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Abstract

Multi-issue negotiation protocols represent a promising field since most
negotiation problems in the real world involve multiple issues. Our work
focuses on negotiation with interdependent issues in which agent utility
functions are nonlinear. Existing works have not yet focused on the pri-
vate information of agents. In addition, they were not scalable in the
sense that they have shown a high failure rate for making agreements
among five or more agents. In this paper, we focus on a novel multi-
round representative based protocol that utilizes the amount of revealed
agents’ private information. Experimental results demonstrate that our
mechanism reduces the failure rate in making agreements and is scalable
for the number of agents compared with existing approaches.

Keywords: Multi-issue Negotiation, Nonlinear Function

1 Introduction

We envision a future in which large numbers of participants collaborate, nego-
tiate, and reach consensuses through computer-supported negotiation support
systems for global problems. Collaboratorium [1, 2], one such pioneering work
that enables many people to participate in an argument on such worldwide
problems as global warming, provides a platform for coordinating large-scale
arguments through web based collaboration tools. In our research, we consider
a tool that supports large-scale negotiations among the world’s people. In such
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a situation, eliciting people’s utility spaces and automatically finding and sug-
gesting possible agreements would be valuable. People could reach agreements
based on such system suggestions.

Multi-issue negotiation protocols represent an important field of study. Even
though much previous work exists in this area [3, 4, 5], most of it deals exclu-
sively with simple negotiations involving independent multiple issues. These
studies of negotiations mainly assume that agents have an incentive to coop-
erate to achieve win-win agreements because the situation is not a zero-sum
game. Many real-world negotiation problems, however, are complex and in-
volve interdependent multiple issues. Thus, we focus on complex negotiation
with interdependent multiple issues.

The bidding based negotiation protocol offers high performance on multi
interdependent issues negotiation. However, it has two main issues. 1) Pri-
vacy: Existing works have not yet addressed agents’ private information, which
should not be revealed excessively because agents who reveal too much utility
information suffer a disadvantage. For example, suppose that several companies
are collaboratively designing and developing a new car model. If one company
reveals more utility information than the other companies, those other com-
panies can learn more of that company’s utility information. As a result, the
company will face a disadvantage in subsequent negotiations. Furthermore, ex-
plicitly revealing utility information is dangerous from a security standpoint.
2) Scalability for the number of agents: The bidding based negotiation
protocol does not have high scalability for the number of agents. In the bidding
based negotiation protocol, the mediator needs to find the optimum combina-
tion of submitted bids from the agents. However, the computational complexity
for finding solutions is too large. The number of agent bids was limited in ex-
isting work [6]. Limiting bids causes low optimality and high failure rate for
agreements.

To resolve privacy issues, we define an agent’s revealed area that represents
the amount of his/her revealed utility space. This revealed area numerically de-
fines which agents are cooperative and which are not. Additionally, the mediator
can understand how much of the agent’s private information has been revealed
in the negotiation.

Moreover, we propose a representative based protocol that has high
scalability for the number of agents and considers the agent’s private informa-
tion. In our protocol, we first select representatives who revealed more of their
utility space than the others. These representatives reached an agreement on al-
ternatives and proposed them to the other agents. Finally, the other agents can
express their own intentions concerning agreement or disagreement. In this pro-
tocol, agents who revealed more private utility information can have a greater
chance to be representatives who will attend to reach an agreement on behalf
of the other agents. Although agents tend to avoid revealing their own private
information, they have an incentive to reveal it to be representatives.

The representative based protocol has been inspired by the parliamentary
systems in England, Canada, Australia, Japan, etc. in which representatives are
making an agreement on behalf of other people. In a situation in which many
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people have to reach an agreement, directly reflecting all members’ opinions is
quite difficult. Doing so requires much time and energy and is not scalable.
Although voting is one option, voting might have paradoxical results [7].

We expand our mechanism to be multi-round by using the Threshold Adjust-
ment Protocol [8]. The multi-round mechanism improves the failure rates and
achieves fairness in terms of the revealed area. This means that the amounts
of the revealed areas are almost the same among agents. Further, a represen-
tative mechanism can prevent the unfair solutions that can exist in the original
Threshold Adjustment Protocol.

