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In conclusion, Leu-lle could be considered as the dietary supple-
ment for the treatment of AB-related memory impairments.
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Overexpression of piccolo C2A domain induces
depression-like behavior in mice
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Piccolo is one of the components of the active zone at
chemical synapses and regulates the transport of synaptic
vesicles. The piccolo C2A domain is an important

calcium sensor and binds with phosphatidylinositol or
synaptotagmin-1. Recently, clinical studies suggested that
a single nucleotide polymorphism in the piccolo C2A
domain might be a causal risk factor for major depression.
To clarify the association of piccolo with depression, we
produced a transgenic mouse overexpressing the C2A
domain of piccolo, and investigated the behavior of these
mice. The mice exhibited depression-like behavior in
both forced swim and tail suspension tests, suggesting
that piccolo might regulate the depressive behavior.
NeuroReport 21:1177-1181 © 2010 Wolters Kluwer
Health | Lippincott Williams & Wilkins.

Introduction

The presynaptic cytoskeletal matrix is associated with
the active zone of chemical synapses and maintains the
neurotransmitter release. Piccolo is a component protein
of this matrix and is associated with the active zone of
glutamatergic ribbon synapses and conventional A-amino-
butyric acidergic and glycinergic synapses [1].

Earlier, we suggested that piccolo regulates the sensitiza-
tion of mice to methamphetamine, as a reduction in
piccolo expression by chronic, intraventricular infusion of
an antisense oligonucleotide increased the methamphe-
tamine-induced behavioral sensitization [2]. Long-term
potentiation in the hippocampal CAl region was reduced
in cultured brain slices from the piccolo-reduced expres-
sion mice and these mice also showed impaired spatial
learning [3]. Moreover, clinical studies suggested that
a single nucleotide polymorphism in the piccolo C2A
domain might be a causal risk factor for major depression
[4,5]. Piccolo may interact with various components of
the active zone by its C2A domain and thereby regulate
the psychiatric behavior. In this study, we generated a
transgenic mouse overexpressing the piccolo C2A do-
main, as a hindrance to the endogenous piccolo and
examined depression-like behavior in these mice.

Materials and methods

Animals and environments

Five mice were housed to a cage under a standard 12-h
light/dark cycle (lights on 9:00 a.m.) at a constant

0959-4965 (© 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins
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temperature (23 = 1°C) with free access to food and
water throughout the experiments. They were handled
in accordance with the guidelines established by the
Institutional Animal Care and Use Committee of Nagoya
University, the Guiding Principles for the Care and Use of
Laboratory Animals approved by the Japanese Pharmaco-
logical Society and the National Institutes of Health
Guide for the Care and Use of Laboratory Animals. Eight,
12-week-old male mice were used for the behavioral tests.

Materials

The cytomegalovirus promoter-myc piccolo C2A expres-
sion plasmid (amino acids 4704-5610) was constructed
as described earlier [6]. The following compounds were
purchased from commercial sources: total RNA extraction
kit (QIAGEN, Tokyo, Japan), reverse transcriptase and
reagents for real-time reverse transcription polymerase
chain reaction (Invitrogen, Carlsbad California, USA), and
fluvoxamine (Sigma-Aldrich, Japan).

Production of piccolo C2A domain transgenic mice

‘Transgenic mice ubiquitously expressing the Myc-tagged
C2A domain (myc-C2A) of the piccolo was produced by
Unitech (Chiba, Japan). In brief, the transgene cassette
including the cytomegalovirus promoter followed by the
myc-C2A domain sequence was obtained from the cyto-
megalovirus promoter-myc piccolo C2A expression plasmid.
The transgene cassette was microinjected into the ferti-
lized eggs from C57BL/6] females mated with males.

