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The KAshinhou Tool for Ecotoxicity (KATE) system, including ecotoxicity
quantitative structure-activity relationship (QSAR) models, was developed by the
Japanese National Institute for Environmental Studies (NIES) using the database
of aquatic toxicity results gathered by the Japanese Ministry of the Environment
and the US EPA fathead minnow database. In this system chemicals can be
entered according to their one-dimensional structures and classified by substruc-
ture. The QSAR equations for predicting the toxicity of a chemical compound
assume a linear correlation between its log P value and its aquatic toxicity. KATE
uses a structural domain called C-judgement, defined by the substructures of
specified functional groups in the QSAR models. Internal validation by the leave-
one-out method confirms that the QSAR equations, with r*>0.7, RMSE <0.5,
and n>S5, give acceptable cf values. Such external validation indicates that a
group of chemicals with an in-domain of KATE C-judgements exhibits a lower
root mean square error (RMSE). These findings demonstrate that the KATE
system has the potential to enable chemicals to be categorised as potential
hazards.

Keywords: QSAR; ecotoxicity prediction; classification; chemical substances;
domain; KATE

1. Introduction

Quantitative structure-activity relationships (QSARs) are potential tools for predicting the
activity and properties of chemicals, including their physicochemical attributes, health
effects, ecotoxicity and biological activity. QSAR models can estimate and predict such
activity and can thus be used to categorise chemicals in terms of their potentially
hazardous nature. A recent review has demonstrated that acute aquatic toxicity [1] can be
predicted using QSAR and describes the available databases of ecotoxicity data.
Prediction of toxicity by QSAR does not require lengthy experiments, nor the use of
animals, plants or cells. QSAR models have therefore been utilised for the assessment of
new and existing chemicals for conformity with regulatory requirements in countries
within the Organisation for Economic Co-operation and Development (OECD) [2]. In
Japan, under the Chemical Substances Control Law (CSCL), the Ministry of the
Environment (MoE) is responsible for evaluating the adverse effects of chemicals on
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ecosystems, and uses tests involving aquatic organisms such as Oryzias latipes (fishes) or
Daphnia magna (daphnia), in addition to algae data available from the MoE website [3].
The Japanese National Institute for Environmental Studies (NIES) was established to
apply QSAR models to acute ecotoxicity, and has developed a QSAR prediction system
using the MoE ecotoxicity database. This system, published in March 2009, is known
as the KAshinhou Tool for Ecotoxicity (KATE) {4].

The present paper focuses on the theoretical and methodological aspects of the KATE
system, and QSAR equations classified by chemical substructure are introduced. We shall
then present the cross-validation (‘leave-one-out’) results, and the toxicities calculated by
KATE, and by alternative systems such as TIssue MEtabolism Simulator (TIMES) [5,6]
(developed by Zlatarov at the Laboratory of Mathematical Chemistry, Bourgas
University, Bulgaria), and by ECOSAR™ [7] (developed by the US Environmental
Protection Agency (EPA)) using the same end-point data set as that in KATE. The validity
of KATE will be discussed using the applicability domain, log P, and C-judgements.

2. Overview of KATE
2.1 End-point

KATE uses experimental data on chemical substances to predict aquatic toxicity. The
end-points of interest are the 96-hour median lethal concentration (LCsp) in fish after
acute toxicity tests, and the 48-hour median effective concentration (ECs) in daphnia
obtained after acute immobilisation tests. Training sets for QSAR development were
derived from the results of ecotoxicity tests (Oryzias latipes LCs, and Daphnia magna
ECs) obtained by the MoE [3], as well as the results of acute toxicity tests from the US
EPA fathead minnow (Pimephales promelas) database [8,9]. In the KATE system, the
96-hour LCs, data for Oryzias latipes and fathead minnow were combined to reinforce the
number of reference datasets. The QSAR equations in KATE for the fish and daphnia
end-points were designed using 535 and 258 chemicals, respectively.

