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the potential consequences of the strategic behavior of the negotiating agents in the models
they propose. Analyzing the dynamics of the negotiation process when agents with differ-
ent strategies interact is necessary to apply these models to real, competitive environments.
Specially problematic are high price of anarchy situations, which imply that individual ratio-
nality drives the agents towards strategies which yield low individual and social welfares. In
scenarios involving highly uncorrelated utility spaces, “low social welfare” usually means
that the negotiations fail, and therefore high price of anarchy situations should be avoided
in the negotiation mechanisms. In our previous work, we proposed an auction-based nego-
tiation model designed for negotiations about complex contracts when highly uncorrelated,
constraint-based utility spaces are involved. This paper performs a strategy analysis of this
model, revealing that the approach raises stability concerns, leading to situations with a high
(or even infinite) price of anarchy. In addition, a set of techniques to solve this problem
are proposed, and an experimental evaluation is performed to validate the adequacy of the
proposed approaches to improve the strategic stability of the negotiation process. Finally,
incentive-compatibility of the model is studied.

Keywords Automated multi-issue negotiation - Complex utility spaces - Strategy analysis

1 Introduction

Automated negotiation provides an important mechanism to reach agreements among dis-
tributed decision makers [4,42,43,71]. It has been extensively studied from the perspective
of e-commerce [23,25,49,76], though it can be seen from a more general perspective as
a paradigm to solve coordination and cooperation problems in complex systems [38,32],
providing a mechanism for autonomous agents to reach agreements on, e.g., task allocation,
resource sharing, or surplus division {15,37].

A variety of negotiation models have been proposed according to the many different
parameters which may characterize a negotiation scenario [6,43]. We briefly review the key
concepts about multi-attribute negotiation and the most relevant works in the field in Sect. 2.1.
In the last years, there has been an increasing interest in complex negotiations [39]. Complex-
ity of a negotiation scenario may depend on several factors, like the cardinality of the solution
space, the number of negotiating agents, the number of issues under negotiation, the degree
of interdependency between the issues, and structural properties of the preference landscape
of the different agents, like ruggedness, modality or correlation length [80]. Specially chal-
lenging are those scenarios involving high cardinality solution spaces, since they tend to
make exhaustive search in the solution space highly inefficient, and those involving highly
rugged or highly uncorrelated utility spaces, since traditional negotiation approaches (mostly
intended for linear or quasi-concave utility functions) cannot be applied to these scenarios.
We briefly discuss utility space complexity and the techniques used to measure it in Sect. 2.2.

We can find some successful research works in the literature addressing negotiation in
nonlinear utility spaces. [39] presented, as far as we are aware, the first negotiation protocol
specific for complex preference spaces, based on using simulated annealing to progressively
enhance an agreement between two agents. In [26], a different approach is taken, reducing
the complexity of the agent’s preference space by using approximations of the agents’ utility
functions where issue interdependency has been removed. [17] do not study the inherent
complexity of agent preference spaces, but the complexity introduced in a negotiation when
agent preferences change over time. We comprehensively review these and other related
works in Sect. 2.3.
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In our previous work [54], we proposed a mediated, auction-based protocol for nonlinear
utility spaces generated using weighted constraints, such as the ones we may encounter when
negotiating complex contracts with multiple, interdependent clauses [30]. We also proposed
a set of decision mechanisms to generate bids at the negotiating agents and to identify feasi-
ble deals at the mediator once the bids from the negotiating agents have been received [54].
We briefly summarize the approach in Sect. 3. Experiments showed that these approaches
achieve high effectiveness (measured as high optimality rates and low failure rates for the
negotiations) in moderately rugged utility spaces.

In [55], we extended this work to address highly-rugged utility spaces. We proposed the
use of a technique to balance utility and deal probability in the negotiation process, which
we called quality factor. This quality factor is used to bias bid generation and deal identi-
fication taking into account the agents’ attitudes (e.g. risk attitude, selfishness, willingness
to cooperate). From the mechanisms we proposed to take into account quality factor in the
negotiations, the most successful ones are detailed in Sect. 3.4. The experiments showed that
this balance between utility and deal probability greatly improves the effectiveness of the
negotiation in highly-rugged utility spaces.

However, the proposed approach draws several concerns. Though the quality factor is sup-
posed to be able to model agents’ attitudes, our previous experiments limited these attitudes
to a2 somewhat “cooperative” environment, where all agents have the same, neutral attitude.
In a real, competitive environment, we expect to have agents with different attitudes interact-
ing. This raises the problem of agent strategic behavior, which is introduced in Sect. 4. What
happens when risk averse agents interact with risk willing agents? Is there a an individually
optimal strategy? If so, does this individually optimal strategy lead to satisfying solutions,
or is the approach prone to situations where individual rationality lead to solutions of low
social value? Furthermore, since the complexity of the utility spaces of the agents may also
vary, it seems logical to think that agent strategies should vary accordingly. In this paper, we
intend to address these questions in the following ways:

—  We perform a strategy analysis of the auction-based protocol for constraint-based utility
spaces. This analysis allows us to determine the individually optimal strategy and the
socially optimal strategy for different utility space complexity levels. From the results of
the analysis we conclude that the auction-based protocol, as described in [55], has stabil-
ity problems, leading to situations resulting in high expected price of anarchy (Sect. 4).

—  We propose a set of mechanisms intended to improve protocol stability. These approaches
are based on decoupling the agent’s strategies from the deal identification process,
by applying different techniques on the mediator after the agents have sent their bids
(Sect. 5).

— We separately study a specific stability concern, incentive compatibility, related to the
possibility of agents manipulating the protocol by means of insincere revelation of infor-
mation (Sect. 6).