DOI: 10.1097/WNR.0b013e3283411685
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Reverse transcription polymerase chain reaction

The level of piccolo C2A mRNA was determined by the
real-time reverse transcription polymerase chain reaction
using a fast real-time PCR system (Applied Biosystems,
Foster City, California, USA). Total RNA was isolated
from the whole brain of E15 fetal mice using Trizol
(Invitrogen). For reverse transcription, 1pg of RINA was
converted into cDNA using prime script reverse tran-
scription [3]. Total cDNA (1 pl) was amplified in a 25-pl
reaction mixture using 0.1 pM each of forward and reverse
primers and the Power SYBR-Green kit (Applied
Biosystems). The following mouse piccolo C2A primers
were used: 5-CAGCCAGCAGTCCCCAAA-3' (forward)
and 5-GGGAAGATACCGTGGCTTCTG-3' (reverse).
For the internal control, the mouse GAPDH primers 5'-C
ATGGCCTTCCGTGTTCCTA-3' (forward), and 5'-AT
GCCTGCTTCACCACCTTCT-3' (reverse).

Southern blotting

Southern blotting analyses of myc-C2A transgenic mice
were conducted by Unitech Co. Ltd., to determine the
copy number of C2A domain-coding DNAs. The probe for
southern blotting was prepared by PCR using the follow-
ing primers: 5-ATGACCTTATGGGACTTTCCTACTT-3
(forward) and 5'-CTGGAAGTAGGTACACCTTCACAA-3
(reverse). Genomic DNA of myc-C2A transgenic mice was
cut by the restriction enzymes (Asel and Acc65I) and
detected on the southern blots. Copy number was cal-
culated based on a standard curve consisting of 10 con-
centrations of cytomegalovirus promoter-myc-piccolo C2A
plasmid (1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000 copies;
data not shown).

Conditioned place preference

The apparatus used for the place-conditioning task
consisted of a box with two compartments: one of tran-
sparent plexiglas and the other of black plexiglas (both
15x 15 x 15cm). The compartments of the box were
separated from one another by a sliding door (10 x 15cm
high). The place-conditioning paradigm was performed as
described earlier with a minor modification [7,8]. After
habituation for 2 days, we used a Scanet SV-20 LD
(Melquest, Toyama, Japan) to measure the time that the
mice spent in each compartment during a 15-min period
with the door open (preconditioning test). The compart-
ment in which the mouse spent most of the time was
referred to as its ‘preferred side’ and the other as the
‘nonpreferred side’. The mice were given methampheta-
mine (0.3 mg/kg, subcutaneously) or saline and placed in
one side or the other for 20min with the sliding door
closed. On the next day, they were given saline and placed
in the compartment opposite to the methamphetamine-
conditioning side for 20min. These treatments were
repeated for three cycles (6 days). In the postconditioning
test, the sliding door was opened for 15min, and we
measured the time that the mice spent in each compart-
ment again. Place-conditioning behavior was expressed as

[ (postvalue)-(prevalue)], of which postvalue and prevalue
were the differences in time spent in the drug-conditioning
and saline-conditioning compartments in the postcondi-
tioning and preconditioning tests, respectively.

Forced swim test

Mice were placed in a transparent plastic cylinder
(14.5cm diameter x 19cm  high), containing water
(15cm deep and 24-25°C) for 6 min. The immobility
time was measured with a SCANET MV-10 AQ apparatus
(Melquest) during the last 5 min.

Tail suspension test

The mice were suspended by the tail, such that the body
dangled in the air, facing downward. The duration of
immobility during 6 min was recorded visually. Fluvoxamine
(90 mg/kg, intraperitoneally) treatment was done 30 min
before the test.

Social interaction test

The social-interaction apparatus was an open-field box
made of a gray polycarbonate (30 x 25 x 25 cm high) [9].
After habituation for 2 days, the mice were randomly
assigned to an unfamiliar partner from another cage. The
pairs of unfamiliar mice were placed in the apparatus for
10 min and the total amount of time spent in active social
interaction, such as sniffing, grooming, following, mount-
ing, and crawling over or under the partner, was recorded.

