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FIGURE 4. Expression levels of connexin 43 mRNA in NHOsts cul-
tured on various SAM surfaces {n = 3). The expression levels of the
connexin 43 mRNA were normalized by GAPDH mRNA expression
level estimated from the same sampiles of total RNA and expressed
as a ratio against the expression level in NHOsts on a collagen-coated
culture dish after 1-day culture. NHOsts were cultured on a collagen-
coated dish (open circle), SAM-CH; (open triangle), SAM-COOH
(closed triangle), SAM-OH ({(open square}, SAM-OPQsH; (closed
square), SAM-0OSOz;H {open diamond), and SAM-NH; {closed
diamond).

independent of their GJIC function. It was also expected that
GJIC of NHOsts on SAM-CH3; would be different from others
since less NHOst proliferation on the SAM suggested a pos-
sible perturbation in homeostasis of the NHOsts. Decrease
in the cell number on the SAM after 1-week incubation,
however, made GJIC measurement unable because few cells
contacting with two other neighboring cells were found. On
the other hand, the GJIC after 1-week culture did not show
any statistical differences between NHOsts on other tested
SAM surfaces and those on a collagen-coated culture dish
(data not shown). In addition, Figure 4 has revealed that
surface functional groups of SAM do not affect mRNA
expression level of connexin 43 during 1-week culture, indi-
cating that the functional group do not affect signal cas-
cades of connexin 43 expression in NHOsts. To study effects
of the functional group as well as hydrophilic/hydrophobic
balance of the surface on GJIC more in detail, changes in
GJIC level of cells on the surfaces are under investigation
utilizing metabolic cooperation assay system. Results of the
study will be reported in near future. However, this study
suggests that an enhancement of differentiation level of
NHOsts induced by phosphorylated or sulfate group on the
surface is triggered by a direct interaction between the
chemical group and NHOsts, followed by signal cascades in
which GJIC does not participate. In fact, sulfated polysaccha-
rides have been reported to affect expression of several
genes relating to cell differentiation,’® but a mechanism of
the sulfated group to affect the expression of these genes
remains to be clarified. The details of the interaction and
the signal cascades will be clarified in future studies.
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CONCLUSIONS

This study suggests that the functional groups covering sur-
face have the potential to control attachment, proliferation,
and differentiation of NHOsts cultured on it. Figures of
NHOsts after 1-day culture and the cell numbers estimated
after 1-week culture indicate that hyd:ophilic/Hydrophobic
balance of the surfaces may be one of key factors to regu-
late attachment and proliferation of NHOsts on the surfaces.
Although the proliferation level decreased, the surface cov-
ered with either phosphate or sulfate group showed an
enhancement in differentiation level of cultured NHOsts
through unidentified signal cascades triggered by these
functional groups and independent of GJIC. This suggests
that ionic charge level of the functional groups is one of key
factors to regulate osteogenic differentiation on the surfaces
more than hydrophilic/hydrophobic balance of the surfaces.
Further studies are necessary for clarifying the mechanisms
of different differentiation levels of NHOsts induced by
interaction with the functional groups as well as for future
applications of SAMs in the fields of medical devices and tis-
sue engineering.
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Abstract

A compositional gradient structure in hyaluronic acid (HA) and poty(N-isopropylacrylamide) (PIPAAm)
blend film was self-organized from a homogeneous aqueous solution in a plasma-treated polystyrene dish
(PTPSD), and the formation mechanisms of the gradient structure were studied by casting the same so-
lution on PTPSD and a non-treated polystyrene dish (NTPSD) under ambient and vacuum conditions.
The formation of a compositional gradient structure in HA/PIPAAm blend film was confirmed by scan-
ning electron microscopy, energy dispersive X-ray (EDX) mapping analysis and step-scan photoacoustic
Fourier transformed infrared spectroscopy (PAS-FT-IR) measurements. The EDX mapping measurements
for Na element revealed that the HA component gradually decreuses from the dish-side to the air-side of
the film cast on PTPSD, while for the film cast on NTPSD no such obvious change was observed on the
cross-section. Further studies on the films prepared on PTPSD and NPTPSD under ambient and vacuum
conditions demonstrated that the hydrophilic interaction and the solvent evaporation rate were the most
significant factors leading to the formation of a compositional gradient structure in the HA/PIPAAm blend
system.
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1. Introduction