The representative based protocol drastically reduces computational com-
plexity because only representative agents try to reach a consensus. The experi-
mental results demonstrate that our protocol reduces the failure rate in making
agreements and that it is scalable on the number of agents compared with ex-
isting approaches. We also demonstrate that our protocol reduces the revealed
area compared with existing works. Furthermore, we investigate the detailed
effect of the representative selection method in our protocol and call the selec-
tion method RAS in which agents who reveal a larger utility area are selected as
representatives. In the experiments, we compare RAS with a selection method
in which representative agents are randomly selected (RANDOM).

The remainder of this paper is organized as follows. First, we describe a
model of non-linear multi-issue negotiation and an existing work’s [6] prob-
lems. Second, we define the revealed area and proposed our new negotiation
mechanism. Third, we describe the multi-round negotiation protocol. Fourth,
we present an experimental assessment of this protocol. Finally, we describe
related work and draw conclusions.

2 Negotiation Using Complex Utility Space
2.1 Complex Utility Model

We consider the situation where n agents want to reach an agreement. m
issues, s; € S must be negotiated. The number of issues represents the number
of dimensions of the utility space. For example, if there are three issues, the
utility space has three dimensions. The issues are not “distributed” over agents
who are all negotiating a contract that has N (e.g., 10) issues. All agents are
potentially interested in the values for all N issues. Issue s; has a value drawn
from the domain of integers [0, X], i.e., s; € [0,X]. A discrete domain can
come arbitrarily close to a real domain by increasing the domain size. As a
practical matter, many real-world issues that are theoretically real (delivery
date, cost) are discretized during negotiations. Our approach, furthermore, is
not theoretically limited to discrete domains. The deal determination part is
unaffected, although the bid generation step must be modified to use a nonlinear
optimization algorithm suited to real domains. A contract is represented by a
vector of issue values §= (s, ..., $im)-

An agent’s utility function is described in terms of constraints. There are
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Figure 1: Example of a constraint

I constraints, c; € C. Each constraint represents a region with one or more
dimensions and has an associated utility value. Constraint c has value w;(ck, §)
if and only if it is satisfied by contract §. Figure 1 shows an example of a binary
constraint between issues 1 and 2. This constraint has a value of 30 and holds
if the value for issue 1 is in the range [4,9] and the value for issue 2 is in the
range [2, 7]. Every agent has its own, typically unique, set of constraints.

An agent’s utility for contract §'is defined as u;(8) = 3°., c ¢, sea(cr) Wilck, ),
where z(ci) is a set of possible contracts (solutions) of c,. This expression
produces a “bumpy” nonlinear utility space with high points where many con-
straints are satisfied and lower regions where few or no constraints are satisfied.
This represents a crucial departure from previous efforts on multi-issue negotia-
tion, where contract utility is calculated as the weighted sum of the utilities for
individual issues, producing utility functions shaped like flat hyperplanes with a
single optimum. Figure 2 shows an example of a nonlinear utility space. There
are two issues, i.e., two dimensions, with domains [0,99]. There are 50 unary
constraints (i.e., that relate to one issue) as well as 100 binary constraints (i.e.,
that interrelate to two issues). The utility space is highly nonlinear with many
hills and valleys.

In our utility function, we assume interdependency between the issues. For
example, since an agent has a binary constraint between issues 1 and 2, as
Figure 1 shows, they are interdependent for the agent. Therefore, our utility
space is highly interdependent.

As is common in negotiation contexts, we assume that agents do not share
their utility functions with each other to preserve a competitive edge. In fact,
generally agents do not completely know their desired contracts in advance
because their own utility functions are simply too large. If we have 10 issues
with 10 possible values per issue, for example, this produces a space of 10 (10
billion) possible contracts, which is too many to evaluate exhaustively. Agents
must thus operate in highly uncertain environments.

