synthesized only in trace amounts unlike its human counterpart [28]. In addition, both SAA and CRP are used as an index for adverse prognosis of breast cancer [29]. Therefore, we believe that these diagnostic systems using acute phase proteins for human health would be useful for predicting the risk of exposure to nanomaterials as well as their likely toxicities. In addition, we showed that the induction time for the maximum level of haptoglobin, SAA and CRP are different after treatment with the silica nanoparticles (Figs. 2 and 3). Therefore, the predictive quality of these biomarkers is improved when they are used in combination. Epidemiological studies have suggested that increased levels of ambient particle including particle with nanometer size are associated with adverse effects in the respiratory and cardiovascular systems [30]. Some reports have shown that humans exposed to ambient particle have increased blood levels of CRP [31]. In addition, epidemiological studies have shown associations between increased concentrations of SAA and CRP in plasma, and increased risk of cardiovascular diseases [32] and cancer [33]. Therefore we consider that acute phase proteins would be biomarkers for predicting the risk of inflammatory disease, cardiovascular diseases and cancer after exposure by nanomaterials. In recent years there has been increasing use of nanomaterials in cosmetics, due to their light-diffusing properties and absorbencies, as well as in foodstuffs, such as additives in powdered foods. In particular, silica particles have been extensively used in many consumer products. For example, in the US, the use of amorphous silica is limited to less than 2.0% by weight of common salt. Other limits are defined for finished foods (<1%) and dried egg products (<5%). We cannot avoid exposure to nanomaterials, either from the unintentional release of waste products into the environment or by exposure to medicines, cosmetics and foodstuffs. Thus, it is important to carry out a safety analysis of nanomaterials after exposure via various routes. In this study, we showed that the level of acute phase proteins in the plasma of mice treated with nSP30 intranasally was elevated, although nSP70 did not induce elevation of each acute phase protein (Fig. 4). Therefore we consider that nSP30 would induce any toxic biological effects after intranasally treatment. Now we are trying to examine the pharmacokinetics and biological effects of nSP30 after intranasally treatment. We then examined the effects of surface modification of silica nanoparticles on the production of acute phase proteins, because it has become evident that surface properties are important factors in the biological effects of particles. We showed that nSP70 with amino or carboxyl group surface modifications did not induce the production of each acute phase proteins (Fig. 5). Previously, we showed that surface modification of silica particles with functional groups such as amino or carboxyl group suppressed toxic biological effects of silica particles such as inflammatory responses [23]. These results also suggest that acute phase proteins could be a promising candidate biomarker for predicting the strength of toxicity induced by silica nanoparticles, although it is need to examine the toxic biological effects of silica nanoparticles with functional groups. Over recent years, nanomaterials have been introduced into our everyday lives. For example, silica particles, titanium dioxide and fullerenes of various crystallographic structures and surface functional groups are used in a range of different consumer products. Therefore, we are now trying to evaluate the response of acute phase proteins to exposure from various nanomaterials. In general, acute phase proteins are known to be released from the liver mainly as a result of inflammatory cytokines such as interleukin (IL)-6 [19]. However, we confirmed that the levels of IL-6 were not elevated in the plasma of mice treated with silica particles at 24 h after treatment (data not shown). Therefore it is unclear why nanomaterials induce the production of acute phase proteins. We already showed that although silica particles with micrometer size tend to be taken up by Kupffer cells, silica nanoparticles with small particle sizes distribute around hepatic parenchymal cells (unpublished data). It is conceivable that instead of inflammatory cytokines, small silica particles act directly on the liver to induce the release of acute phase proteins. We are currently analyzing the detailed mechanism by which silica particles induce acute phase proteins in order to identify additional protein biomarkers. ## 5. Conclusions We show here that acute phase proteins such as haptoglobin, CRP and SAA can act as useful biomarkers for analyzing the risk of exposure to nanomaterials and their associated toxicity. We believe that such information would be vital for the future development of predictive tests for estimation of the potential toxicity of new nanomaterials based on their physiochemical characteristics. ## Acknowledgements This study was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and from the Japan Society for the Promotion of Science (JSPS). This study was also supported in part by Health Labour Sciences Research Grants from the Ministry of Health, Labor and Welfare of Japan; by Health Sciences Research Grants for Research on Publicly Essential Drugs and Medical Devices from the Japan Health Sciences Foundation; by a Global Environment Research Fund from Minister of the Environment; and by a the Knowledge Cluster Initiative; and by The Nagai Foundation Tokyo; and by The Cosmetology Research Foundation; and by The Smoking Research Foundation. ## References - [1] Rutherglen C, Burke P. Nanoelectromagnetics: circuit and electromagnetic - properties of carbon nanotubes. Small 2009;5:884–906. [2] Kaur IP, Agrawal R. Nanotechnology: a new paradigm in cosmeceuticals. Recent Pat Drug Deliv Formul 2007;1:171–82. - [3] Cormode DP, Jarzyna PA, Mulder WJ, Fayad ZA. Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev 2010;62:329—38. - [4] Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311:622-7. - [5] Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part - Shvedova AA, Kagan VE, Fadeel B. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu Rev Pharmacol Toxicol 2010;50:63-88. - Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008;3:423-8. - [8] Morishige T, Yoshioka Y, Tanabe A, Yao X, Tsunoda S, Tsutsumi Y, et al. Titanium dioxide induces different levels of IL-1beta production dependent on its particle characteristics through caspase-1 activation mediated by reactive oxygen species and cathepsin B. Biochem Biophys Res Commun 2010; 392:160-5 - [9] Hougaard KS, Jackson P, Jensen KA, Sloth JJ, Loschner K, Larsen EH, et al. Effects prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Part Fibre Toxicol 2010;7:16. - [10] Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K. Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm 2009;72:496-501. - [11] Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K. Histological analysis of 70-nm silica particles-induced chronic toxicity in mice. Eur J Pharm Biopharm 2009;72:626-9. - [12] Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K. Influence of 70 nm silica particles in mice with cisplatin or paraquat-induced toxicity. Pharmazie 2009:64:395-7 - [13] Casado B, Iadarola P, Luisetti M, Kussmann M. Proteomics-based diagnosis of chronic obstructive pulmonary disease: the hunt for new markers. Expert Rev Proteomics 2008;5:693-704. - [14] Ferte C, Andre F, Soria JC. Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol; 2010 Jun 15 [Epub ahead of printl. - [15] Vaidya VS, Ozer JS, Dieterle F, Collings FB, Ramirez V, Troth S, et al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 2010:28:478-85. - [16] Ozer JS, Dieterle F, Troth S, Perentes E, Cordier A, Verdes P, et al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol 2010:28:486-94. - [17] Villota R, Hawkes JG. Food applications and the toxicological and nutritional implications of amorphous silicon dioxide. Crit Rev Food Sci Nutr 1986;23:289-321. - [18] Merget R, Bauer T, Kupper HU, Philippou S, Bauer HD, Breitstadt R, et al. Health hazards due to the inhalation of amorphous silica. Arch Toxicol 2002:75:625-34. - [19] Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999;340:448-54. [20] He X, Nie H, Wang K, Tan W, Wu X, Zhang P, In vivo study of biodistribution - and urinary excretion of surface-modified silica nanoparticles. Anal Chem 2008;80;9597-603. - [21] Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Arimori A, Isobe M, et al. Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells. Pharmazie 2010;65:199–201. - [22] Yarnashita K, Yoshioka Y, Higashisaka K, Morishita Y, Yoshida T, Fujimura M, et al. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 2010;33:276–80. - [23] Morishige T, Yoshioka Y, Inakura H, Tanabe A, Yao X, Narimatsu S, et al. The effect of surface modification of amorphous silica particles on NLRP3 - inflammasome mediated IL-1beta production, ROS production and endosomal - rupture. Biomaterials; 2010 Jun 17 [Epub ahead of print]. Baumann H, Gauldie J. The acute phase response. Immunol Today - Kushner I. The phenomenon of the acute phase response, Ann N Y Acad Sci 1982;389:39-48. - [26] Firpo MA, Gay DZ, Granger SR, Scaife CL, DiSario JA, Boucher KM, et al. Improved diagnosis of pancreatic adenocarcinoma using haptoglobin and serum amyloid A in a panel screen. World J Surg 2009;33:716–22. - [27] Korantzopoulos P, Kalantzi K, Siogas K, Goudevenos JA. Long-term prognostic value of baseline C-reactive protein in predicting recurrence of atrial fibrillation after electrical cardioversion. Pacing Clin Electrophysiol 2008;31: 1272 - 6. - [28] Szalai AJ, McCrory MA. Varied biologic functions of C-reactive protein: lessons learned from transgenic mice. Immunol Res 2002;26:279-87. [29] Pierce BL, Neuhouser ML, Wener MH, Bernstein L, Baumgartner RN, Ballard- - Barbash R, et al. Correlates of circulating C-reactive protein and serum amyloid A concentrations in breast cancer survivors. Breast Cancer Res Treat 2009;114:155-67. - [30] Mauderly JL, Chow JC. Health effects of organic aerosols. Inhal Toxicol 2008;20:257-88. - [31] Ruckerl R, Ibald-Mulli A, Koenig W, Schneider A, Woelke G, Cyrys J, et al. Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am J Respir Crit Care Med 2006;173:432–41. - Albert MA, Ridker PM. The role of C-reactive protein in cardiovascular disease risk. Curr Cardiol Rep 1999;1:99-104. - Siemes C, Visser LE, Coebergh JW, Splinter TA, Witteman JC, Uitterlinden AG, et al. C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol 2006;24:5216-22.