Biomimetic and bioinspired optimal structures combining bioresorbable, bioactive
and other advanced properties are expected for the next generation of biomate-
rials [1-3]. Inspired by nature, to reveal the relationship between structure and
functionality of biological materials has been emphasized in the biomaterials re-
search field, and self-organization of a polymeric system has been recognized as
a key challenge for producing functional materials that combine several properties
and the inherent beauty of ordered structures [4, 5]. In nature, gradient biological
structures exist most commonly, such as the structure of bamboo [6], shells, teeth,
bones, tendon and extracellular matrix (ECM) [7]. Man-made functionally gradi-
ent materials (FGMs) have been developed for combining irreconcilable properties
within a single material and have been widely incorporated in metal/ceramic and
organic/inorganic material fields for increasing the structural complexity and com-
bining different functionality [8-10].

Recently, there have been many efforts to develop polymeric FGMs with unique
properties and advanced functions that are inaccessible in conventional uniform
systems [11, 12]. Many preparation approaches have been developed to generate
a polymeric functionally gradient structure during homogenization or segrega-
tion processes [13—-16]. Despite these efforts made recently to generate polymeric
FGMs, characterization of their gradient structure, physico-chemical properties and
elucidation of formation mechanisms still remain to be explored. Previously, the
spontaneous formation of a chitosan/poly(vinyl alcohol) compositional gradient
structure on a aluminum dish from a homogeneous aqueous solution was reported,
and the gradient film was found to show some unique physical properties compared
to a homogeneous blend film which was prepared on a Teflon dish [12]. However,
there is still no detailed understanding of the formation mechanisms of such a com-
positional gradient structure spontaneously formed on a aluminum dish. It requires
both the hydrophilic and hydrophobic properties incorporated into the same mater-
ial surfaces, but it is extremely difficult to control these on the metallic substrate’s
surface because oxidation occurs at any given moment in ambient conditions.

Plasma technology can add functional groups to a surface of organic and in-
organic materials at the molecular level, changing surface chemistries to obtain
increased bond strength, hydrophilicity, permeability, and activating and changing
surfaces from hydrophobic to hydrophilic without affecting the bulk properties. In
the present study, we show a compositional gradient structure in a HA/PIPAAm
blend film self-organized during the solvent evaporation process on a oxygen-
plasma treated polystyrene dish (PTPSD), while on the non-treated polystyrene dish
(NTPSD) a nearly homogenous blend film was formed at ambient condition.

HA is a naturally occurring linear polysaccharide, widely distributed in the body
as a component of ECM of connective tissues, and recently HA-based biomateri-
als have been utilized for a variety of clinical applications and tissue engineering of
skin, cartilage tissue and bone, based upon its specific properties, excellent biocom-
patibility and bioactivity [17-21]. PIPAAm is a synthetic polymer which has a sharp
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and reversible phase transition at approx. 32°C and is applicable in tissue engineer-
ing as a functional hydrogel and as a cell sheet [22, 23]. It is interesting to develop a
novel biomaterial combining the biocompatibility, bioactivity of HA and the inher-
ent thermal responsibility of PIPAAm in the tissue engineering field. For improving
the biocompatibility of PIPAAm hydrogel, intensive studies have been done to de-
velop a series of thermosensitive co-polymers by coupling carboxylic end-capped
PIPAAm to HA through amide bond linkages [24-26]. In the present study, we
aimed to prepare a composite material of HA and PIPAAm with a gradual change in
chemical composition which combines not only the inherent properties of two com-
ponents, but also those of their complex with various compositions. It is expected
that such a compositional gradient material could provide rather advanced and new
properties compared to the conventional composite material with a given compo-
sitional ratio of the components. A compositional gradient structure in bioactive
sodium hyaluronic acid (HA) and thermal-responsive poly(N-isopropylacrylamide)
(PIPAAm) blend film was simply self-organized from a homogeneous aqueous so-
lution on a plasma-treated polystyrene dish (PTPSD) at room temperature. The
formation mechanism was studied by casting the same solution on PTPSD and
non-treated polystyrene dish (NTPSD) under ambient and vacuum conditions at
room temperature. Our findings demonstrate that the hydrophilic interaction with
substrate and the solvent evaporation rate were the most significant factors for the
formation of the compositional gradient structure in the HA/PIPAAm blend system.