2.2 Classification of chemicals

Chemical substances can be classified according to the substructures that give rise to
specific chemical properties (Appendix 1 of the supplementary material which is available
on the Supplementary Content tab of the article’s online page at http://dx.doi.org/10.1080/
1062936X.2010.501815). The rules for daphnia and fish end-points are identical, except for
the following five classes: amines aromatic or phenolsl, amines aromatic or phenols3, amines
aromatic or phenols4, amines aromatic or phenols5, and primary amines. According to
KATE, the toxicity of a chemical containing amino functional groups might be different in
daphnia from its toxic behaviour in fish.

Forty-four classes are proposed for each end-point of KATE QSAR models. Table 1
shows the QSAR class name, and the detailed class features are listed in Appendix 2 of the
supplementary material (available online). The chemicals in the KATE unclassified class
were not categorised within any of the rules in Appendix 2. Additional classification rules
or fragment definitions are required in further studies to reduce the number of chemicals
described as unclassified. It should be noted that the concept of unclassified within KATE
does not always include reactive chemicals, and thus differs from the reactive unspecified
category in the TIMES software.
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Table 1. QSARs for fish acute toxicity estimated by the equation: log{l/LCs)[mM]}) =a x log P+ b.

Class name a, b n  RMSE rog log P range  *!
Hydrocarbons aromatic 0.630, —0.883 43 0368 0.826,0.803 [0.60, 5.17]
Dinitrobenzenes 0.568, 0.551 12 0.669 0.331,0.170  [0.56, 3.60]
Nitrobenzenes 0.678, —0.693 9 0300 0.875,0.760 [0.82, 5.10]
Amines aromatic or phenolsl —0.005, 2.671 7 0.354 0.001, 0.887 [—0.30, 4.47]
Amines aromatic or phenols2 0.012, 1.863 7 0307 0.003,0.737 [3.67,847] C
Amines aromatic or phenols3 0.214, 0.945 16 0305 0.272,0.106 [0.15, 3.68]
Amines aromatic or phenols4 0.725, —-0.779 56 0321  0.900, 0.89¢  [0.51, 7.54]
Amines aromatic or phenols5 0.544, --0.612 22 0.324 0.661, 0.600  [0.35, 3.50]
Primary amines 0.529, —0.622 23 0406 0.803,0.741 [-2.04, 3.60]
Secondary and tertiary amines 0.592, -0.595 10 0512  0.731,0.605 [-1.43,2.79] C
Hydrazines 0.417, 1.832 4 0413 0.884, 0.639 [—1.68, 4.70] .
Amides and imides 0.746, —1.026 17 0.601 0.696, 0.607 [-0.48, 3.80]
Esters aliphatic 0.638, —-0.600 13  0.393  0.722,0.651  [0.18, 3.65]
Esters aromatic 0.513, -0.157 9 0.253  0.856,0.790  [1.94, 5.53]
Aldehydes 0.484, 0.279 15 0557 0.272,0.111 [-0.34, 2.47]
Acids 0.728, —-1.652 9 0.355 0.816, 0.667 [0.33, 4.20}
Acids acrylic 0.122, 0.045 3 0039 . 0.607,0271 [0.35, 1.33]
Conjugated systems| 0.753, 2.084 4 1.012 04630111 [-1.11,2.20]
Conjugated systems2 0.436, 0.901 17 1.007 0.264,0.066 [—0.38, 4.10]
Thiols aromatic NO-QSAR

Thiols aliphatic 0.371, 0.732 4 0291 0.910,0.633 [-0.17,6.12] C
Sulfides 0.753, -1.336 8 0.259 0.699,0.573 [2.46,4.16] C
Disulfides 0.386, 0.845 6 0.666 0.210,0.012 [1.74,444] C
Carbamates 0.004, 1.894 11 0.519 0.000, 0.645 [—0.47, 4.60]
Pyrethroids NO-QSAR

