 kDa is 5°C higher than that for dextran with a molecular weight of 40 kDa.
Similarly, the Ty, of molecular weight 120 kDa poly(vinyl alcohol) (PVA) for-
mulation is approximately 5°C higher than that of molecular weight 18 kDa PVA
formulation (27). In contrast, the T, of water proton calculated by the Lorentzian
equation is not significantly affected by the molecular weight of dextran (26).
This indicates that the mobility of water molecules in the formulation is deter-
mined by the interaction between the glucose unit and water.

Figure 2 shows the effect of water content on the T, and T of freeze-
dried y-globulin formulations containing dextran, polyvinylpyrrolidone (PVP)
and a,B-poly(N-hydroxyethyl)-L-aspartamide (PHEA) (28). Ty shifts to a
lower temperature as water content increases, indicating that the molecular

120
-—— T,
100 -Q —_— T
;‘3 80
£ 60
o 40
FIGURE 2 T and glass transition
20 temperature of freeze-dried -
globulin  formulations  containing
0 '] PHEA (W), dextran (A), and PVP
0.00 0.10 0.20 030 (@). Abbreviations: PHEA, a,p-poly
) (N-hydroxyethyl)-L-aspartamide;
Water content (g/g of solid) PVP, polyvinylpyrrolidone.
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mobility of polymer excipients in the formulation is increased by the plasti-
cizing effect of water. Decrease in Ty, with increasing water content is also
observed for other freeze-dried formulations containing PVA, methylcellulose
(MC), hydroxypropylmethylcellulose, and carboxymethylcellulose sodium
salt.

The Ty of freeze-dried formulations containing polymer excipients is
generally observed at a temperature of 20°C to 30°C lower than the T, deter-
mined by DSC (Fig. 2). This indicates that these formulations have highly mobile
protons even at temperatures below the Tg. Ty can be considered to be the
temperature at which a certain region of the molecule, such as terminal units of
polymer chains, begins to have greater mobility. Tr is a glass/rubber transition
temperature determined by spin-spin relaxation measurements, which can
detect local changes in molecular mobility more sensitively than Ty determined
by DSC. The T of freeze-dried formulations containing polymer excipients with
moisture is often difficult to determine because a change in heat capacity at T,
may be overlapped by the peaks of water evaporation and accompanying
relaxation processes. Furthermore, certain formulations, especially freeze-dried
protein formulations, reveal unclear changes in heat capacity, causing a diffi-
culty in determination of T,. In such cases, Ty determined by spin-spin
relaxation measurement can be a useful measure of T,.

Laboratory and Rotating Frame Spin-Lattice

Relaxation Times of Proton

Along with T, spin-lattice relaxation times in laboratory and rotating frames
(T1 and T1,) can also be used to measure the molecular mobility of freeze-dried
formulations. The T; and T;, of proton reflect the correlation time (z.) of the
rotational motion of proton. The relationship between 7. and T can be described
as follows:

1 3 4 h\? _6 Tc 4t

— =4 4

T, 10’ (271’) T \TrZE T 1 e ®
where y is the gyromagnetic ratio of 'H, h is Planck’s constant, wq is the 'H

resonance frequencies, and r is the H-H distance. In contrast, Ty, can be related
to 7 according to equation (5).

1 Az,
Tlp - 1 + 4(.0%‘[% (5)

where w; is the frequency of precession generated by the spin locking field and
A is a constant.

Figure 3 shows the relationship between 7. and T, (or T;,) of proton. When
7. exhibits an Arrhenius behavior, T, (or T;,) exhibits a similar V-shaped pattern
with a minimum as a function of temperature. In the temperature range below
the minimum (slow motional regime), T; (or T;,) increases in a linear fashion
with decreasing temperature (i.e., with decreasing mobility). In the temperature
range above the minimum (fast motional regime), in contrast, T; (or Ty,)
decreases with decreasing mobility associated with decreasing temperature. Ty
minimum is observed at a higher temperature than T;, minimum, such that T,
sensitively reflects faster motion than Ty, does.
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FIGURE 4 Temperature dependence of T; (A) and T, (B) of proton with two correlation times.

When there are multiple protons having different 7. values in the mole-
cule, spin diffusion occurs between protons located within a short distance, and
gives a single T; (or T,) value. Therefore, the value of T; (or T;,) is determined
mainly by a proton that shows the shortest relaxation time. As described by
equation (6), relaxation rate (the reciprocal of T; and T,) can be calculated as the
sum of the relaxation rates attributed to each 1., when there are two protons
having different 7. values (r.; and 1) in the system. Thus, the observed values
of Ty and Ty, closely approximate the smaller relaxation times of the two loci, as
shown in Figure 4.

1 p 1-P
1 +( 1)

_ 6
Tiobsy Tiga)y T ©

where P, is the fraction of proton having ;.

Figure 5 shows the temperature dependence of T, observed for freeze-
dried y-globulin formulations containing dextran, prepared using D,O (29).
Since the ratio of y-globulin to dextran is 1:50, the calculated T;, represents the
Ty, of unexchangeable protons of dextran (5 methine protons and 2 methylene
protons in a repeating unit). The temperature dependence of T;, exhibits a
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minimum at relatively high humidities (75% and 86% RH). The temperature of
the T;, minimum shifts to higher temperature as humidity decreases. At 60%
RH, minimum is not observed in the temperature range up to 80°C (it may be
observed around 90°C), but another minimum is observed at approximately
~60°C, as shown in Figure 6. This minimum shifts to approximately 90°C in the
dry state. These findings indicate that proton has two different correlation times
due to different motions.