2. Materials and Methods
2.1. Materials

2.1.1. Film Preparation

A 1 wt% HA solution was prepared by dissolving powder HA (weight-average
molecular weight 1680000 by GPC, Life Core Biomedical) in distilled water with
stirring for 24 h. A 1 wt% PIPAAM solution was prepared by diluting 15 wt%
PIPAAm (weight-average molecular weight 220 000 by GPC, Kohjin) aqueous so-
lution with distilled water with stirring for 24 h. Thereafter the 1 wt% HA and
1 wt% PIPAAm solutions were mixed together at the same weight ratio and stirred
further for 24 h before casting on PTPSD and NTPSD in ambient and vacuum con-
ditions. For the preparation of films from the same amount of solution with the same
concentration, it needed 48 h in ambient conditions, while it needed only 12 h in
vacuum. All resulting films were heated at 80°C under vacuum condition for 5 h
before evaporation of the remained water in the film and characterization.

2.2. Plasma Treatment of the Polystyrene Dish

The plasma treatment was performed with a SWP-101EX (Nissin), using low-
pressure region output power of the microwave oscillator at 2.0 kW, the polystyrene
dishes were set on the sample stage which is 15 cm below the reactor. The oxygen
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discharge was utilized and the oxygen was filled at a rate of 500 cc/min at a pressure
of 70 Pa. Plasma irradiation was performed for 15 s.

2.3. X-Ray Photoelectron Spectroscopy (XPS)

The XPS analyses were performed with an ESCA-3200 spectrometer (Shimadzu),
using a magnesium Ko X-ray source (1253.6 V). The high-resolution spectra of
the Cis, O15 and Najg regions were recorded with a pass energy of 75 eV at 45°
take-off angle.

2.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX)
Analysis

A JSM-5800LV (JEOL) equipped with an EX-23000BU EDX detector was used
to analyze the freeze-fractured cross-section geometry, the chemical composition
and element mapping measurements. The samples were fractured at liquid-nitrogen
temperature, and sputtered with gold before taking micrographs.

2.5. Step-Scan Photoacoustic Fourier Transformed Infrared Spectroscopy
(PAS-FT-IR)

PAS-FT-IR spectra measurements were carried out on a JIR-SPX200 FT-IR spec-
trometer (JEOL) equipped with a MTEC 300 photoacoustic cell (MTEC Photo-
acoustic). Prior to the start of the penetration experiment the cell was purged with
helium for 30 s.

