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HAE D HiE A FRE L, LPS 100 ng/ml f77E
T.T-2 (10, 20, 40, 80 ng/ml) . £72/E HT-2
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X Luciferase Assay Reagent II (Promega,
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Abstract Deoxynivalenol (DON) and nivalenol (NIV) are
trichothecene mycotoxins produced by Fusarium fungi as
secondary metabolites. Both compounds have the immu-
notoxic effects that the productions of inflammatory
mediators by activated macrophages is disturbed. Co-
contamination with DON and NIV can occur; however,
the effects of simultaneous contamination are not well
known. The present study investigated the combined effects
of DON and NIV on nitric oxide (NO) production by mouse
macrophages stimulated with lipopolisaccharide (LPS). The
inhibitory effect of DON and NIV on NO release from
activated macrophages has already been reported as an
appropriate indicator of immunotoxic effect of the both
compounds. LPS-induced NO production in macrophages
was inhibited by both of these toxins individually in a dose-
dependent manner, and toxin mixtures at the same
concentration inhibited NO production in the same manner.
In addition, there were no unique inhibitory effects on LPS-
induced NO production in macrophages in the presence of
mixtures of various molar ratios. These results suggest that
the combined effects of DON and NIV can be predicted
based on addition of each compound alone.
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K.-i. Sugiyama (3d) - Y. Kamata - Y. Sugita-Konishi

Division of Microbiology, National Institute of Health Sciences,
1-18-1 Kamiyoga, Setagaya-ku,

Tokyo 158-8501, Japan

e-mail: sugiyama@nihs.go.jp

H. Kawakami

Faculty of Home Economics, Kyoritsu Women’s University,
2-6-1 Hitotsubashi, Chiyoda-ku,

Tokyo 101-0003, Japan

Introduction

Mycotoxicosis of human and various animals has been
documented following consumption of fungus-infected
cereal grains (Meky et al. 2001). Although more than 400
mycotoxins are known, the contamination of grains by
trichothecene mycotoxins has been one of the most serious
public health threats (Marzocco et al. 2009; Ueno 1985).
The trichothecene mycotoxins are a structurally diverse
group of secondary metabolites produced by several
fungi, including Fusarium, Mycothecium, Trichoderma,
Trichothecium, Stachybotrys, Verticimonosporium, and
Cephalosporium (Ueno 1985), and have been found to
be food contaminants in grain crops such as wheat and
corn, and products derived from these grains (Marzocco et
al. 2009; Rotter et al. 1996; Sugiyama et al. 2010).
Especially common are deoxynivalenol (DON) and nivalenol
(NIV), type B trichothecenes, whose contamination of
foodstuffs occurs frequently worldwide (Fig. 1). It is
reported that about 60% of the food in the European Union
(EU) is contaminated by DON (Schothorst and van
Egmond 2004). Contamination by NIV is commonly
detected on cereals cultivated in temperature regions,
including Japan (Schlatter 2004; Sugiura et al. 1993;
Yoshizawa et al. 2004), and also found in food in the EU
(Schothorst and van Egmond 2004). In addition, it is
known that DON and NIV are not degraded by the usual
cooking processes (Marzocco et al. 2009); however
milling, boiling and alkaline cooking are effective in
reducing DON (Kushiro 2008; Nowicki et al. 1988; Abbas
et al. 1998).

Trichothecene mycotoxins have been implicated in
vomiting and alimentary hemorrhage, and have been
demonstrated to affect immune cells and impair the immune
response (Bennett and Klich 2003; Sugita-Konishi and
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Fig. 1 Chemical structures of DON and NIV

Pestka 2001). In particular, toxicity studies revealed DON-
induced cytotoxicity against immune cells, including
macrophages, and dysregulation of the immune response
(Instanes and Hetland 2004; Pestka 2008; Pestka and
Smolinski 2005). These reports suggest that the data of
immune dysfunction as well as cytotoxicity are important in
risk analysis for trichothecene mycotoxins and immune
cells are the primary target for this mycotoxins (Bondy
and Pestka 2000). Therefore, susceptibility to infections
caused by other food-borne pathogens, such as Listeria
monocytogenes, is enhanced by DON (Tryphonas et al.
1986).