For each contribution, an experimental evaluation has been performed to validate our hypoth-
esis and evaluate its effect. The experimental settings are described in Sects. 4.2, 5.2, 6.2 and
6.3, along with the discussion of the results obtained. Finally, the last section summarizes
our conclusions and sheds light on some future research.

2 Complex negotiation scenarios

In the last years, there has been an increasing interest in complex negotiation scenarios,
where agents negotiate about multiple, interdependent issues [39]. These scenarios are spe-
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cially challenging, since issue interdependency yields nonlinear utility spaces, which make
classic negotiation approaches not applicable [30]. In this section we first briefly review exist-
ing research on multi-attribute negotiation and outline the key components of any negotiation
model. Then we discuss the most relevant works so far on the field of agent-based complex
automated negotiations. Finally, some of the issues raised by complex negotiation scenarios,
which are directly relevant to our research, are described.

2.1 Multi-attribute negotiation

Multi-attribute negotiation may be seen as an interaction between two or more agents with
the goal of reaching an agreement about a range of issues which usually involves solving
a conflict of interests between the agents. This kind of interaction has been widely studied
in different research areas, such as game theory [71], distributed artificial intelligence [13]
and economics [67]. Using a notation similar to that used in [71] and [88], we can formally
define a multi-attribute negotiation domain as a tuple

(X, D, Ag,U)

where

— X ={xili =1,...,n)}is afinite set of variables, called attributes or issues;

— D ={di =1,...,n}is a finite set of domains, such that each domain d; represents
the feasible values of the variable x;;

- Ag={l,...,m}is the set of negotiating agents, also assumed finite;

- U={U’|j =1,...,m)}, where U/ : D — R represents the preference structure or
utility for agent j.

Multi-attribute negotiation is seen as an important challenge for the multi-agent sys-
tem research community [43], and there is a great variety of negotiation models and pro-
tocols intended to address different parts of this challenge. These models may be classified
according to different criteria [6], such as their structure, the dynamics of the negotiation
process, or the different constraints (e.g. deadlines, information availability...). Accord-
ing to the theoretical foundations of the negotiation models, we can find approaches based
on game theory, heuristic approaches and argumentation-based approaches. Game theory
approaches aim to find optimal solutions analytically, analyzing equilibrium conditions {59].
These models are mathematically sound and elegant, but their pratical use in some nego-
tiation scenarios is somewhat restricted due to the assumptions usually made: unlimited
computation and memory resources, perfect rationality and complete information. In heu-
ristic approaches, however, these assumptions are relaxed, and participants attempt to find
an “approximately-optimal” under bound rationality using heuristic search and evaluation
methods [12-14,20,31,39,44,70]. In argumentation based negotiation, agents are given the
ability to reason their positions, including a meta-information level which allows them to use
promises, rewards, threats and other incentives [66].

Regardless of the theoretical approach involved, different authors agree that there are three
key components in a negotiation model [16,33,41]:

— An interaction protocol, which defines the rules of encounter among the negotiating
agents, including what kind of offer exchange is allowed and what kind of deals may be
reached and how they are established.

~ The preference sets of the different agents, which allow them to assess the different
solutions in terms of gain or utility and to compare them.
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— A set of decision mechanisms and strategies, which govern agents’ decision making,
allowing them to determine which shall be their next action for a given negotiation state.

2.1.1 Interaction protocols for negotiation

The most-widespread interaction protocol for negotiation is based on the exchange of offers
and counter offers, which are expressed as an assignation of values to the different attributes.
This kind of negotiation protocols are known as positional bargaining. In argumentation
based negotiation, however, this exchange of offers also includes meta-information, in order
to allow reasoning about the positions of the different agents. A particular protocol family for
multi-lateral negotiations are auction-based protocols, where negotiating agents send their
offers (also called bids) to a mediator, which then decides the winning deal [77]. Auction-
based protocols allow to efficiently deal with one-to-many and many-to-many negotiations.
Another important division regarding interaction protocols is between one-shot protocols
and iterative protocols. In one-shot protocols, there is a single interaction step between the
agents [59]. In iterative protocols, on the other hand, agents have the opportunity to refine
their positions in successive protocol iterations [62].

2.1.2 Preference sets, utility functions and the use of constraints

From the decision theory perspective, preferences express the absolute or relative satisfaction
for an individual about a particular choice among different options [36]. [7] classify agent
preference structures in four broad families: binary, ordinal, cardinal and fuzzy preference
structures. Among these families, cardinal preference structures are probably the most widely
used in complex negotiations, In particular, it is usual to define agent preferences by means
of utility functions.

Formally, for a given multi-attribute domain (X, D, Ag, U}, the utility function for each
agent j € Ag is defined as

U/:D— R,

assigning to each possible combination of values in X ordeals = {s;|i = 1,...,n; 8 € d;}
a real number, which represents the utility that deal s yields for agent j.

The most basic form to represent a utility function is to make an enumeration of the points
in the solution space which yield a non-zero utility value. In this way, an agent’s utility
function may be represented as a set of pairs (s, u (s)) |« (s) # 0, where u (s) is the utility
of the solution s for the agent. It is easy to see that, though this representation for utility
functions is fully expressive, its cardinality may grow greatly with the number of issues or
with the cardinality of each issue’s domain. Because of that, more succinct representations for
utility functions are used in most cases. Examples of such representations which are widely
used in the negotiation literature are linear-additive utility functions [14] or k-additive utility
functions [22].