Finding an optimal contract for individual agents with such utility spaces
can be handled using such well-known nonlinear optimization techniques as sim-
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Figure 2: Complex utility space for single agent

ulated annealing or evolutionary algorithms. We cannot employ such methods
for negotiation purposes, however, because they require that agents fully re-
veal their utility functions to a third party, which is generally unrealistic in
negotiation contexts.

The objective function for our protocol can be described as follows:

argm?xZui(?). (1)

iEN

In other words, our protocol tries to find contracts that maximize social welfare,
i.e., the total utilities for all agents. Such contracts, by definition, will also be
Pareto optimal.

2.2 Existing Bidding based Protocol

In a previous work [6], agents reach an agreement based on the following steps.
This is called a basic bidding based mechanism.

[Generate bids] Each agent samples its utility space to find high-utility
contract regions. A fixed number of samples are taken from a range of random
points, drawn from a uniform distribution. Note that if the number of samples
is too low, the agent may miss some high utility regions in its contract space
and thereby potentially end up with a sub-optimal contract.

There is no guarantee, of course, that a given sample will lie on a locally
optimal contract. Each agent, therefore, uses a nonlinear optimizer based on
simulated annealing [9] to find the local optimum in its neighborhood. Figure 3
exemplifies this concept. Black dots are sampling points and white dots are
locally optimal contract points.
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Figure 3: Generating bids

For each contract 5 found by adjusted sampling, an agent evaluates its utility
by a summation of the values of satisfied constraints. If that utility is larger
than reservation value § (threshold), then the agent defines a bid that covers
all the contracts in the region with that utility value. This is easy: the agent
merely finds the intersection of all the constraints satisfied by that s.

[Find the Solutions] In negotiation, the mediator takes the middle po-
sition and identifies the final contract by finding all the combinations of bids,
one from each agent, that are mutually consistent, i.e., that specify overlapping
contract regions (Figure 4) 1. If there is more than one such overlap, the medi-
ator selects the one with the highest summed bid value (and assuming truthful
bidding, the highest social welfare).

2.3 Scalability and Privacy Problems

Since it is a combinatorial optimization calculation, computational complexity
for finding solutions exponentially increases based on the number of bids. For
example, if there are 10 agents and each agent has 20 bids, the number of
bids is 2019. To make our negotiation mechanism scalable, the computational
complexity must be reduced to find solutions.

We limited the number of bids for each agent to handle the computational
complexity in the basic bidding based protocol [6]. The concrete number of
bids in this limitation was %/6, 400,000, a number that reflects our experimen-
tal calibration in 2005. But even though CPUs are faster now, the limitation

1A bid has an acceptable region. For example, if a bid has regions [0,2] for issue 1 and [3,5]
for issue 2, the bid is accepted by a contract point (1,4), which means that issue 1 takes 1 and
issue 2 takes 4. If a combination of bids, i.e., a solution, is consistent, definitely overlapping
regions exist. For instance, a bid with regions (issue 1, issue 2) = ([0,2],[3,5]), and another
bid with ([0,1],[2,4]) is consistent.
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Figure 4: Find solutions

number does not differ so much because this is an exponential problem. Table 1
shows the limitation numbers of bids in one agent. This number quickly drops
by increasing the total number of agents. Because of the limitation of bids, the
failure rate for finding agreements quickly increases along with increasing the
number of agents. When the number of agents is five and the number of issues
is seven, we experimentally observed that the failure rate is around 40%. In
fact, a strong trade-off exists between increasing the number of total bids and
finding good quality solutions. Increasing the number of total bids is not an
effective approach for finding good quality agreements.

Thus, it is necessary to build another mechanism that will find higher quality
solutions without limiting the bids. Our mechanism proposed in this paper is
highly scalable. The other issue with existing protocols is that they are not
concerned with privacy in utility spaces. Even in a collaborative situation among
people, it is normal to keep one’s own utility space closed as long as one is not
asked to do otherwise. Our new mechanism achieves such a situation by defining
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Num. of agents | Limit of bids || Num. of agents | Limit of bids

2 2530 7 9
3 186 8 T
4 50 9 6
5 23 10 5
6 13

Table 1: Limitation of the bids

Issue2 Revealed Area
o~ / \

Utility
(=]
Threshold v,
|ss&e ZK’\’_’_/\ \ |

Issue 1 |ssue 1

Figure 5: Revealed area

the revealed area in utility spaces.