Acrylates 0.158, 1.498 6 0.155 0.474,0.022 [-0.21, 2.36]
Methacrylates 0.465, -0.031 6 0417 0.657,0.293 [0.47, 4.54]
Epoxides 0.323, 1.055 4 0272 07550283 [0.08,398] C
Barbitals or thiols other 1.583, —=2.560 4 0.291  0.657,0.927 [1.47, 2.10]
Esters phosphate 0.691, —-0.111 11  0.856 0.389,0.175  [2.23, 5.33]

N or P cations 0.274, 0.956 9 0579 0.791,0.628 [-8.36,6.69] C
Halides! 0.254, 1.325 6 0971 0.112,0078 [0.45, 4.50]
Halides2 0.824, -0.318 8 0.560 0.879, 0.810 [-0.06, 5.04]
Halides3 0.783, -1.291 42 0.263  0.879, 0.868  [1.25, 4.89]
Metals NO-QSAR

Nitriles aliphatic 0.839, —-1.154 6 0.254 0.938,0.901 [-0.34,3.12] N
Ketones 0.864, —1.602 21 0345 0.891,0.867 [-0.24,4.09] N
Alcohols or ethers aliphatic 0.853, —1.958 23 0.321 0.9350,0924 [-0.77,5.82] N
Phosphates 0.891, —1.926 3 0257 0.865,0485 [2.83,459] N
Hydrocarbons aliphatic 0.753, —1.286 15 0.289 0.824,0.785 {242,556} N
Ethers aliphatic 0.749, —1.806 11 0.190 0.972,0.962 [-0.54,425] N
E'thers aromatic 0.870, —1.466 10 0.233  0.922,0.892 [1.16,421] N
Neutral organics 0.842, —1.674 88 0.384 0.924,0919 [-0.77, 5.82]
Unclassified 0.744, —0.898 25 0.714 0.712,0.660 [~1.35, 5.50)

*! C: an equation is generated by calculated Clog P. N: a member of the Neutral organics class.

Note: n, RMSE, r*and q"' denote the number of chemicals in a class, the root mean square error, the
squared correlation coefficient, and the leave-one-out version of the squared correlation coefficient,
respectively. The log P range shows minimum and maximum log P values.
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2.3 Neutral organics

Neutral organics is an aggregate of the chemicals in defined classes in the KATE system.
It comprises the classes: nitriles aliphatic, ketones, alcohols or ethers aliphatic, phosphates,
hydrocarbons aliphatic, ethers aliphatic and ethers aromatic. In the OECD Environment
Monograph [10], reutral organic compounds of minimal toxicity were divided into the
groups: aliphatic alcohols, aliphatic ketones, aliphatic ethers and alkoxyethers, aliphatic
halogenated hydrocarbons, saturated alkanes and halogenated benzenes. Some of the neutral
organics compounds defined in the OECD monograph were categorised differently from
those in KATE.

2.4 OSAR equations

The QSAR equations in the KATE model express the correlation between the
octanol/water partition coefficient (log P) of a compound and its aquatic toxicity, using
simple linear regression analysis. Measured log P values were used to derive the QSAR
equations, except for the equations labelled C in Tables 1 and 2. In cases where
experimental log P values were not available, an equation was constructed from the
calculated Clog P value obtained by the Daylight toolkit [11]. The LCsp and ECs, values in
the equation were expressed in terms of the common logarithm of the inverse of millimoles
per litre (mmol L~!, or mM). The equations and the statistical information obtained are
shown in Tables 1 and 2. Where there were fewer than three sets of reference data within
one class, QSAR prediction could not be performed. In such cases the class name was the
only information obtained from KATE, and the label NO-QSAR is indicated in Tables 1
and 2. The equation for a class named pyrethroids was not constructed, since the log P
values in the reference data were gathered in higher ranges [6.1, 6.5].