Another widely used way to represent preferences and utility functions is the use of con-
straints over the values of the attributes. There is a vast variety of multi-attribute negotiation
models and approaches making use of constraints in different forms, from hard constraints to
soft, probabilistic or fuzzy constraints [31,47,52]. There are several reasons which favor the
use of constraints in negotiation models. First, they allow for efficient methods for preference
elicitation. Moreover, constraints allow to express dependencies between the possible values
of the different attributes. Finally, the use of constraints for offer expression allow to limit the
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Fig. 1 Example of a nonlinear utility space defined by means of weighted constraints

region of the solution space which has to be explored in a given negotiation step. Reducing
the region of the utility space under exploration according to the constraints exchanged by
agents is a widely used technique in automated negotiation [48], since it makes the search
for agreements a more efficient process than when using positional bargaining, specially in
complex negotiation scenarios,

A particular case of constraint-based utility representation which has been used to model
complex utility spaces for negotiation are weighted constraints. There is a utility value for
each constraint, and the total utility is defined as the sum of the utilities of all satisfied
constraints.

More formally, the utility space of the agents may be defined as a set of constraints
C = [cxlk = 1, ..., 1}. Each constraint c; has an associated utility value #(cg). If we note
as s € x(cy) the fact that a given contract s = {s;|i = 1, ..., n} is in the set of contracts that
satisfy constraint cx, an agent’s utility for contract s may be defined as

u@)= . ulew)

creClsex(cy)

that is, the sum of the utility values of all constraints satisfied by s. This kind of utility func-
tions produces nonlinear utility spaces, with high points where many constraints are satisfied,
and lower regions where few or no constraints are satisfied. Figure 1 shows an example of
the kind of utility spaces which may be modeled using weighted constraints.

2.1.3 Agent strategies, mechanism stability and incentive-compatibility

In an automated negotiation, a strategy guides the decision making process of an agent
throughout the different stages of the negotiation protocol [41). The main challenge in an
automated negotiation scenario as far as decision mechanisms are concerned is to design
rational agents, able to choose an adequate negotiation strategy. In negotiations among self-
ish agents, negotiation mechanisms must be designed in a way that makes them stable,
understanding stability as the impossibility (or at least difficulty) of the strategic manipu-
lation of the mechanisms. This means that the mechanisms should motivate the agents to
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act in an adequate way, since if a rational, selfish agent may benefit from taking a strategy
which is different to the one expected by the protocol, it will do so. This problem is closely
related to the notion of equilibrium defined in game theory. In an equilibrium, each player
of the game has adopted a strategy that they have no rational incentive to change (because it
is the best alternative, given the circumstances). There are different equilibrium conditions
which can be defined, like dominant strategies [40,83], Nash equilibrium [60] or Bayes-Nash
equilibrium [24].

Achieving stability in a negotiation mechanism does not guarantee to reach sclutions max-
imizing social welfare. Therefore, stability must not be used as a single criterion to evaluate
decision mechanisms, and social welfare should also be considered. An specially illustrative
example is the prisoner’s dilemma [65], which describes an scenario where Nash equilibrium
yields low utility values for the agents involved. A more generic concept which is becoming
widely used to characterize situations where individual rationality leads agents to results
which yield low social welfares is the notion of price of anarchy. The price of anarchy was
first introduced in [63] in the context of selfish routing, as a measure of loss of social effi-
ciency due to selfish behavior. In the context of a problem of social welfare maximization,
price of anarchy can be defined as follows:

Definition 1 Price of anarchy.[63] The price of anarchy (PoA) in a given game is defined as
the ratio between the social welfare of the best possible outcome of the game and the social
welfare of the worst Nash equilibrium in the game:

PoA = n.naxsessw(s) '
MiNg e Sy SWES)

where § is the set of all possible outcomes of the game, Snash € S is the set of all possible
outcomes induced by a Nash equilibrium in the game, and sw(s) is the social welfare of a

given outcome 5.

Defined in this way, price of anarchy gives an indication of the potential loss in a given
game when individually rational agents are confronted. In situations where PoA is high,
additional mechanisms which incentivize social behavior are desirable, in order to modify
the equilibrium conditions of the game and reduce this value of PoA, thus improving the
stability of the protocol. Stability, however, may also come at a price. Even when worst-case
equilibria can be avoided, equilibrium conditions may lead to solutions which are distant to
the social optimum (generally due to the fact that stability enhancing measures favor “fair”
solutions against Pareto-optimal ones). To measure this, price of stability is introduced in an
analogous manner:

Definition 2 Price of stability.[2] The price of stability (PoS) in a given game is defined as
the ratio between the social welfare of the best possible outcome of the game and the social
welfare of the best Nash equilibrium in the game:

Po§ — M¥sesswls)
MaXge SypnS WIS)

where S is the set of all possible outcomes of the game, Snash € S is the set of all possible
outcomes induced by a Nash equilibrium in the game, and sw(s) is the social welfare of a
given outcome s.

Taking this into account, when mechanisms are introduced to reduce price of anarchy in
a game, their impact over price of stability should also be evaluated.
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Another threat to mechanism stability is strategic revelation of information. In incomplete
information scenarios [34], since the agents’ beliefs about the preferences of a given agent
may influence the decision mechanisms they use, an agent may use as a strategy to lie about
its own preferences in order to manipulate the decision mechanisms of the rest of the agents
to its own benefit. This raises an additional concern to mechanism design [83].

It would be desirable to design protocols which are not prone to be manipulated through
insincere revelation of information. Incentive-compatibility is defined as the property of a
negotiation mechanism which makes telling the truth the best strategy for any agent, assuming
the rest of the agents also tell the truth.Though incentive-compatibility is usually indepen-
dently studied, it is closely related to the notions of strategic equilibrium seen above. In
particular, incentive-compatibility may be seen as the property of a negotiation model where,
regarding the possibility of telling or not telling the truth, having all agents telling the truth is
aNash equilibrium. A more restrictive property is (strategy-proofness), which imposes truth-
ful revelation of information to be a dominant strategy. This means that for any agent the
best choice is to tell the truth regardless of the other agents’ attitudes towards sincerity [19].