3 Multi-Round Representative based Protocol
based on Revealed Private Information

3.1 Revealed Area for Agent

We focus on the amount of private information agents revealed in the nego-
tiation. We employ revealed area as a measure of the amount of revealed
utility space. Figure 5 shows an intuitive example of a revealed area, defined as
an agent’s possible contract points that are revealed in his utility space on his
threshold.

For an agent, it is important for him/her to know how much his/her private
information is revealed compared with the other agents. The mediator can
judge whether an agent is cooperative based on the amount of revealed private
information.

We use a threshold that is employed in generating bids as a measure of
adjusting agents’ revealed areas. Since directly adjusting the revealed area is
difficult because agents have complex utility spaces, we consider adjusting their
threshold to adjust their revealed areas. The threshold is employed for an
agent to generate his/her bids based on utility values above the threshold. The
threshold was originally adopted to adjust the number of bids. However, in this
paper, we also utilize it for determining an agent’s revealed area while handling
complex utility space.
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Figure 6: Representative based protocol

3.2 Representative based Protocol

Representative-based protocol consists of three steps. The first step is to select
the representative agents (Stepl). The second step is to find solutions, and
propose them to the other agents (Step2). The third step is to respond to the
agreement by the other agents (Step3).

We assume each agent uses a reservation value to determine whether to
“agree” or “disagree” with the representative agents. Actually, for practical
applications, the reservation value can be determined by a human user. In ad-
dition, we assume that the number of representatives is static in representative
based protocol. This protocol consists of the following steps.

[Step 1: Selection of Representative Agents] Representative agents are
selected based on the amount of their revealed areas, as shown in Figure 6 (A).
First, each agent submits how much he can reveal his utility space to the media-
tor. Namely, each agent submits the numeric value of the amount of his possible
revealed area. The mediator selects the representative agents who revealed a
large area. We call this selection method RAS. This step is main additional
coordination processes by the use of representatives. By employing RAS, all
agents are satisfied with the mediator’s decision because it is the best method
for all agents to find optimal solutions.

[Step 2: Proposing by Representatives| Representative agents find solu-
tions and propose them to other agents, as shown in Figure 6 (B). First, repre-
sentative agents find solutions by employing a breadth-first search with branch
cutting to find solutions (from lines 3 to 14 in representative_protocol()).

Next, the representative agents ask the other agents whether they “agree”
or “disagree.” Step 2 is repeated until all the other agents agree or the solutions
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found by the representatives are rejected by the other agents.
[Step 3: Respond to Agreement by other Agents] First, the other agents
receive the solutions from the representative agents. Then they judge whether
they “agree” or “disagree” by determining whether the solution’s utility is higher
than their own reservation value (Figure 6 (C). ).

Steps 1, 2, and 3 are captured as Algorithms 1 and 2:

Algorithm 1 representative.protocol(B)
B: A set of bid-set of each agent
(B:{BO,BL, ..., Bn}, a set of bids from agent 7 is B; = {bi,0,bi,1, .y bi,m; })
RB:A set of bid-set of each representative agent
(RB={RBy, RBz,...,RBn}, a set of bids from representative agent i is RB; =
{T‘bi,o,’l‘bi,l, ---,Tbi,l,v })
SC: A set of solution-set of each representative agent
(SC={SCo, SC1, ..., SCn}, a set of bids from agent i is SC; = {sci,0,5¢Ci,1, .y 5Ci,m; })
1: RB := select_representative(B)
2: SC:=RBy,1:=1
3: while 7 < the number of representative agents do

4: SC! = @

5 for s € SC do

6 for rb; ; € RB; do
7 s'i=sU T‘bi,j

8 end for

9 end for

10:  if s’ is consistent then

11: SC':=8C'us

12:  end if

13: SC:=8C" i:=i+1

14: end while

15: while i < |SC| do

16:  if ask_agent(SC;) is true & SC; Utility is maximum then

17: return SC;

18: else

19: return No Solution
20: end if

21: end while

This protocol is scalable for the number of agents. In a representative pro-
tocol, combinatorial optimization only occurs in negotiation among representa-
tive agents. In fact, the computational complexity for proposing solutions to
unrepresentative agents only increases linearly and is almost negligible. Thus,
the computational complexity is drastically reduced compared with the existing
mechanism.