Nitric oxide (NO) production by activated macrophages
is of particular importance for protection againist intracellular
microbiostasis, including that of L. mornocytogenes (Boockvar
et al. 1994). NO synthesis from specific stimuli-activated
macrophage is catalyzed by inducible NO synthase (iNOS)
whose expression is induced by lipopolysaccharide (LPS)
(Shimomura-Shimizu et al. 2005). Our previous study
demonstrated that both DON and NIV repress LPS-induced
NO production from a macrophage-like cells by inhibiting
LPS-induced iNOS expression (Sugiyama et al. 2010). These
reports strongly suggest that the inhibitory effects of these
trichothecene mycotoxins on LPS-induced NO production are
related to their toxicity.

A number of mycotoxins produced by one mold species
have been found in food commodities, but there is little
information about the combined effect of mycotoxins
(Speijers and Speijers 2004). The objective of the present
study was to assess whether the combinations of DON and
NIV cause additive, synergistic or antagonistic effects on
the NO production.

Materials and methods
Cell culture and reagents
A mouse macrophage cell line, RAW264, was obtained
from the Riken Cell Bank (Tsukuba, Japan) and cells were

cultured in DMEM (Gibco-BRL, Rockville, MD, UA)
supplemented with 10% (v/v) heat-inactivated fetal calf

@ Springer

serum (Gibco-BRL), penicillin (100 U/ml) and streptomycin
(100 pg/ml). DON and NIV were purchased from Wako
Purechemical Industries (Osaka, Japan) and biopure
Referenzsubstanzen (Tulln, Austria), and LPS from
Escherichia coli O111:B4 was purchased from Sigma-
Aldrich (St. Louis, MO, USA).

NO production

RAW264 cells were plated (2x10° cells/well) in 96-well
plates, and on the following day were exposed to each toxin
in the presence or absence of LPS for 24 h. Determination
of NO production was performed by measuring the
concentration of nitrite in culture supernatants using the
Griess method with the NO,/NO3 Assay Kit-C II (Dojin;
Chm. Lab. Institute, Kumamoto, Japan). Briefly, the
mixture consisting of 80 pl aliquot of culture supernatant,
10 pl of nitrate reductase and 10 pl of enzyme cofactor was
added to 50 pL of sulfanilamide and 50 pL of N-naphthyl
ethylenediamine at room temperature for 15 min. The
absorbance of the solution was determined at 550 nm using
a micro plate reader, TriStar LB 941 (Berthold Tech,,
Germany). The NO, concentration was calculated from a
NaNO, standard curve.

Statistical analysis

Statistical comparisons of multiple groups were done using
one-way ANOVA followed by Dunnett’s post hoc test. The
values shown in the figures are expressed as the means + SEM.

Results

DON and NIV affect the immune system (Sugita-Konishi
and Pestka 2001; Pestka and Smolinski 2005), and it was
recently reported that LPS-induced NO production by
mouse macrophages is inhibited by these toxins in a
concentration-dependent manner (Sugiyama et al. 2010).
Therefore, to examine the toxicity of a DON and NIV in
combination, LPS-induced NO production by a mouse
macrophage cell line, RAW264, in the presence of these
toxins was measured. As shown in Fig. 2, LPS-induced NO
production was repressed by both toxins in a concentration-
dependent manner. A significant inhibitory effect of each
toxin on LPS-induced NO production was observed at
concentrations greater than 500 ng/ml. These results
suggest that there was no significant difference in the
repression of LPS-induced NO production between DON
and NIV. In nonstimulated RAW264, NO productions
remained below approximately 10% of stimulated cells.