An example of an incentive-compatible protocol is the Vickrey auction. The Vickrey auc-
tions are second-price, sealed, one shot auctions. In this kind of auction, that an agent i bids
above its real utility value u; (s) is a bad strategy, since there is a chance that the second
highest bid is also above that utility value, which would imply that the agent would have
to pay for the product more than its value. Furthermore, as Vickrey auction is second price,
bidding below the utility level ; (s) is also a bad strategy, since it reduces the chance to bid
without any advantage, as the price the agent will have to pay for the product is not given by
its bid, but by the second highest bid. Another incentive compatible mechanism is the Clarke
tax method [11], where a tax is imposed to each agent once the negotiation has ended, and
this tax makes each agent “pay” for the impact that its participation had over other agents’
utilities, showing that, in this way, if an agent’s false valuation changes the negotiation result,
the utility obtained by that agent (after taxes are applied) is never higher that the utility it
would have gained using truthful valuations [83].

2.2 Negotiation, optimization and complexity

Though there has been an increasing interest in complex negotiations in the last years, little
efforts have been made to study complexity itself within negotiation (apart from compu-
tational complexity, which has been thoroughly studied in many scenarios). Therefore, if
we want to be able to assess complexity in negotiations, we need to resort to other knowl-
edge areas. One area where many authors have dealt with complexity characterization and
measurement is optimization. In fact, negotiation scenarios and optimization problems are
often closely related, since there are many similarities in the ways both problem families
are defined and addressed. For example, negotiating agents are usually utility optimizers,
and negotiation mechanisms are often evaluated in terms of their ability to reach Pareto-
optimal solutions. In negotiation, Pareto-optimal solutions are those where payoff cannot be
improved for any of the agents without decreasing the payoff for another agent. This concept
of Pareto-efficiency is also sought in multi-objective optimization, trying to find solutions
where no further gains can be achieved in one of the objectives without losing in another
[74]. Multi-objective optimization has been widely used for negotiation support [84], and
negotiation mechanisms have also been used to solve multiobjective optimization problems,
usually by distributing the different objectives among negotiating agents [75]. Therefore,
some of the concepts studied in multiobjective optimization may be used in negotiation, and
vice versa.
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In the context of a multi-attribute negotiation, complexity of a given scenario may depend
at least on the number of issues, the level of interdependency between the preferences on
the issues, the domain of the issues, the possibility of change over time of the negotiation
context, the method used to describe preferences and the structural properties of the agent’s
utility spaces. In general, a large number of issues with a high interdependency and a large
domain contribute to more complex preference spaces. If the negotiation context changes
over time, complexity also increases. The method to describe preferences also has an influ-
ence in the complexity of the negotiation scenario. This is specially true when optimization
techniques are used to find high utility regions within an agent’s utility spaces, or to find deals
among different agents. A constraint-based preference space, for instance, may present dis-
continuities which make gradient based optimizers not applicable, while differentiable utility
functions contribute to a faster local optimization. Therefore, to study complexity in negotia-
tion scenarios, we may find useful to characterize structural complexity of the agents’ utility
spaces, and to this end we may benefit from existing research on function characterization
for optimization.

In this context, and more specifically in the field of optimization using evolutionary algo-
rithms, structural complexity analysis plays a crucial role, since algorithm search capabilities
are greatly impacted by some structural properties of the optimized function, which is usually
known as fitness landscape in evolutionary computation.

An interesting detail about fitness landscapes is that they include the definition of a neigh-
borhood operator ¢, which expresses the probability that the search function (usually, a
genetic algorithm) passes from one point in the landscape to another [27]. This operator
is directly related to the search mechanism used and its parameters (e.g. simulated anneal-
ing temperature or mutation probability for genetic algorithms), which implies an important
consequence: the complexity of a utility space may be different depending on the consid-
ered search algorithm and its parameters. This operator also defines the concept of neighbor
solutions in the space, which in turn influences the definition of local optima (maxima and
minima), and therefore the structural properties of a fitness landscape which are interesting
regarding search complexity within the space, such as modality [28], ruggedness, smoothness
and neutrality [80].

Once the properties which has an influence on the complexity of a fitness landscape or
a solution space have been studied, techniques which allow to measure the complexity of a
given space are needed. Most of the approaches we can find in the literature are based on the
correlation between different samples of the fitness function f, like fitness distance correla-
tion metrics [79] or stochastic models representing the correlation structure of the space [27].
A metric which is easy to compute in most scenarios and allows to make quantitative evalua-
tions about the complexity of a fitness or utility landscape is correlation length or correlation
distance. Correlation distance is defined as the minimum distance ¥ which makes correlation
fall below a given threshold (usually 0.5), which gives an idea of the distance we can move
throughout the solution space while keeping a certain correlation between samples [53].

2.3 Related research on automated negotiation in complex utility spaces

Klein et al. [39] present, as far as we are aware, the first negotiation protocols specific for
complex preference spaces. They propose a simulated annealing-based approach, a refined
version based on a parity-maintaining annealing mediator, and an unmediated version of
the negotiation protocol. Of great interest in this work are the positive results about the use
of simulated annealing as a way to regulate agent decision making, along with the use of
agent expressiveness to allow the mediator to improve its proposals. However, this expres-
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siveness is somewhat limited, with only four possible valuations which allow the mediator
to decide which contract to use as a parent for mutation, but not in which direction to mutate
it. On the other hand, the performed experiments only consider the bilateral negotiation
scenario, though authors claim that the multiparty generalization is simple. Finally, the family
of negotiation protocols they propose are specific for binary issues and binary dependencies.
Higher-order dependencies and continuous-valued issues, common in many real-world con-
texts, are known to generate more challenging utility landscapes which are not considered in
their work.