3. Results and Discussion
3.1. Surface Analysis of the Compositional Gradient Film

Figure 1 shows the molecular structures and XPS spectra of pure PIPAAm, pure
HA, and the difference of chemical compositions between two surfaces of the blend
film cast from homogeneous aqueous solution with the same compositional fraction
of HA/PIPAAm (50%/50%) on PTPSD at room temperature, and the C;s and Naj;
core level regions are also shown. For pure PIPAAm, the Ci spectrum is decom-
posed by peak fitting to two components at 285.0 and 287.9 eV, corresponding to the
hydrocarbon (HC) (including carbon singly bound to nitrogen (CN)) and the carbon
atom in carbonyl group environments, respectively. The high-resolution Ci4 spec-
trum of HA is decomposed to four peaks at 285.0 + 0.1, 286.6 £ 0.1,288.1 £ 0.1
and 289.5 £ 0.1 eV, corresponding to the HC (including CN), carbon singly bound
to oxygen (CO), carbon doubly bonded to oxygen (OCO) (including amide and
carboxylate ion carbon atoms (CON and C0OQ)), and finally carbon in an ester envi-
ronment (COOR), respectively, resulting in a very close match to the experimentally
observed spectrum. Both the high-resolution XPS spectra in Cy5 and Nais core level
regions were obviously different between two surfaces of the HA/PIPAAm film cast
on PTPSD at room temperature. The spectra of the air-side surface are close to that
of pure PIPAAm (Fig. 1c) and the spectra of the dish-side surface are close to that
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Figure 1. (a) Molecular structure of pure PIPAAm and pure HA. (b} XPS spectra of pure PINPAAm
and pure HA. The inset shows the corresponding magnification of the Cyg core level regions and the re-
sults resolved by the curve-fitting program. Dashed line, HC; dash-dotted line, CO; dotted line, OCO;
dash-dot-dotted line, CON or COQ; short dashed line, baseline; short dash-dotted line, curve-fitted
results; solid line, experimental results. (¢, d) XPS spectra of the air-side and dish-side surfaces of the
film cast on PTPSD in ambient conditions, respectively. The insets are the corresponding Naj core
level regions.

of pure HA (Fig. 1d). It implies that the cross-section of the film may form a gradi-
ent structure in the HA/PIPAAm blend composition along the thickness direction.
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Figure 1. (Continued.)
However, no significant difference was observed in the XPS spectra of the two sur-
faces of HA/PIPAAm film cast on NTPSD.
3.2. Characterization of Gradient Structure of Films

The cross-section morphology and distribution of chemical composition along the
thickness direction were investigated by means of SEM and EDX analysis, re-
spectively. Figure 2 shows the EDX spectra of pure HA, pure PIPAAm, SEM
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Figure 2. (a) EDX spectrum of pure PIPAAm film. (b) EDX spectrum of pure HA film. (c) EDX map-
ping measurements for Na on a freeze-fractured cross-section of the film cast on NTPSD. The inset
(d) is the corresponding SEM image. (¢) EDX mapping measurements for Na on a freeze-fractured
cross-section of the film cast on PTPSD. The inset (f) is the corresponding SEM image. Scale bar =
100 um. This figure is published in colour in the online edition of this journal, that can be accessed
via http://www.brill.nl/jbs

micrographs of the cross-sections and EDX mapping measurements of Na for the
two films cast on NTPSD and PTPSD. In Fig. 2 light areas correspond to a high
concentration of Na atoms, and dark areas to a low concentration. It is clearly ob-
served that the distribution of Na atoms, which is a probe element of HA, gradually
changes along the thickness direction of the film cast on PTPSD, while no signifi-
cant changes were observed for the film cast on NTPSD in ambient conditions. The
results of EDX mapping for Na atoms strongly indicate that the composition of HA
and PIPAAm gradually changes along the film thickness direction.

3.3. Surface Analyses of NTPSD, PTPSD and Formation of Gradient Structure

As shown in Fig. 3a and 3b, the characteristic surface property of PTPSD is much
more hydrophilic due to the added functionally oxidized groups on the surface by
oxygen plasma treatment. The mechanism of spontaneous formation of the compo-
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Figure 3. (a) Hydrophilicity measured by the contact angle of a water drop with NTPSD and PTPSD.
Representative images are shown below. (b) XPS spectra in the Oy core level region of the NTPSD
and PTPSD surfaces. (c, d) The resulting film cast on NTPSD and PTPSD in vacuum conditions,
respectively.