2.5 Domains in KATE

KATE offers two ‘judgements’ to verify whether or not a predicted chemical substance
falls within the applicability domain of a QSAR class. The first is the log P judgement,
based on the log P range defined by the reference chemical data of the class concerned.
This has been categorised as a descriptor domain [12,13]. The interpolated log P range for
each class is listed in Tables 1 and 2. ‘

The second is the C-judgement, which is categorised as a structural domain and is
defined by the substructures shown in Appendix 3 of the supplementary material
(available onmline). The substructures are based on functional groups having similar
concepts to those used by Schultz et al. [13], rather than on atom-centred fragments
{12,14]. Schultz et al. applied the structural domain to one QSAR equation for aromatic
compounds, and the out-of-domain revealed well-known electrophoric mechanisms in the
structural space(s) [13]. In the KATE system the classification rules (described in Section
2.2) play a role in constructing such structural space(s). The definition of the applicability
domain of C-judgement depends on whether all the substructures of the chemical under
test are found in reference chemicals in the class, or secondly, whether all substructures in
the test chemical are present in reference chemicals in either neutral organics or the class
concerned. The first of these definitions is stricter than the second. The reliability of the
log P and C-judgements is assessed later in Section 4 (Results and discussion).
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Table 2. QSARs for the daphnia acute toxicity estimated by the equation: log(1/ECsmM] =a =

log P+ b.

Class name a b n RMSE rog log P range  *'
Hydrocarbons aromatic 0.607, —-0.414 26 0.351 0.808,0.762 [0.65, 5.17]
Dinitrobenzenes 0.408, 0.632 5 0561 0.343,0.090 [0.56, 3.60]
Nitrobenzenes 0.547, -0.164 4 0.238 0.915,0.675 [l.17, 5.10]
Amines aromatic or phenolsl 0.085, 2.441 7 0443  0.057,0.375 [—0.33, 3.41]
Amines aromatic or phenols2 0.097, 1.152 6 0277 0.239, 0.031 [3.67,847] C
Amines aromatic or phenols3 0.132, 1.748 16 0.406 0.119, 0.018 [0.04, 3.91]
Amines aromatic or phenols4 0.576, —0.042 - 28  0.297 0.838,0.814 [1.32, 6.06]
Amines aromatic or phenols5 0.552, 0.114 12 0260 0.802,0.728 [1.18, 3.91]
Primary amines 0.189, —0.059 4 0.248  0.390, 0.095 [—1.31, 1.49]
Secondary and tertiary amines 0.133, 0.200 4 0150 0.517,0.040 [-1.50, 1.45]
Hydrazines 0.190, 1.987 5 0.289 0.766, 0.360 [-2.46,4.70] C
Amides and imides 0.212, 0.585 g8 0593 0.151,0.135 [0.23, 3.80]
Esters aliphatic 0.666, —0.819 6  0.324 0.927,0.762  [0.25, 5.41]
Esters aromatic 0459, —~0417 3 0.010 1.000,0.998 [1.60, 4.72]
Aldehydes 0.521, 0.295 5 0555 0.616,0.084 [042,447] C
Acids 0.222, -0.113 7 0.644 0.133,0.298  [0.08, 4.20]
Acids acrylic 0.057, 0.248 3 0.143 0.025,0.947 [0.35, 1.33]
Conjugated systems] 0.630, 1.393 5 0321 0957,0916 [-1.76,4.65] C
Conjugated systems2 0.213, 0.906 I 0.775  0.097,0.047 [0.17, 3.70]
Thiols aromatic NO-QSAR

Thiols aliphatic 0.427, 1.410 4 0786 0.647,0.049 [-0.17,6.12] C
Sulfides NO-QSAR

Disulfides 1.041, -0.724 3 0480 0.865,0.635 [1.74,444] C
Carbamates 0.046, 2.991 4 0.688 0.008,0.523 [0.94, 4.60]
Pyrethroids NO-QSAR

Acrylates 0.003, 1.401 4 0.069 0.002,0.646 [-0.21, 2.36]
Methacrylates 0.461,-0.422 5 0.301 0.824,0.653 [0.47, 4.54]
Epoxides 0.486, 0.589 4 0341 0.817,0.598 [0.08,398] C
Barbitals or thiols other NO-QSAR

Esters phosphate 2,133, -2376 3 1477 0.204,0.526  [3.08, 3.88]