Results

Choice of piccolo C2A domain overexpression
transgenic mice

We prepared 14 lines of myc-C2A transgenic mice (Fig. 1a).
We chose three lines (lines 108, 111, and 113) showing C2A
mRINA expression, and compared its copy level in two
different mice each (Table 1). Southern blotting showed
that the mice in line 111 had 532 and 456 copies of piccolo
CZA domain ¢cDNA (Table 1), whereas the copy numbers
in the other two lines were near the wild-type levels. We
confirmed by the reverse transcription polymerase chain
reaction that piccolo C2A mRNA levels in the fetal brains
of line 111 mice were 1.96 + 0.09 times more than those
of the wild-type mice (Fig. 1b). Thus, we decided to use .
the line 111 transgenic mice for behavioral and biological
investigations. There seemed to be no differences in
the general behavior or development between myc-C2A
transgenic and wild-type mice.

Role of piccolo in methamphetamine-induced
conditioned place preference

The effect of myc-C2A overexpression on methampheta-
mine-induced conditioned place preference was examined
in mice that learned the association of an environment with
drug exposure. The experimental schedule is shown in
Fig. 2a. Methamphetamine (0.3 mg/kg, subcutaneously)
induced place preference in both transgenic and wild-type
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Fig. 1 Fig. 2

@ @)

Founder [001002]004[008]010]011]oi2[T02] 04105108 i1 I12]113] Habituation Pretest M S M S M S Test
- I - (I IS N S IR S I A
002 012{102 1081111 ! 2 3 o 5 & ! 8 9 10 (day)
- . v ' e . M : methamphetamine
. . . - . S :saline
X L. Tr.ansc:iption level che.ck - - | ®) 700

i pimmiz I

500

(b) 257 = 40}

E > o

5 20+ g 300+

c o

S g

2 1.5 4 $ 200 +

2 10 o loof

g "]

= o 0 N

S 054 &

v -100 }

0.0 T 1
Wild type C2A-transgenic |11 =200

-300

Transgenic mice. (a) Germ line of piccolo C2A transgenic mice.

The copy numbers of inserted myc-C2A cDNA were determined by
southern hybridization in lines 108, 111, and 113. (b) The levels of C2A
mRNA in transgenic mice were compared with those of wild-type mice.
Values indicate the mean + standard error of the mean (n=86).
*P<0.005 versus wild-type mice (Student's t-test).

Table 1 Copy numbers of myc-C2A cDNA

Mouse ID (line, mouse no.) Copy number
C2A108 #1 2
C2A108 #2 2
C2A111 #1 532
C2A111 #2 415
C2A113 #1 6
C2A113 #2 5

The copy numbers of inserted myc-C2A cDNA were determined by southem
hybridization in the three lines of transgenic mice showing C2A mRNA
expression.

mice. In myc-C2A mice, methamphetamine-induced con-
ditioned place preference was significantly greater than in
the wild-type mice (Fig. 2b).

The myc-C2A transgenic mice showed

depression-like behavior

We investigated depression-like behavior in myc-C2A
transgenic mice using the forced swim and tail suspension
tests. These tests are usually used for evaluating the
antidepressant effects of new therapeutic tools [10,11]. In
both the tests, the myc-C2A transgenic mice remained
immobile significantly longer than the wild-type mice
(forced swim: wild type, 66.0 = 12.8s; myc-C2A, 119.5+
16.1s; Fig. 3a; tail suspension: wild type, 388.4 = 34.8s;
myc-C2A transgenic, 485.9+ 17.0s; Fig. 3b), suggesting
that overexpression of myc-C2A induced depression-like

CPP (saline)
lE] Wild type [l Transgenicl

CPP (methamphetamine)

myc-C2A transgenic mice exhibited increased methamphetamine-
sensitization. (a) Experimental schedule of the conditioned place
preference (CPP) test. The experiment was performed from 13:00

to 17:00 for 10 continuous days. Conditioning was performed during
six successive days. (b) On day 10, the postconditioning test was
conducted. Values indicate the mean *standard error of the mean
(n=6). *P<0.05 versus saline-treated, wild-type mice, ¥P<0.005
versus saline-treated myc-C2A transgenic mice, *P<0.01 versus
methamphetamine-treated, wild-type mice.

behavior in these mice. Interestingly, the myc-C2A
transgenic mice also showed less social interaction with
unfamiliar mice than the wild-type mice did (wild type,
128.2 = 9.1s; myc-C2A, 66.6 +9.1s; Fig. 3c).