sitional gradient structure in PIPAAm/HA blend film on PTPSD was further studied
by casting the film in vacuum condition. As shown in Fig. 3¢ and 3d, the film formed
on NTPSD in vacuum is detached from the dish, while the film formed on PTPSD
in vacuum is adhered on the dish. Both the high-resolution C;5 and Na;s XPS spec-
tra of the two surfaces of the film cast on NTPSD in vacuum conditions are also
different from each other, but only show HA/PIPAAm blends with different com-
positional fractions (Fig. 4a and 4c). The air-side surface is a HA/PIPAAm blend
rich in PIPAAm, and the dish-side surface is a HA/PIPAAm blend rich in HA. How-
ever, for the film cast on PTPSD in vacuum, the air-side surface shows completely
the same XPS spectra as those of PIPAAm, and the dish-side surface shows XPS
spectra extremely close to those of HA (Fig. 4b and 4d).
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Figure 4. (a, c) XPS spectra of the Cy4 core level region of the air-side and dish-side surfaces of the
film cast on NTPSD in vacuum conditions, respectively. The insets are the corresponding Naj core
level regions. (b, d) XPS spectra if the Cjg core level region of the air-side and dish-side surfaces

of the film prepared on PTPSD in vacuum conditions, respectively. The insets are the corresponding
Na, core level regions.

The characterization of the compositional distribution along the thickness di-
rection of HA/PIPAAm films prepared under vacuum conditions on NTPSD and
PTPSD was performed by means of step-scan PAS-FT-IR, SEM and EDX mapping
measurement (Fig. 5). The step-scan PAS-FT-IR is a non-destructive, non-contact
method with controllable sampling depth and needs little or no sample prepara-
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Figure 4. (Continued.)

tion. The results of PAS-FT-IR spectroscopy of increasing shallow-sampling depth
corresponding to different mirror velocities of 1.0, 2.0 and 5.0 mm/s indicate that
the fractions of HA and PIPAAm gradually change from the surfaces to the inside
of the film for both films cast on NTPSD and PTPSD (Fig. 5a and 5b). The EDX
mapping measurements for Na reveal that the HA fraction gradually decreases from
the dish-side to the air-side of the film cast on PTPSD, while for the film cast on
NTPSD, no such obvious change was observed on the cross-section. In order to
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Figure 5. (a, b) PAS-FT-IR spectra with increasing shallow-sampling depth corresponding to mirror
velocities of 1.0, 2.0 and 5.0 mm/s from the two surfaces of the films cast on NTPSD and PTPSD
in vacuum conditions, respectively. The dotted and dash-dotted line correspond to the PAS-FT-IR
spectra of pure PIPAAm and pure HA, respectively. (c, d) EDX mapping for Na and SEM image of
the cross-section of the film cast on NTPSD in vacuum. (¢, f) EDX mapping for Na and SEM image of
the cross-section of the film cast on PTPSD in vacuum. Scale bar = 100 um. This figure is published
in colour in the online edition of this journal, that can be accessed via http://www hrill.nl/jhs

elucidate the contribution of the oxidized hydrophilic surface and acceleration of
water molecules evaporation rate for the formation of compositional gradient struc-
ture in the HA/PIPAAm blend system, the degree of graduation of films has been
plotted for mass content distribution of Na element along the thickness direction in
different preparation conditions, ambient and vacuum conditions, on PTPSD and
NTPSD, respectively. It is indicated that both the oxidized hydrophilic surface and
evaporation rate of water molecules contribute to the formation of an ideal gradient
structure in the HA/PIPAAm blend system (Fig. 6).

The formation mechanism of the compositional gradient structure in HA and PI-
PAAm blend system is a complicated process, related to the solubility parameters of
two components, water-mediated and intermolecular hydrogen bonding network in
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Figure 6. (a) EDX line scan results of Na on the cross-sections of films prepared in ambient conditions
(LG1 for the film cast on NTPSD and LG2 for the film cast on PTPSD), (b) EDX line scan results

of Na on the cross-sections of films prepared in vacuum conditions (LG3 for the film cast on NTPSD
and LG4 for the film cast on PTPSD).