Finally, we describe the trade-off for an agent between revealing a large
amount of utility space and being a representative agent. Representative agents
have advantages since they can propose alternatives to other agents and dis-

10
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Algorithm 2 ask_agent(SC)
select_representative() is a method for performing Step 1
Th: A reservation value of each agent (Th={Tho,Thi, ..., Thn})

1: while 7 < the number of agents do

2.  if SC’'sUtility < Th; then
return false

else
i:=1+1

end if

7. end while

8: return true

&S oh®

advantages because they need to reveal larger utility space. Unrepresentative
agents have advantages in keeping their utility hidden and disadvantages in
responding based on representatives’ agreements.

3.3 Threshold Adjusting Mechanism

We extend our protocol to multi-round negotiation based on the threshold ad-
justing method [8] so that the number of times to be a representative agent is
fair. The total amount of revealed utility space for each agent is almost the
same by the threshold adjustment mechanism.

The main idea of the threshold adjusting mechanism is simple: if an agent
reveals a larger area of his utility space, he should gain an advantage. On the
other hand, an agent who reveals a smaller area of his utility space should adjust
his threshold to agree with others. The threshold values are changed by each
agent based on the amount of revealed area. If the agent decreases the threshold
value, this means that he must reveal more of his utility space.

This mechanism is repeated until an agreement is achieved or all agents
refuse to lower their thresholds. Agents can decide whether to lower the thresh-
old based on their reservation value, i.e., the minimum threshold. This means
that agents have the right to reject the request to decrease their threshold if the
request decreases a threshold lower than the reservation value.

Figure 7 shows an example of the threshold adjusting process among three
agents. The upper and bottom figures show the thresholds and the revealed
areas before and after adjusting the threshold, respectively. In particular, in
this case, agent 3 revealed a small amount of his utility space. The amount
of agent 3’s revealed utility space in this threshold adjustment is the largest
among these three agents. The exact rate of the amount of revealed utility
space and the amount of decreased threshold are defined by the mediator or the
mechanism designer.

The threshold adjusting mechanism is shown as Algorithm 3:

In the threshold adjusting mechanism, agents can consider others’ behaviors
by adjusting the agent thresholds. In our definition, agents can reveal more

11
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Algorithm 3 threshold_adjustment( )
Ar: Area Range of each agent (Ar = {Arg, Ar1, ..., Arn})
representative_protocol(): representative based protocol explained in previous sec-
tion.
1: loop
22 i:=1B:=0

3:  whilei < |Ag| do
4: bid_generation.with_SA(Th;,V,SN,T,B;)
5. end while
6: mazSolution := representative_protocol(B)
7. if find mazSolution then
8: break loop
9:  else if all agent can lower the threshold then
10: =1
11: SumAr 1= T aq) Ari
12: while i < |Ag| do
13: Th; := Th; — C x (SumAr — Ar;)/SumAr
14: ti=1+1
15: end while
16: else
17: break loop
18: end if
19: end loop

20: return mazSolution

12
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Figure 7: Threshold adjusting process

revealed area if they greatly lower their threshold. Additionally, the width
of decreasing the threshold is decided based on a comparison of the others’
revealed areas in the threshold adjusting mechanism. Therefore, they can take
the behaviors of others into consideration in multi-round negotiation.

4 Experiment Results

4.1 Experiment Settings

We conducted several experiments to evaluate the effectiveness of our approach.
In each experiment, we ran 100 negotiations between agents with randomly
generated utility functions.