In contrast, the myc-CZA mice showed no significant
phenotypes in either the Y-maze test or the novel object
recognition test (data not shown), suggesting that myec-
CZA overexpression had no effect on short-term memory
and recognition memory.

Discussion

‘The piccolo C2A domain is important for the homodimer
formation of piccolo or its interaction with synaptotag-
min-1 [12]. Recently, a clinical study suggested that
the single nucleotide polymorphism, rs2522833, in the
piccolo C2A domain was a causal risk factor for major
depression [4,5]. This polymorphism codes for a non-
synonymous amino acid change (Ala4814Ser) in piccolo
near its C2A calcium-binding domain. To evaluate the
role of piccolo in mental disorders, we made transgenic
mice overexpressing the C2A domain of piccolo. Over-
expression of myc-C2A, which does not include any of
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Fig. 3
(a) Forced swim test (b) Tail suspension test (c) Social interaction
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Behavioral tests. Comparisons of immobility times in the forced swim (a) and tail suspension (b) tests in the myc-C2A transgenic mice and wild-type
mice. (c) Comparison of social interaction times of the wild type and transgenic mice in the presence of novel partners. Values indicate the
mean * standard error of the mean (n=12). *P<0.05 versus wild-type mice, ¥P<0.005 versus wild-type mice, #P<0.005 versus wild-type mice.

the other piccolo domains, may inhibit the role of the
endogenous piccolo protein as a dominant negative form.
Leal-Ortiz e a/. [13] showed that piccolo influences the
presynaptic function by negatively regulating synaptic
vesicle exocytosis. Mechanistically, this regulation seems
to be calmodulin kinase II dependent and mediated
through the modulation of synapsinla dynamics. Previously,
we showed that the reduction of piccolo expression by an
antisense oligonucleotide increased dopamine levels in the
brain [2] and increased the preference induced by meth-
amphetamine treatment. In this study, the overexpressed
myc-C2A domain also increased the preference induced
by the methamphetamine treatment (Fig. 2), confirming
that reduction of piccolo increases the methamphetamine
preference.

Furthermore, myc-C2A transgenic mice exhibited sig-
nificantly increased periods of immobility in both the
forced swim and tail suspension tests compared with the
wild-type mice (Fig. 3a and b), suggesting that myc-C2A
transgenic mice may show depression-like behavior.
Piccolo showed increased expression in brain, is localized
to the presynaptic active zone, and is suggested to be
involved in synaptic vesicle clustering [14]. Piccolo dys-
function may lead, not only to a reduced dopamine
uptake, bur also to the modified vesicle transport in the
presynapse, and to depression-like behavior. We showed
that overexpression of the myc-C2A domain induced
depression-like behavior and methamphetamine induced
conditioned place preference. These results confirm that
the C2A domain of piccolo plays an important role in the
psychiatric behavior.

Conclusion

Our results indicate that piccolo plays important roles in
reducing psychiatric disorders and in drug dependency.
Furthermore, they confirm the interaction of piccolo and
depression symptoms, which was suggested in the clinical
studies.
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Summary

Dopamine transporter (DAT) internalization is a mechanism underlying the decreased
dopamine reuptake caused by addictive drugs like methamphetamine (METH). We found that
Piccolo, a presynaptic scaffolding protein, was overexpressed in the nucleus accumbens (NAc)
of the mice repeatedly administrated with METH. Piccolo downexpression by antisense tech-
nique augmented METH-induced behavioral sensitization, conditioned reward and synaptic
dopamine accumulation in NAc. Expression of Piccolo C2A domain attenuated METH-induced
inhibition of dopamine uptake in PC12 cells expressing human DAT. Consistent with this, it
slowed down the accelerated DAT internalization induced by METH, thus maintaining the
presentation of plasmalemmal DAT. In immunostaining and structural modeling Piccolo C2A
domain displays an unusual feature of sequestering membrane phosphatidylinositol 4,5-bis-
phosphate, which may underlie its role in modulating DAT internalization. Together, our
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results indicate that Piccolo upregulation induced by METH represents a homeostatic response
in the NAc to excessive dopaminergic transmission. Piccolo C2A domain may act as a cytoskele-
tal regulator for plasmalemmal DAT internalization, which may underlie its contributions in
behavioral plasticity.