It has been reported that DON and NIV naturally co-
exist in cereals in some countries, including Japan
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Fig. 2 Concentration-dependent effects of DON and NIV on LPS-
induced NO production by RAW264 Cells RAW264 cells were
simulated with LPS (100 ng/ml) in the presence of the indicated
concentrations of DON (a) or NIV (b) for 24 h. The culture
supernatants were analyzed for NO levels, The NO induced by LPS
treatment alone is expressed as 100%. Values are presented as the
means + SEM from three independent experiments. Statistical analysis
was performed using one-way ANOVA followed by Dunnett’s post
hoc test (***P < .001, vs control)

(Yoshizawa et al. 2004; Sugiura et al. 1990). Therefore, to
estimate the real risk to mammalian health, analysis of the
combined toxicity of DON and NIV is of particular
importance. To investigate the combined effects of DON
and NIV on LPS-induced NO production by mouse macro-
phages, we also measured NO production in RAW264
stimulated with LPS in the presence of a mixture of DON
and NIV at a ratio of 1:1. As shown in Fig. 3, the inhibitory
effect of the mixture of DON and NIV (1:1) on LPS-
induced NO production became significant above 500 ng/
ml (total concentration of mycotoxins), thus suggesting that
there was no synergistic or anlagonistic toxic effect of the
DON and NIV mixture.

To compare the effect of the DON and NIV molar ratio
on the inhibitory effect of NO production by LPS-activated
macrophages, we first examined the effect of DON in the

presence of NIV on LPS-induced NO production by
macrophages. There was no effect on LPS-induced NO
production by macrophages at 600 nmol/l NIV (187.4 ng/
ml). A significant inhibitory effect on LPS-induced NO
production by macrophages exposed to 600 nmol/l of NIV
was observed at a concentration as low as 1,500 nmol/l of
DON (Fig. 4). Similar results were obtained when LPS-
induced NO production by macrophages treated with
600 nmol/l (177.6 ng/ml) of DON was measured in the
presence of NIV (Fig. 3).

Discussion

Trichothecene mycotoxins are implicated in toxicosis in
humans and animals, and the simultaneous contamination
of DON and NIV has been detected in cereals (Schlatter
2004; Sugiura et al. 1993; Yoshizawa et al. 2004). It has
been reported that exposing trichothecene mycotoxins such
as DON and NIV altered the immune response by
lymphocytes (Sugita-Konishi and Pestka 2001). Moreover,
we have previously reported that NO release from activated
macrophages was repressed by trichothecene mycotoxins
(Sugiyama et al. 2010). NO produced by activated macro-
phages plays an important role in protection against
intracellular bacterial infections (Boockvar et al. 1994
Sakai et al. 2006). In fact, it is reported that the recruitment
of INOS to mycobacterial phagosomes is repressed by
Mycobacterium wberculosis which is an intracellular
pathogen located within macrophages, and the immunotoxic
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Fig. 3 Combined effects of DON and NIV on LPS-induced NO
production by RAW264 Cells RAW264 cells were stimulated with
LPS (100 ng/ml) in the presence of the indicated total concentrations
of DON and NIV (1:1) for 24 h. The culture supematants were
analyzed for NO levels. NO induced by LPS treatment alone is
expressed as 100%. Values are presented as the means + SEM from
three independent experiments. Statistical analysis was performed
using one-way ANOVA followed by Dunnett’s post hoc test
(***P < .001, vs control)
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Fig. 4 Concentration-dependent
effects of DON on LPS-induced
NOQ production by RAW264 Cells
in the Presence of NIV RAW264
cells were stimulated with DON
(0-3,000 nmol/l) in the presence
of LPS (100 ng/ml) and NIV
(600 nmol/1) for 24 h. The culture
supernatants were analyzed for
NO levels. Values are the means £
SEM from three independent
experiments. NO induced by LPS
treatment alone is expressed as
100%. Statistical analysis was
performed using one-way
ANOVA followed by Dunnett’s

post hoc test (***P < .001, vs 0 0 1172 23.44 46.88 93.75 1875 375 750 1500 3000 DON (nmol/l
LPS treated control) 0 0 347 6094 13.88 27.75 555 111 222 444 888 DON (ng/ml)