Luoetal. [51] propose a fuzzy constraint based framework for multi-attribute negotiations.
In this framework a buyer agent defines a set of fuzzy constraints to describe its preferences.
The proposals of the buyer agent are a set of hard constraints which are extracted from the
set of fuzzy constraints. The seller agent responds with an offer or with a relaxation request.
The buyer then decides whether to accept or reject an offer, or to relax some constraints by
priority from the lowest to highest. In Lopez-Carmona and Velasco [49], Lopez-Carmona
et al. [50] an improvement to Luo’s model is presented. They devise an expressive negoti-
ation protocol where proposals include a valuation of the different constraints, and seller’s
responses may contain explicit relaxation requests. It means that a seller agent may suggest
the specific relaxation of one or more constraints. The relaxation suggested by a seller agent
is based on utility and viability criteria, which improves the negotiation process. Though
these constraint-based works model discontinuous preference spaces, the operators used to
compute utility and the utility spaces defined yield monotonic preference spaces, which are
far from the complex preference spaces covered in our work.

Another interesting approach to solve the computational cost and complexity of negotiat-
ing interdependent issues is to simplify the negotiation space. Hindriks et al. [26] propose a
weighted approximation technique to simplify the utility space. They show that for smooth
utility functions the application of this technique results in an outcome that closely matches
the outcome based on the original interdependent utility structure. The method is evaluated
for a number of randomly generated utility spaces with interdependent issues. Experiments
show that this approach can achieve reasonably good outcomes for utility spaces with simple
dependencies. However, an approximation error that deviates negotiation outcomes from the
optimal solutions cannot be avoided, and this error may become larger when the approxi-
mated utility functions become more complex. Authors acknowledge as a necessary future
work to study which kind of functions can be approximated accurately enough using this
mechanism. Another limitation of this approach is that it is necessary to estimate a region of
utility space where the actual cutcome is expected to be (i.e. it is assumed that the region is
known a priori by the agents).

In Robu et al. [69] utility graphs are used to model issue interdependencies for binary-
valued issues. Utility graphs are inspired by graph theory and probabilistic influence net-
works to derive efficient heuristics for non-mediated bilateral negotiations about multiple
issues. The idea is to decompose highly non-linear utility functions in sub-utilities of clusters
of inter-related items. They show how utility graphs can be used to model an opponent’s
preferences. In this approach agents need prior information about the maximal structure of
the utility space to be explored. Authors argue that this prior information could be obtained
through a history of past negotiations or the input of domain experts. However, our approach
has the advantage that outcomes can be reached without any prior information and that it is
not restricted to binary-valued issues.

There are several proposals which employ genetic algorithms to learn opponent’s prefer-
ences according to the history of the counter-offers based upon stochastic approximation. In
Choi et al. [9] a system based on genetic-algorithms for electronic business is proposed. In
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this work the utility functions are restricted to take a product combination form (i.e. utility
of an outcome is the product of the utility values of the different issues). The objective func-
tion used is based on the comparison of the changes of consecutive offers. Small changes
of an issue suggest that this issue is more important. For each new population, the protocol
enforces that the generated candidates cannot be better than the previous offer. Unlike other
negotiation models based on genetic algorithms, this proposal adapts to the environment by
dynamically modifying its mutation rate. Lau et al. [45] have also reported a negotiation
mechanism for non-mediated automated negotiations based on genetic algorithms. The fit-
ness function relies on three aspects: an agent’s own preference, the distance of a candidate
offer to the previous opponent’s offer, and time pressure. In this work agents’ preferences
are quantified by a linear aggregation of the issue valuations. However, non-monotonic and
discontinuous preference spaces are not explored. In Chou et al. [10] a genetic algorithm
is proposed which is based on a joint elitism operation and a joint fitness operation. In the
joint elitism operation an agent stores the latest offers received from the opponent. The joint
fitness operation combines agent’s own utility function and euclidean distance to the oppo-
nent’s offer. In this work two different negotiation scenarios are considered. In the first one
utility is defined as the weighted sum of the different issue values (i.e. issues are indepen-
dent). The second scenario defines a utility function where there is a master issue and a set
of slave issues. Utility is calculated as the weighted sum of the different issue values, but the
weights of the slave and master issues change according to the value of the master issue.

In Yager [87] a mediated negotiation framework for multi-agent negotiation is presented.
This framework involves a mediation step in which the individual preference functions are
aggregated to obtain a group preference function. The main interest is focused on the imple-
mentation of the mediation rule where they allow a linguistic description of the rule using
fuzzy logic. A notable feature of their approach is the inclusion of a mechanism rewarding the
agents for being open to alternatives other than simply their most preferred. The negotiation
space and utility values are assumed to be arbitrary (i.e. preferences can be non-monotonic).
However, the set of possible solutions is defined a priori and is fixed. Moreover, the preference
function needs to be provided to the mediation step in the negotiation process, and pareto-
optimality is not considered. Instead, the stopping rule is considered, which determines when
the rounds of mediation stop.