N or P cations NO-QSAR

Halidesi —0.665, 4.825 3 0350 0.800, 0.998  [2.09, 4.50]
Halides2 0.880, —0.317 4  0.552 0.860,0.494 [1.10, 5.04]
Halides3 0.826, —1.008 24 0.237 0.901,0.883 [1.47, 4.73]
Metals NO-QSAR

Nitriles aliphatic NO-QSAR N
Ketones NO-QSAR | N
Alcohols or ethers aliphatic 0.641, —1.053 6 0214 0.958,0.923 [1.10,582] N
Phosphates 0.579, —0.634 3 0.103 0.983,0922 {144,459 N
Hydrocarbons aliphatic 0.660, —0.555 10 0.268 0.891,0.797 [2.42,6.54] N
Ethers aliphatic NO-QSAR N
-Ethers aromatic 0.492, 0.285 4 0437 0406,0.088 [2.16,4.21] N
Neutral organics 0.696, —0.870 26 0.418 0.857,0.835 [0.68, 6.54]
Unclassified 0.537, 0.078 12 1.097 0475, 0.287 [-1.02, 5.50]

*! C: an equation is generated by the calculated Clog P. N: a member of the Neutral organics class.
Note. n, RMSE, r*, and ¢* denote the number of chemicals in a class, the root mean square error, the
squarecl correlatlon coefficient, and the leave-one-out version of the squared correlation coefficient,
respectively. The log P range shows minimum and maximum log P values.
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2.6 KATE system software

The KATE software was first made available to the public in January 2008. An updated
version of KATE, including standalone personal computer and internet versions, was
released in March 2009. The standalone version, called ‘KATE on PAS’, and the internet
version, called ‘KATE on NET’, adopted the KOWWIN™ [15] of the US EPA, and
Clog P [11] estimated by the Daylight system, respectively, to estimate the calculated log P.
Except for the treatment of calculated log P values, KATE on PAS and KATE on NET
use the same classification algorithm, fragment identification by tree structure (FITS),
developed by Yoshioka.

In the KATE system, the input is simplified molecular input line entry specification
(SMILES) and log P, (if available) for toxicity prediction, and the output is the calculated
toxicity concentration (LCsy or ECsp), the QSAR class found for the predicted chemical,
and the domain judgements. If the measured log P of a chemical is not available, the
calculated log P according to the SMILES information (KOWWIN or C log P) is adopted.

3. Methods of QSAR validation

First, leave-one-out cross validations were examined for training sets used in the QSAR
equations of KATE. Secondly, external validations were performed using test set
compounds not included in the KATE training sets due to lack of measured log P values.
The 287 fish 96-hour LCs, and 98 daphnia 48-hour ECs, from the Japan MoE, along with
the US EPA fathead minnow database, were used for comparison of the calculated toxicity
by the KATE software version published in March 2009, TIMES v. 2.25, and ECOSAR
v. 0.99h (1999).

It is worth mentioning that the end-points of the data calculated by KATE were not
identical to those calculated by TIMES and ECOSAR. Fish (mixed with Oryzias latipes
and fathead minnow acute toxicity tests) 96-hour LCsy and daphnia 48-hour ECs
(KATE), Pimephales promelas 96-hour LCs, and daphnia 48-hour ECs (TIMES), and fish
96-hour LCs, and daphnia 48-hour LCsy (ECOSAR) were therefore adopted. The input of
KATE and ECOSAR were SMILES strings, and calculated log? by KOWWIN. In
TIMES, only the lists of SMILES strings were used as input values, and quantum chemical
calculations were performed using MOPAC AM1 Hamiltonian, using the ‘precise’ option,
without taking other conformers into account.