NIV (600 nmolfl / 187.4 ng/mt)

% NO production

effects of DON reduce resistance of L. monocytogenes  resulted in additive cytotoxicity (Thuvander et al. 1999).
infection (Miller et al. 2004; Tryphonas et al. 1986). It has also been reported that NIV is considered to have
Therefore, the effect of DON and NIV on NO production  toxicological profiles similar to DON (Schlatter 2004).
by activated macrophages is considered to be a suitable ~ However, the synergistic inhibition of growth of brewing
toxicity marker of these toxins. The objective of this study is  yeast by the combination of DON and NIV has been
to estimate the toxicity of combined DON and NIV on the  demonstrated (Madhyastha et al. 1994). This discrepancy
amount of NO produced by LPS-stimulated macrophages. may account for the differences in membrane permeability
This study clearly demonstrated that both DON and NIV~ for both DON and NIV and of intracellular components
inhibited LPS-induced NO production by macrophages in interacted with these toxins. Taken together, the toxicological
the same manner (Fig. 2). Moreover, it seemed that the risk of mixtures of these trichothcenes can be estimated to be
combined effect of DON and NIV on NO production by  equal to the sum of the effects of the individual DON and NIV
macrophages stimulated with LPS is equal to the sum of the  toxins. In addition, this present study suggests that DON and
effect of each individual toxin (Fig. 3). Our studies provide ~ NIV have no different sites or modes of action leading to
additional support for neither toxin having a unique  inhibition of LPS-induced NO production through upregula-
inhibitory effect on LPS-induced NO production by macro-  tion of iNOS in macrophages (Sugiyama et al. 2010).
phages, regardless of the molar ratios of the individual It is reported that both DON and NIV have been found
toxins (Figs. 4 and 5). Our findings are supported by  in wheat and barley (Ichinoe et al. 1983; Yoshizawa et al.
Thuvander et al. (1999), who described that combination  1979; Sydenham et al. 1991) and co-contaminated the same
treatment of human lymphocytes with DON and NIV maize (Okoye 1993), leading to research of the risk

Fig. 5 Concentration-dependent 120
effects of NIV on LPS-induced

NO production by RAW264 cells

in the presence of DON RAW264 100
cells were stimulated with NIV
(0-3,000 nmol/l) in the presence
of LPS (100 ng/mi) and DON
(600 nmol/l) for 24 h. The culture
supernatants were analyzed for
NO levels. Values are the means =
SEM from four independent
experiments, NO induced by LPS
treatment alone is expressed as
100%. Statistical analysis was 20
performed using one-way

ANOVA followed by Dunnett’s

post hoc test (***P < 001, vs 0
LPS treated control)

80

50

40

% NO production

0 1172 23.44 46,88 93.75 187.5 375 750 1500 3000 NIV (nmolf)
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assessment of thecombination of DON and NIV. However,
there is not enough information to understand the combined
effect and to estimate the health risk at certain intakes of
both toxins (Speijers and Speijers 2004). Dietary intake of
trichothecene mycotoxins at levels below those that induce
mycotoxicosis may reduce immune responses and increase
susceptibility to infection (Corrier 1991). Considering
inadequate toxicological data on the combination effects
of DON and NIV, the findings of the present research
evaluated the effect of DON and NIV on innate immune
response and seem to support the evaluation of health risks
from a mixture of DON and NIV. Hence, it will be of
interest to investigate the possibility of estimating the
combined effect of other trichothecenes using this model.

Conclusion

In the present study, it was found that DON and NIV, which
have the ability to suppress NO production by activated
macrophages, produced additive inhibitory effects that
increased with increasing concentrations of toxin. Therefore,
we conclude that the combination of these mycotoxins results
in an additive effect on LPS-induced NO production by
macrophages. It is well known that the immune system is a
primary target of these toxins, and therefore risk assessments
of the combination of DON and NIV should take the tolal
amount of intake into account.
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