Fatima et al. [18] analyze bilateral multi-issue negotiation involving nonlinear utility
functions. They consider the case where issues are divisible and there are time constraints
in the form of deadlines and discounts. They show that it is possible to reach Pareto-
optimal agreements by negotiating all the issues together, and that finding an equitibrium is
not computationally easy if the agents’ utility functions are nonlinear. In order to overcome
this complexity they investigate two solutions: approximating nonlinear utilities with linear
ones; and using a simultaneous procedure where the issues are discussed in parallel but inde-
pendently of each other. This study shows that the equilibrium can be computed in polynomial
time. An important part of this work is the complexity analysis and estimated approximation
error analysis performed over the proposed approximated equilibrium strategies. Heuristic
approaches have generally the drawback of the lack of a solid mathematical structure which
guarantees their viability, which raises the need of an exhaustive experimental evaluation.
An adequate complexity analysis and establishing a bound over the approximation error con-
tribute to give heuristic approaches part of the technical soundness they usually lack. Among
the limitations of the proposal, we can point out that this work is focused on symmetric
agents where the preferences are distributed identicaily, and the utility functions are sepa-
rable in nonlinear polynomials of a single variable. This somewhat limits the complexity of
the preference space.
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Finally, combinatorial auctions [21,29,72,73,82,86] can enable large-scale collective
decision making in nonlinear domains, but only of a very limited type (i.e. negotiations
consisting solely of resource allocation decisions). Multi-attribute auctions, wherein buyers
advertise their utility functions, and sellers compete to offer the highest-utility bid [5,78,64]
are also aimed at a fundamentally limited problem (a purchase negotiation with a single
buyer) and require full revelation of preference information.

In summary, in the existing research nearly all the models which assume issue interde-
pendency rely on monotonic utility spaces, binary valued issues, low-order dependencies,
or a fixed set of defined a priori solutions. Simplification of the negotiation space has also
been reported as a valid approach for simple utility functions, but it cannot be used with
higher-order issue dependencies, which generate highly uncorrelated utility spaces. There-
fore, new approaches are needed if automated negotiation is to be applied to settings involving
non-monotonic, highly uncorrelated preference spaces.

3 An auction based approach for negotiations in highly uncorrelated, constraint based
utility spaces

In this work we analyze agents’ strategic behavior and mechanism stability for a mediated,
auction-based negotiation approach we designed for highly uncorrelated, constraint based
utility spaces [30,54]. To make such strategic analysis easier to understand, in this section
we motivate and review the most relevant aspects of our negotiation model.

3.1 Negotiation domain and agent preference model

We explore the problem of negotiating complex contracts, which was first introduced by
Klein et al. [39]. Contracts are defined as a set of issues or clauses, each of which may have
a value. The aforementioned authors limited encounters to bilateral negotiations (i.e. two
negotiating agents), and clauses were limited to binary values, meaning than the clause was
or not present in a given contract. Even with such restrictions, the domain of the solution
space may become very large. For instance, a negotiation scenario with 50 possible clauses
would yield a search space of about 10! possible contracts. This, along with the assump-
tion of non-linearity in the agents’ preference spaces, imposed serious difficulties for the
negotiation. First, agents needed to use nonlinear optimization mechanisms to try to find
desirable contracts within their own preference spaces. Once desirable contracts for each
agent were identified, building agreements had its own difficulties, since the scenario was
assumed competitive, and thus agents were not inclined to fully disclose their preferences.

Though there are negotiation scenarios about complex contracts which may be modeled
with such a solution space, in many cases more than two agents are involved in a negotia-
tion. Also, most contracts may have non-binary clauses. In a rental agreement, for instance,
clauses may state the rent, the security deposit or the length of the lease. A labor agreement
may include different insurance options. Such issues may have a larger domain, which can
greatly increase the solution and preference space complexity.

Taking this into account, in this work we focus in the general case of multilateral nego-
tiations of complex contracts, where the issues or clauses included in the contracts have
discrete domains., We also assume that agents” preferences about the different issues are not
independent, which means that the utility that a given clause in the contract yields for an
agent may depend on the presence of other clauses. Interdependence between attributes in
agent preferences can be described by using different categories of functions, like K-additive
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utility functions [8,22], bidding languages [61], or weighted constraints [31]. In this work,
we model this dependency in agent preferences by means of weighted constraints, which are
a natural way to model user preferences and to express dependencies between issues [51].
These constraints may represent ranges of values over different issues, meaning that when
all the clauses affected by the constraint have values satisfying it, that yields a given utility
value for the agent. The set of an agent’s constraints and their associated utility values builds
the preference space of the agent.

From a geometrical point of view, each constraint represents a region with one or more
dimensions, and has an associated utility value. The number of dimensions of the space is
given by the number of issues n under negotiation, and the number of dimensions of each
constraint must be lesser than or equal to #. The utility yielded by a given potential solution
(contract) in the utility space for an agent is the sum of the utility values of all the con-
straints that are satisfied by that contract. Figure 2 shows an example for two issues and
three constraints: a unary constraint C1 and two binary constraint C2 and C3. The utility
values associated to the constraints are also shown in the figure. In this example, contract x
would yield a utility value for the agent u(x) = 15, since it satisfies both C1 and C2 (that is,
constraints C1 and C?2 overlap, creating a region of higher utility). Contract y, on the other
hand, would yield a utility value u(y) = 3, because it only satisfies C1. It can also be noted
that unary constraint C1 can be seen as a binary constraint where the width of the constraint
for issue 2 is all the domain of the issue, so we can generalize and say that all constraints
have n dimensions.

More formally, we can define the negotiation domain and an agent’s preference model by
means of a set of definitions:

Definition 3 Issues under negotiation. The issues under negotiation are defined as a finite
set of variables X = {x;[i = 1, ..., n}.

Definition 4 Solution space. The negotiation solution space is defined by the values that the
different values may take. To simplify, we assume that issues take values from the domain
of integers [O, x%‘”]:

D = [0,x3=]"
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Definition 5 Contract or potential solution. A contract or potential solution to the nego-
tiation problem is a vector s = {s;|i = 1,...,n} such that s € D defined by the issues
values.