the blend system, and their rearrangement during the solvent evaporation process.
In the homogeneous solution, the water-mediated or direct intermolecular hydrogen
bonds between the functional groups of HA chain and oxidized functional groups
on the PTPSD surface are constantly breaking and reforming at the urgings of ther-
mal motion. However, because its intrinsic molecular structure, the PIPAAm chain
hardly interacts with oxidized functional groups on the surface of PTPSD. In addi-
tion, the high solubility and mobility of PIPAAm makes it easy to accompany the
evaporation of water molecules to move toward the air-side under the water mole-
cule’s plasticizing effect. In contrast, HA chains contain two kinds of links. The



B. Hexig et al. / Journal of Biomaterials Science 21 (2010} 1957-1970 1969

glycosidic link between two rigid units consists of a single oxygen atom joining one
sugar to the next, and each glucuronate unit carries a strong proton acceptor group
associated with its carboxylate group. The unique molecular structure leads to the
formation of a tape-like secondary structure and enables aggregation via specific
interaction in water to form a meshwork, even at low concentrations [27, 28]. There-
fore, once the intermolecular hydrogen bonding interaction was formed between
carboxylate groups of HA and oxidized functional groups on the PTPSD surface,
the water molecules’ motion was not sufficient for breaking the interaction at high
concentrations of HA during the evaporation process. Thus, HA molecules mesh-
works begin to overlap and aggregate on the PTPSD surface, resulting in changes of
the film composition along the thickness direction and air-side and dish-side com-
position of the film, much the same as with pure PIPAAm and HA, respectively.
However, on the hydrophobic surface of NTPSD, there is no strong interaction
between the two components and the normal PS surface, such as intermolecular hy-
drogen bonds. Therefore, overlapping and aggregation of HA molecular meshworks
occur in the whole mixture system under dominant contribution of entanglement,
water-mediated and intermolecular interaction between HA and PIPAAm chains.
The acceleration of the water molecular evaporation rate induces the delay of over-
lapping of HA molecular meshworks, resulting in the compositional difference
between the two sides of the film. The fact that the resulting film on PTPSD, but
not on NTPSD, is weakly adhered on the substrate indicates that the interactions
between two components and oxidized surface of substrates are a significant factor
for the formation of the gradient structure.

4. Conclusion

We prepared and characterized the compositional gradient structure in a HA/
PIPAAm blend film. The formation mechanism of the functional gradient structure
in a polysaccharide/polymer blend film self-organized from a homogeneous aque-
ous solution on PTPSD has been investigated by controlling the surface property of
the casting substrate and the water evaporation rate. The gradient structure was con-
firmed by EDX mapping measurements for Na on the cross-section of the films and
PAS-FT-IR analysis with increasing shallow-sampling depth from the two surfaces.
The method of casting from a homogeneous aqueous solution is quite a simple way
to prepare functional gradient polymeric materials. However, the mechanism in-
volved in the formation of gradient structure is a complicated process related to
the intrinsic properties of the components, the substrate properties and the solvent
evaporation rate, indicating that with a suitable combination of these factors it can
lead to polymeric composite materials with variable structures and properties.
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A Microarray Analysis of the Effects of Serum-free Medium on Gene Expression Changes in
Human Mesenchymal Stem Cells during the in Vitro Culture
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We examined the effects of serum-free medium on the gene expression changes in human mesenchymal stem cells
(hMSCs) during the in vitro culture using a DNA microarray analysis. In this study, we cultured hMSCs with two kinds
of medium; 1) MSCGM (contain 10% fetal bovine serum) or 2) STK2 (serum-free medium developed for mesechymal
stem cells multiplication) , and compared hMSCs proliferation, cell morphology, and gene expression changes until 50
days culture. Expression analysis was performed with Affymetrix GeneChip Human Genome U133 Plus 2.0 Array.
hMSC proliferation was significantly higher in STK2 medium than in MSCGM medium. The cell morphology of hMSC
cultured with STK2 was not significantly changed in 50 days culture. The gene expression changes in hMSCs during the
in vitro culture were significantly higher in STK2 than in MSCGM. After 50 days culture, 1991 genes were significantly
changed the expression levels compared with 3 days in STK2 but not MSCGM. The expressions of genes related to cell
cycle, cancer, proliferation, and cell growth were significantly changed by STK2 for 50 days culture. It was also changed
by STK2 that the expressions of genes related to the signaling pathways contain various growth factors, such as IGF-1,
FGF, TGF-f, EGF, proliferation, and cell cycle. These results suggest that STK2 may be useful to obtain an enough
number of hMSC cells for tissue engineered medical devices in short-term, however, it should be recognized that STK2
would alter the expressions of genes related to a variety of signéﬁng pathways in hMSC if the culture period would be ex-
tended to obtain a large number of cells.