4. Results and discussion
4.1 Cross validation

The QSAR equations were validated by the leave-one-out method obtained from the
KATE system. The complete list of results is given in Appendix 4 of the supplementary
material (available online). The statistical data are displayed in Tables 1 and 2. The
criterion proposed by Hulzebos and Posthumus [16] was evaluated, in which the
estimations from models should not deviate from the experimental value by a factor of 10
or above. For fish, 575 of the 628 chemicals met the acceptable criteria, and for daphnia
241 of 290 did so. (In this instance the 628 and 290 chemicals involved some degree of
duplication.) Using the QSAR equations in the KATE system, more than 80% of
chemicals were predicted within a factor of 10. The classes with less than a 0.7 squared
correlation coefficient (r*<0.7), and/or more than 0.5 RMSE, tended to increase the
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Daphnia

[J Amines aromatic or phenol4
X Amines aromatic or phenol5
A Neutral organics

Measured log (1/EC50 [mM])

-2 0 2 4 6 8
log P

Figure 1. The correlation between log P and the measured toxicity values of chemicals used in
KATE as a daphnia end-point. The dotted-dashed, dashed and bold lines are the QSAR equations
of amines aromatic or phenols4, amines aromatic or phenols5, and neutral organics, respectively.

number of chemical substances in the wunacceptable group. For example, the fish
hydrocarbons aromatic class had 43 reference data, r*=0.826, RMSE =0.368, and only
one unacceptable chemical. In other words, 98% of the chemicals were classed as
acceptable On the other hand, the fish dinitrobenzene class contained 12 reference data,
r*=0.331, RMSE=0.669, and three unacceptable chemicals. In this case, 75% of the
chemicals were thus acceptable.

As shown in Tables 1 and 2, each of the classes with r*>0.7, RMSE < 0.5, and n> 5,
e.g., the fish hydrocarbon aromatic class, had a sufficiently high ¢*. Such classes showed
QSAR equations similar to those of neutral organics. Thus the toxicity of such classes
could be explained mainly by the narcotic effect of the chemicals. However, the daphnia
amines aromatic or phenols4 and amines aromatic or phenols5 groups had a larger intercept
b in the QSAR equations than neutral organics with a small log P value (see Figure 1).
These classes can be explained in terms of polar narcosis or narcosis II [17]. Narcosis IT
is known to be more toxic than baseline toxicity, i.e., than neutral organics, non-polar
narcosis, narcosis I, or less inert, as explained by Verhaar et al. [18]

In some cases the ¢* values were much smaller than those of r2. QSAR equations based
on fewer than six reference data require a greater number of reference chemicals.

4.2 External validation

Tables 3 and 4 list the statistical data of the TIMES, ECOSAR, and KATE with or
without the applicability domains. The complete results are given in Appendix 5 of the
supplementary material. First, we will focus on the TIMES, ECOSAR, and all the KATE
results, without considering any apphcablllty domains. In fish, the determination
coefficient, r*, and RMSE using KATE (+*=0. 868 and RMSE =0.658) were larger and
smaller, respectlve]y, than those using TIMES (+*=0.751 and RMSE = 0. 935) and than by
ECOSAR (r*=0.790 and RMSE =0. 869). For daphnia, RMSE using KATE (0.993) was
smaller than that using TIMES (1.404) and ECOSAR (1.364). However, r~ using KATE
(0.662) showed no noticeable advantage over that by TIMES (0.668) or ECOSAR (0.699).
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Table 3. Statistical information comparing measured and calculated fish log(1/LCse[mM]) of 287
test set compounds. The complete results are shown in Appendix 5-1.

KATE™

] s , . ] log P** IogP*‘:,
TIMES® ECOSAR®™ Al log P* C(1)*> «¢€(2)* c(1)* C(2)*

Chemicals”” 274 242 274 207 152 192 111 144
Predicted*® 274 259 318 252 187 233 145 179

r 0.751 0.790 0.868  0.833 0901  0.890  0.886  0.866
RMSE 0.935 0.869 0.685  0.641 0644  0.655 0.588  0.617
Under™ [%] 113 10.0 4.7 5.2 5.3 5.6 2.8 3.9
Over*!? [%] 5.1 8.1 7.2 6.7 8.0 6.9 8.3 7.3
Notes:

*'Each chemical is identified by one QSAR class.

“>When a chemical is found to belong to moresthan one QSAR class, all the estimated data are
adopted. If only the name of the class is available, such data are omitted.