Definition 6 Constraint. A constraint is a set of intervals which define the region where a
contract must be contained to satisfy the constraint. Formally, a constraint ¢ is defined as

c={Ifli=1,...,n},

where If = [xMi", xP], with x[i?, x"* & [0, ] defines the minimum and maxi-
mum values for each issue to satisfy the constraint. Constraints defined in this way describe
hyper-rectangular regions in the n-dimensional space.

Definition 7 Consiraint satisfaction. A contract s satisfies a constraint ¢ if and only if x§ €
IfVi. For notation simplicity, we denote this as s € x(c), meaning that s is in the set of
contracts that satisfy c.

Definition 8 Preference space. An agent’s preference space may be defined as a tuple
(C7 Q) r

where C = {c¢lk = 1, ...,1} is a set of constraints over the values of the issues x; for the
agentand Q = {w (k) Ik =1, ..., [; @ (cx) € Nt} is a set of weights or utility values, such
that w (cx) is the associated utility value for constraint cx. For simplicity, we will assume that
constraint weights take values from the set of positive integers.

Definition 9 Utility function. An agent’s utility function for a contract s is defined as

us)= Y. ulw),

ci€Clsex(cy)
that is, the sum of the utility values of all constraints satisfied by s.

This kind of utility functions produces nonlinear utility spaces, with high points where
many constraints are satisfied, and lower regions where few or no constraints are satisfied
[31]. As we have seen in Sect. 2.2, the degree of complexity of the utility spaces produced
depends on the number of issues, the domain of the issues and the structural properties of
the utility spaces. For the purpose of this work, we make the following assumptions:

—  We assume that the number of issues and the domains of the issues are such that they
make exhaustive search within the utility space of the agents intractable.

— We assume that the utility spaces of the agent are highly uncorrelated, and so no a priori
assumptions may be made about where high utility contracts may be located. Therefore,
agents may need to resort to local nonlinear optimization techniques to identify such
high-utility contracts.

— We assume knowledge about other agent’s preferences not to be common (i.e. agents
do not know their opponent preference structures, neither they can compute opponent’s
utility for a given contract).

~  We assume that the negotiation setting is competitive, and that agents may be unwilling
to reveal too much information about their preferences to the other negotiating agents.

The negotiation protocol and mechanisms proposed, which are described in the next sec-
tions, are specifically designed to address this negotiation setting. However, through the study
performed in the latter sections of this paper, some of the assumptions are relaxed to evaluate
the influence of agent strategies and variations in the correlation lengths of the utility spaces
over the negotiation outcomes.
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3.2 Interaction protocol

As we stated at the beginning of this section, our model relies on a mediated, auction-based
protocol to support agent interaction. The reason for the choice of such a protocol is two-
fold. On one hand, the auction-based approach allows to efficiently cope with many of the
challenges imposed by multilateral interactions [39]. On the other hand, the use of a medi-
ator allows to decouple individual agent goals (maximizing their own payoff) from social
negotiation goals (usually, reaching an agreement which maximizes social welfare). This
makes easier mechanism and strategy definition, since agents can be assumed selfish and
competitive, while the mediator can be entitled with the more-cooperative task of pursuing
social welfare.

Since the main focus of this work is on agent strategic behavior, we have chosen a simple,
one shot, auction based interaction protocol for the negotiation, which mainly consists of two
steps:

1. Bidding: Each agent j generates a set of ni bids B/ = {b‘.j i=1,..., ni}, where each
bid b{ represents a region within the solution space which only contains contracts that
agent j would be willing to accept as solutions. Each agent sends its bid set B/ to the
mediator, along with the utility associated to each bid.

2. Deal identification: The mediator tries to find overlaps between the bids of the different
agents. The regions of the contract space corresponding to the intersections of at least
one bid of each agent are tagged as potential solutions. A final deal is chosen from the
set of potential solutions, according to social welfare criteria.

The protocol, as described, is fairly straightforward, and the decision mechanisms which
agents employ for bidding and deal identification are the ones which mostly determine the
effect of agent strategic behavior. There are many different mechanisms which can be used
in this context. In the following we briefly describe the ones we have found to yield better
results in terms of negotiation efficiency and failure rate. All these mechanisms rely on the
concept of guality factor, which we introduce in the following section.

3.3 Constraint/bid quality factor

The use of weighted constraints generates a “bumpy” utility space, with many peaks and
valleys. However, the degree of “bumpiness” is highly dependent on the way the constraint
set is generated, and specially on the average width of the constraints. Figure 3 shows an
example of the resulting two-dimensional utility space for 50 binary constraints, where the
domain of the issues is chosen to be [0,9], and constraints are generated by choosing the
width of each constraint in each issue randomly within the [3,7] interval. This generates
rather “wide” constraints. On the other hand, Fig. 4 shows an utility space obtained using
“narrow” constraints, choosing their widths from the [1,2] interval. Comparing both figures
we can see that, though both utility spaces are nonlinear, the space generated using narrow
constraints is more complex, with narrower peaks and valleys. As the number of issues under
consideration increases, the differences between having wide or narrow constraints become
more relevant. For instance, the average correlation length for utility spaces generated using
[3,7] constraints for six issues is Y = 5.9, while average correlation length for utility spaces
generated using [1,2] constraints is 4 = 2.8. Though most utility-maximizing negotiation
approaches work in scenarios like the example shown in Fig. 3, their performance (in terms of
optimality and failure rate) decreases drastically in highly nonlinear scenarios defined using
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Fig. 4 Example of a highly uncorrelated utility space generated by using “narrow” constraints

narrow constraints, and therefore an alternative approach is needed to deal with these highly
uncorrelated utility spaces [55].