The temperature dependence for the T;, of proton observed at 60% RH
(Fig. 6) can be described by two correlation times (r, and 1) with an activation
energy of 8.0 and 2.5 kcal/mol, and with a pre-exponential factor of 2 x 107*°
and 5 x 10”°seconds, respectively, at temperatures lower than 35°C (1000/T of 3).
The motion represented by 7 and 7, may be attributed to methine and
methylene protons, respectively, on the basis of the values of activation energy.
An activation energy of the same order as the calculated value of 7, has been
reported for the methylene group of amorphous polyethylene (3.72 kcal/mol)
(30). T4, reflects the motion of methine groups at temperatures between 35°C
and 10°C (1000/T of 3 and 3.5), but reflects the motion of methylene groups at
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temperatures lower than 10°C. The observed Ty, of methine groups diverges
from the values calculated from 7., at temperatures above 35°C, indicating that
the motion of methine groups has greater activation energy at temperature
above 35°C. The temperature at which a break is observed in the temperature
dependence is coincident with To, described in the section of proton T».

Molecular Mobility as Determined by High-Resolution NMR

Laboratory and Rotating Frame Spin-Lattice Relaxation

Times of Carbon

Figure 7 shows the typical spectra of freeze-dried y-globulin formulation con-
taining dextran, freeze-dried y-globulin, and freeze-dried dextran, measured by
high-resolution ">C solid-state NMR (31). Peaks at 70 and 180 ppm are assigned
to the dextran methine carbon and y-globulin carbonyl carbon, respectively. The
T, of each carbon, calculated from the signal decay, decreases with increasing
temperature, indicating that relaxation occurs in the slow motional regime. The
7. of dextran methine carbon then can be calculated from the observed Ty
according to equation (7), if the dipole-dipole interaction between carbon and
proton is predominant in the relaxation process, and if the relaxation time can be
expressed by a single ..

1 1 A
T1- 10 %'}’Hz (ﬂ) re-u®
Tc 31, 67,

x +
1+ (we —wr)’t2 | 1Hult? 1+ (we +wn)’ec

| @

(A)
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©
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FIGURE 7 “3C-NMR spectra of freeze-dried y-globulin formulations containing dextran (A),
freeze-dried y-globulin (B), and freeze-dried dextran {(C).
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where yc and yy are the gyromagnetic ratios of °C and 'H, respectively, k is the
Planck’s constant, and wc and wy are the *C and 'H resonance frequencies,
respectively. ey is the C-H distance and a value of 1.2A was used for the
calculation.

In contrast, the 7. of y-globulin carbonyl carbon can be calculated from the
observed T, using equation (8) if the relaxation due to chemical shift anisotropy
is predominant, and if the relaxation time in the slow motional regime can be
expressed by a single ..

1 6 202,92 e 2z,
— = 2B25 MR L
T a0 B2\ 1t N\ Tt ®)
where By, §z and n are the static field, the chemical shift anisotropy, and the

asymmetric parameter, respectively. 6z and # are defined in terms of three
principal components (611, 029, and d33).

-6
bz=6n—6, n= %21_21.___;;3. when [617 — 8| > [833 — o
—6
Sz=83—6, 7 =%”r5‘0‘ when [811 — &| < (833 — ol )
where 6 = éﬂ%

Figure 8 shows the temperature dependence of 7. determined for dextran
methine carbon in freeze-dried dextran and freeze-dried y-globulin/dextran
formulation. For both systems, the 7. of dextran methine carbon exhibits a sig-
nificant change in the temperature dependence around the Ty, (35°C), the
critical temperature of molecular mobility as determined by the spin-spin
relaxation of proton. The greater decrease in the 7 of dextran methine carbon at
temperatures above the Tp, indicates that the motion of methine groups is
significantly enhanced by increased global motion in addition to local segmental
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14 . EEE— — FIGURE 8 Temperature dependence

3.0 32 34 3.6 of comelation time for dexiran methine
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1000/T (K™) taining dextran 40 kDa.

37



362 Yoshioka and Aso

50 40 30 20 10°C
20 + + + + +
18 |
g H)—/‘MH
= A A
Q187 a
o \ A b
o ABGG
141 » BGG+dextran
12 - : . FIGURE 9 Temperature dependence
f correlation time for lobulin car-
30 32 34 g © "9 ,
. bonyl carbon in freeze-dried y-globulin
1000/T (K™) containing dextran 40 kDa.
0.0 @+ trehalose
A insutin
X+ dextran 40k
0.1
Fo
%}
g
€ -0.2
g .
-0.3 T
X FIGURE 10 Time course of spin-
) . . ) lattice relaxation for insulin carbonyl
04 carbon in freeze-dried insulin, insulin-
0 20 40 60 80 100 gextran, and insulin-trehalose sys-
Time (ms) tems at 25°C and 12% RH.

motion. This interpretation is supported by the greater decrease in the 7. of
dextran methine proton at temperatures above the Ty, as described in the
previous section on proton T, (Fig. 6).

The . of the carbonyl carbon of freeze-dried y-globulin exhibits linear
Arrhenius-like temperature dependence as shown in Figure 9. In contrast, the .
of the carbonyl carbon of y-globulin freeze-dried with dextran exhibits a change
in the temperature dependence around 35°C, similar to that observed for the 7.
of dextran methine carbon. This indicates that at temperatures above Ty, the
molecular motion of y-globulin is coupled with that of dextran, even though
dextran is well known to cause phase separation with proteins.

Along with the T; of carbon, the Ty, of carbon is useful as a measure of
molecular mobility. Figure 10 shows the time courses of spin-lattice relaxation
determined for the carbonyl carbon of insulin freeze-dried with dextran or
trehalose, compared with that for insulin alone (32). Spin-lattice relaxation is not
affected by dextran, but it is significantly retarded by trehalose. The T;, of
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