*3Both in-domain and out-of-domain data for log P and C-judgements are included.

**In-domain of log P-judgement.

*SIn-domain of C-judgement is defined as all substructures of a test chemical being found in
reference chemicals in the class. :

*5In-domain of C-judgement defined as all substructures of a test chemical being in reference
chemicals in either Neutral organics or the class.

*"The number of compounds that can be predicted.

*$The total number of the predicted values by using the training sets. Some chemicals belong to more
than one class, and thus Predicted is larger than Chemicals. 72, RMSE, Under and Over were
calculated based on the Predicted number.

*Fractions (%) of the underestimated chemicals. Underestimation is defined as [calculated
log(l /LCsy) — measured log(1/LCsp)] <—1.

*0Fractions (%) of the overestimated chemicals. Overestimation is defined as [calculated
log(1/LCsy) — measured log(1/LCsp)]> 1.

Table 4. Statistical information between measured and calculated Daphnia log(1/ECss[mM]) for 98
test set compounds. The complete results are shown in Appendix 5-2.

KATE*™

TIMES*' ECOSAR™® dll® log P** C(1)*> C(2)*® log P**C(1)** log P**C(2)*¢

Chemicals” 93 82 94 58 43 55 25 33
Predicted”® 93 85 102 66 46 61 31 39
r 0.668 0.699 0.662 0.732 0.793 0.686 0.807 0.801
RMSE 1.404 1.364 0.993 0.784 0.799 0.968 0.639 0.689
Under™ [%] 21.5 14.1 98 15 65 8.2 0.0 0.0
Over*'®[%] 11.8 18.8 147 152 65 115 6.5 10.3

Notes: As in Table 3.

Since reference data for the daphnia end-point (258 chemicals) numbered only half of
those for fish (535 chemicals), the reference data for each QSAR equation for daphnia
would therefore be less satisfactory for predicting toxicity. The addition of reference data
and a change in the classification rules can recover the values of the statistical data.
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A fraction of log(1/LCsy) with an underestimation of less than —1 indicated that,
compared with KATE, TIMES and ECOSAR tended to underestimate the toxicities of
both fish and daphnia. On the other hand, a fraction of log(1/LCs) showing an
overestimation of more than 1 indicated that, compared with TIMES, ECOSAR and
KATE tended to overestimate toxicity in both fish and daphnia. Considering these under-
and over-estimation fractions, we find that KATE gives a higher predictive ability in acute
Oryrzias latipes and Daphnia magna toxicity tests than does TIMES or ECOSAR. If the
alert: Out of domain, in TIMES, and the applicable log P range in ECOSAR are considered
rigidly, the correlation between measured and calculated toxicity is improved in TIMES
and ECOSAR.

Secondly, in fish, the RMSE of one of any in-domains was smaller than if domains
were not considered. However, the r° in-domain of logP showed no particular
improvement. For daphnia, r* and RMSE for one of any in-domains were larger and
smaller, respectively, than those without considering domains. In the present study, either
the descriptor and/or structural domains were related to the reduction of RMSE and the
fraction of underestimated chemicals, especially if both domains were considered
simultaneously. Additionally, the stricter structural domain C(1) (shown in Tables 3
and 4) demonstrated better predictive performance than the structural domain C(2). The
systematic study of the domain based on the atom-centred fragment (ACF) approach by
Kuhne et al. [14] showed that the ACF varied with respect to its size in terms of the path
length, and the ACF match mode was specified in terms of degree of strictness. They also
demonstrated a clear relationship between predictive performance and the levels of the
ACF definition and match mode [14]. Even though the definition of substructures for
the domain are different, the improvement by using C-judgement is similar in concept to
that using the ACF approach. Thus, the log P range of the equation and C-judgement are
useful for assessing the applicability of the QSAR results.

5. Summary

We have reported on the KATE system, encompassing a full list of classifications of the
QSAR equations and KATE validations. In the KATE system chemicals are classified by
their substructure. The QSAR equations express the correlation between log P and
log(1/LCsy) or log(1/ECsp) of a chemical by simple linear regression analyses. The classes
of QSAR equations are characterised by fragments of chemicals, except for the neutral
organics class. The descriptor and structure domains, log P and C-judgements, in KATE
were also introduced.