Key words——human mesenchymal stem cell; gene expression; serum-free medium; proliferation; in vitro culture
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Fig. 1. Proliferation of Human Mesenchymal Stem Cells
(hMSCs)
hMSCs were cultured in MSCGM or STK2. They were seeded at a densi-
ty of 6000 cells/cm? and when they were just subconfluent, they were subcul-
tured and the number of cells was counted.
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Fig. 3. Changes in Gene Expressions of hMSCs Cultured in MSCGM or STK2 during the in Viiro Culture
Each mRNA expression in hMSCs for 3 days culture is expressed as 1, and those for 20 and 50 days are expressed relative to that for 3 days.

AR B L THE QB EXIT 128 TF)
IZ mRNA FHNE( L /2815 FE % Fig. 4 1T L
. EBE50BMERWAEETD, EEMKARKE
te#: L THEIZ mRNA BHENE( L - # & 7T
BEEARICKAFEL THMLUZ. hMSC 5% 20 H,

50 HENETHNIZHBWNWT, HEIC mRNA ¥EH L X)L
ML LB FEIESTK2 D H#E <, 53 50
H TiZ 2000 LL £ OBTFORBL NIV EFEE
Bl L THRBICRLL T, HRICE{LE
& TEIE, MSCGM TOH5# 50 H & STK2 TD

&0 HEMZERBEETH- .

T, ZDOXDIT in vitro BERBETEFOREL
NIVMBEUZEETE, EQOXS7AaME A
ERHOBGFROEAZIMN? BlL-#ETFEE
nENHE L TY X MEL, GeneSpring GX 7.3.1
WCTEE LB E TR S RIROBREE Dl T8
ZMIBT DT EIZL > T hMSC D in vitro 523558
BTEDID BREZFOBGTFEMNELLEZOMN
BE L, TNENOREHT 20 H KT 50 HEER
U 7=BRICE B IAE & bl U THEICER(LL i



1390

Vol. 130 (2010)

2500

2000

1500 B MSCGM

N STK2

1000

500

20 50
days
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Table 1. The Similar Gene Lists to the Genes Whose mRNA
Expressions Significantly Changed during the in Vitro Cul-
ture of hMSCs )

tur P
culture Number Similar over

?32;3 Media ¢ Genes List® lap P-value
MSCGM 174 — — —
Cell Cycle 73 5.35E-23
20 603 Cancer 121 5.26E-21
STK2 Proliferation 54 1.08E-08
(395) (Cancer) (69) (1.38E-08)
(Proliferation) (32) (9.56E-04)
Cell Cycle 101 8.15E-34
MSCGM 762  Proliferation 75 1.01E-14
Cancer 117 3.57E-11
Cancer 318 1.37E-23
Cell 152 92E-17
50 2329 ell Cycle 3.9

Proliferation 151 2.60E-13
STK2 Cell Growth 40 1.33E-02

{Cancer)  (259) (4.40E-16)
(1991) (Proliferation) (116) (4.52E-07)
(Cell Cycle)  (94) (2.90E-03)

2 The name of lists that resemble the selected list or contain a statistically
significant number of overlapping genes. The overlap is calculated using a
standard Fisher’s exact test and the p-value is adjusted with a Bonferroni
multiple testing correction.
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