Key words: Piccolo, dopamine transporter, methamphetamine, behavioral plasticity, C2A
domain
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Although morphine and other p-opioid agonists are the
main analgesics for severe pain, these compounds have
potential for abuse and/or addiction. This has compli-
cated the use of p-agonists in the treatment of chronic
pain. However, clinical studies show that when p-ago-
nist analgesics are appropriately used to control pain,
actual abuse or addiction does not usually occur,
although some risk factors that increase vulnerability
need to be considered, including genetic variation. We
review recent findings on molecular adaptations in sus-
tained pain models, and propose how these adaptations
(including sustained release of the endogenous p-ago-
nist B-endorphin) can result in decreased abuse potential
of p-agonists in chronic pain states. We also review data
on particular gene polymorphisms (e.g. in the p-receptor
gene) that could also influence the relative abuse poten-
tial of p-agonists in clinical pain populations.

Introduction

Morphine and other p-opioid agonists (u-agonists) are
frequently used for the treatment of cancer pain and
moderate to severe non-cancer pain, as well as post-surgi-
cal or traumatic pain [1-3]. Longer-acting opioid medi-
cations and formulations such as methadone,
buprenorphine and sustained-release oxycodone also have
utility in the treatment of neuropathic pain [3-5]. How-
ever, p-agonists also have a constellation of side-effects
(e.g. acute respiratory depression, chronic constipation and
pruritus), in addition to abuse or addiction potential.
Furthermore, chronic administration of p-agonists results
in tolerance and dependence.

There has been a substantial increase in the non-medical
use of prescription p-opioids, possibly because of their wide-
spread availability compared with illicit compounds such as
heroin. However, abuse or addiction does not usually occur
when p-agonists are used to treat substantial somatic pain
[1,6,7]. Patients do show withdrawal signs when there is
abrupt cessation of chronic p-agonist administration. How-
ever, this physical dependence per se is not sufficient for a
diagnosis of abuse or addiction [7,8]. The relative infre-
quency of developing an addictive disorder de novo in this

Corresponding authors: Narita, M. (narita@hoshi.acjp);
Kreek, M.J. (kreek@rockefeller.edu); Suzuki, T. (suzuki@hoshi.ac.jp).

setting lends support to the safe use of p-agonists for the
treatment of severe acute pain, as well as cancer and non-
cancer chronic pain [1,6,7].

Chronic pain, including neuropathic pain, often has a
negative effect on quality of life, can function as a stressor
and increases the incidence of anxiety and depression. The
endogenous opioid system has been strongly implicated in
nociception, anxiety and stress-responsive hypothalamic—
pituitary-adrenal (HPA) axis modulation. Alterations of
the expression of genes involved in stress responsiveness
have been reported after chronic intermittent exposure to
p-agonists, cocaine, other stimulants and alcohol in
animals and in clinical settings [9].

Glossary

Drug abuse: abuse has been defined by various scientific, national and
international policy and clinical groups. Among commonly used diagnostic
criteria, the Diagnostic and Statistical Manual IV (DSM-IV} focuses on non-
medical use of a particular substance resulting in maladaptive patterns of
behavior and leading to clinically significant impairment or distress. It is often
considered that reward properties of the drug can drive the initial trajectory of
drug abuse from early experimentation to regular usage.

Drug addiction: often described as a clinical disorder with greater severity than
abuse and including some cardinal signs such as escalation of drug exposure,
compulsive drug use, presence of dep<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>