If we compare the utility spaces shown in Figs. 3 and 4, we can see that the main difference
between them (apart from the absolute utility values, but they have no effect in optimality)
is the width of the peaks. Highly-nonlinear scenarios will yield narrower peaks. Utility max-
imizing agents tend to choose those peaks (or high-utility regions) as bids, and the result is
that narrower bids will be sent to the mediator. The width of the bids (or more generally, the
volume of the bids), will directly impact the probability that the bid overlaps a bid of another
agent, and thus its viability, that is, the probability of the bid resulting in a deal. Intuitively,
in such complex scenarios, an agent with no knowledge of the other agents’ preferences
should deviate from the “plain utility maximization strategy” and try to adequately balance
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the utility of their bids (to maximize its own profit) and the volume of those bids (to maximize
the probability of a successful negotiation).
We formally represent this through the following definitions:

Definition 10 Volume of a region. The volume of a given region r within the solution space
D (be it a constraint or a bid) is defined as the cardinality of the set of contracts contained
within the region.

v =|r|, withr C D

Definition 11 Quality factor. The guality factor of a given region r within the solution space
D (be it a constraint or a bid) is defined as

Qr =u® v},
where u, and v, are, respectively, the utility and volume of the bid or constraint r, and
o € [0, 1] is a parameter which models the attitude of the agent. A social, cooperative or risk
averse agent (& < 0.5) will tend to qualify as better bids those that are wider, and thus are
more likely to result in a deal. A risk willing, highly competitive or selfish agent (@ > 0.5)
will, in contrast, give more importance to bid utility.

3.4 Bid generation mechanisms
3.4.1 Contracts sampling and simulated annealing

We can see the problem of finding the adequate set of bids for an agent as a local optimiza-
tion problem, since for rational agents bids should be high-utility regions or, more generally,
regions of high quality factor. Therefore, nonlinear optimization mechanisms may be used by
the agents to find those regions suitable to be sent to the mediator as bids. Here we describe
a bidding mechanism based on simulated annealing, which consists of three steps:

1. Sampling: Each agent takes a fixed number of random samples from the contract space,
using a uniform distribution.

2. Adjusting: Each agent applies simulated annealing to each sample to try to find a local
optimum in its neighborhood. The function which is tried to maximize by the simulated
annealing optimizer is the quality factor Q. Since the quality factor Q is a feature of a
region, not a contract, the adjusted contracts must be mapped to the high utility regions
where they are contained before they are accepted or rejected by the simulated annealing
engine. This can be easily done by checking all constraints in the agent preference model
and computing the intersection of the constraints which are satisfied by the candidate
contract. The volume of this intersection can then be used to compute the quality factor
Q of the region.This results in a set of high-quality contracts.

3. Bidding: Each agent generates a bid for each high-quality, adjusted contract. The bids
are generated as the intersection of all constraints which are satisfied by the contract.
Bids defined in this way represent hyper-rectangle regions in the n-dimensional solution
space. Each agent sends its bids to the mediator, along with the utility associated to each
bid.

The bid generation mechanism may be seen formally in Algorithm 1. Also, some details
about the mechanism are highlighted. The algorithm is run for a fixed number of iterations ny,
which imposes the maximum number of generated bids (1). The function adjust_annealing
(x, Q(., o), ns4, Tsa) uses simulated annealing to return a region of optimal quality factor
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using as starting point a sampled contract x (2). There are some parameters in this function
which may be adjusted to influence the behavior of the simulated annealing algorithm, like
the initial temperature and the number of iterations. As studied in [30], best results in term of
optimality and efficiency are achieved using nga = 30; Ts4 = 30. Moreover, the algorithm
discards any contract which, once adjusted, yields less utility than the agent’s reservation
value ug, which guarantees that all bids would be accepted by the agent as final solutions
(3). Finally, duplicate bids or bids contained in other bids are also discarded (4). Some of
these ideas are also used in the next bidding mechanism described.

Algorithm 1: Bid generation using simulated annealing over quality factor
Input:
D: solution space domain
np: maximum number of bids
uR: reservation utility for the agent
C: constraint set defining agent’s utility space
u: agent’s utility function
«: agent’s attitude parameter
Q: function which computes the quality factor of a region
ng4: iteration bound for the simulated annealing algorithm
Ts 4: initial temperature for the simulated annealing algorithm
Output:
B: bid set
B =g,
k=0;
1 while k < np, do
k=k+1;
x = random_contract();
2 b = adjust_annealing(x, Q(.,@),ns4, Tsa);
3 if u(b) > upg then
| B=BUb;

end
4 remove_duplicates(B)

3.4.2 Maximum weight independent set and the max-product algorithm

There have been a number of recent successful efforts in literature for using graphs to model
negotiation scenarios in multi-link negotiations [89] or combinatorial auctions [21]. One
of the advantages of such approaches is that they allow to use well-known graph methods
for solving the negotiation problem. In our case, graphs provide an alternative perspective
for the bidding process, looking at the constraint-based agent utility space as a weighted
undirected graph. Consider again the simple utility space example shown in Fig. 2. Think
about each constraint as a node in the graph, with an associated weight which is the utility
value associated to the constraint. Now we will connect all nodes whose corresponding con-
straints are incompatibles, that is, they have no intersection. The resulting graph is shown in
Fig. 5.

To find the highest utility bid in such a graph can be seen as finding the set of unconnected
nodes which maximizes the sum of the nodes’ weights. Since only incompatible nodes are
connected, the corresponding constraints will have non-null intersection. In the example, this
would be achieved by taking the set {C1, C2}. The problem of finding a maximum weight
set of unconnected nodes is a well-known problem called maximum weight independent set
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