The cross-validation of the KATE system showed that QSAR equations with higher r*
and lower RMSE with n>5 gave a reliably higher ¢> than the other QSAR equations in
KATE, meaning they had better predictive ability. A comparison of KATE, TIMES, and
ECOSAR revealed that KATE was more accurate, due to end-point dependence. The use
of log P and the C-judgement improved the statistical data. Thus the KATE system is a
powerful tool for predicting acute toxicity in Oryzias latipes and Daphnia magna when the
log P and C-judgement can be confirmed. Also, KATE has the potential to be useful in
risk assessment.

The next topics in QSAR development will be to consider the reactivity of chemicals,
and to include multi-regression analysis. The quantum chemical parameters, such as
partial charges, are candidates for additional descriptors. Other ways of significantly
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increasing the reliability of toxicity prediction will be to improve the classification of the
substructures, increase the reference data in a QSAR equation, and to refine the
C-judgement.
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ABSTRACT

Inhalation rate is an essential factor for determining the
inhaled dose of air pollutants. Here, accelerometers were
used to develop regression equations for predicting the
minute ventilation rate (VE) to estimate the daily inhala-
tion rate in young children. Body acceleration and heart
rate were measured in 29 Japanese preschool children
(6 yr of age) during nine different levels of activities (lying
down, sitting, standing, playing with plastic bricks, walk-
ing, building with blocks, climbing stairs, ball tossing,
and running) using the Actical omnidirectional acceler-
ometer, the ActivTracer triaxial accelerometer, and a heart
rate monitor. Measurements were calibrated against the
V; measured by the Douglas bag method. ActivTracer
accelerometer measurements gave a strong correlation
with VE (Pearson’s r = 0.913), which was marginally

IMPLICATIONS

Respiratory ventilation rate is an essential factor for assess-
ing the health risk from air pollutants because it allows the
dose of air pollutants delivered to the respiratory system to
be determined. When establishing standards or criteria re-
lated to the management of health risks from hazardous
environmental pollutants, the particular vulnerability of
young -children to environmental pollutants and their pat-
tern of exposure should be considered. However, there are
limited data on the respiratory ventilation rate of young
children in daily life. To help address this problem, accel-
erometers were used to develop regression equations for
predicting the Vg to estimate the daily inhalation rate in
young children.
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stronger than that for the Actical counts (r = 0.886) and
comparable to the correlation between heart rate and
logarithmic V (r = 0.909). According to the linear regres-
sion equation, the V; for lying down, sitting, standing,
playing with plastic bricks, walking, and running was
overestimated by 14-60% by the Actical and by 14-37%
by the ActiVTracer. By comparison, for building with
blocks, climbing stairs, and ball tossing, the V; was un-
derestimated by 19-23% by the Actical and by 13-18% by
the ActivTracer. When these three activities were ex-
cluded, a stronger correlation was found between the VE
and ActivTracer measurements (r = 0.949); this correla-
tion was 0.761 for the three excluded activities. Discrimi-
nant analysis showed that the ratio between vertical and
horizontal acceleration obtained by the ActivTracer could
discriminate walking from building with blocks, climbing
stairs, and ball tossing with a sensitivity of 75%. The error
in estimating V, was considerably improved for the
ActivTracer measurements by the use of two regression
equations developed for each type of activity.

INTRODUCTION

Respiratory ventilation rate is an essential factor for de-
termining the daily inhaled dose of air pollutants, which
is important information for the establishment of health
criteria or guideline values for air quality. In recent years,
the particular vulnerability of children to environmental
pollutants and age-related differences in exposure have
become a concern in health risk assessment and manage-
ment.1-3 [n Japan, an inhalation rate of 15 m® - day™! for
a 50-kg adult is commonly used to estimate the daily
inhaled dose of air pollutants.# However, no standard
inhalation rate value has been established for children. To
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