In the experiments on optimality, for each run, we applied an optimizer
to the sum of all the agents’ utility functions to find the contract with the
highest possible social welfare. This value was used to assess the efficiency
(i.e., how closely optimal social welfare was approached) of the negotiation
protocols. To find the optimum contract, we used simulated annealing (SA)
because exhaustive search became intractable as the number of issues grew too
large. The SA initial temperature was 50.0 and decreased linearly to 0 over the
course of 2500 iterations. The initial contract for each SA run was randomly

13
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selected.
In terms of privacy, the measurement is the range of the revealed areas. If
an agent reveals one point on the grid of the utility space, he loses 1 privacy

unit.

If he reveals 1000 points, then he loses 1000 privacy units.

We also analyze the representative selection method in our protocol. The
representative selection method remains an important research point. The se-
lection method in which agents who reveal a larger utility area are selected as
representatives is called (RAS), and the random selection method in which rep-
resentatives are randomly selected is called (RANDOM). To investigate the
detailed effects of RAS, we assume RANDOM is the general basis for compari-

son.

The following are the parameters for our experiments:

Domain for issue values: [0,9].

Constraints: 10 unary constraints, 5 binary constraints, 5 trinary con-
straints, etc. (a unary constraint relates to one issue, a binary constraint
relates to two issues, and so on).

Maximum constraint value: 100 x (number of issues). Constraints that
satisfy many issues have on average larger weights. This seems reason-
able for many domains. To schedule meetings, for example, higher order
constraints concern more people than lower order constraints, so they are
more important.

Maximum constraint width: 7. The following constraints, therefore, are
all valid: issue 1 = [2, 6], issue 3 = [2,9] and issue 7 = [1,3].

Number of samples taken during random sampling: (number of issues) X
200.

Annealing schedule for sample adjustment: initial temperature 30, 30 iter-
ations. Note that the annealer must not run too long or too ‘hot’ because
then each sample will tend to find the global optimum instead of the peak
of the optimum nearest the sampling point.

Threshold used by agents to select what to bid starts with 900 and de-
creases until 200 in the threshold adjusting mechanism. The protocol
without the threshold adjusting process defines the threshold as 200. The
threshold is used to excise contract points with low utility.

Amount of threshold is decreased by 100x (SumAr— Ar;)/SumAr. SumAr
means the sum of all agents’ revealed areas. Ar; means agent ¢'s revealed
area.

Limitation on number of bids per agent: {/6,400,000 for N agents. It
was only practical to run the deal identification algorithm if it explored
no more than about 6,400,000 bid combinations, which implies a limit of
/6,400,000 bids per agent for N agents.

14
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Figure 8: Revealed rate

e Number of representative agents is two in the representative based proto-
col.

e Number of issues is three.

In our experiments, we ran 100 negotiations in every condition. Our code
was implemented in Java 2 (1.5) and run on a core 2 duo processor iMac with
1.0 GB memory on a Mac OS X 10.4 operating system.

4.2 Experimental Results

Figure 8 shows the revealed rate of three comparable protocols with three agents.
(A) is the proposed protocol, which is a multi-round negotiation with the rep-
resentative protocol whose selection method is RAS. (B) is the basic bidding
based mechanism without threshold adjustment (explained in Section 2). (C)
is the protocol with threshold adjustment.

In (B), the revealed rate increases as the number of issues increases. This
means that if we do not use the threshold adjustment, agents need to reveal
more of their utility space than the other protocols. On the other hand, in (A)
and (C), the revealed rate decreases as the number of issues increases. When
we compare (A) with (C), the revealed rate of the representative based protocol
is less than basic bidding protocol with threshold adjustment for two reasons.
First, the representative protocol finds solutions faster than the threshold ad-
justment mechanism. Second, bidding based protocol with threshold adjust-
ment most agents need to reveal their utility space. On the other hand, only

15
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Figure 9: Scalability on number of agents

representative agents reveal their utility spaces in representative based proto-
col. Essentially, the representative protocol proposed in this paper drastically
decreases the revealed rate compared with the other two protocols.

The next experimental results show that our negotiation protocol is suffi-
ciently scalable on the number of agents. Figure 9 shows optimality when the
number of agents ranges from 2 to 100. In this experiment, we assume agents
have a shared utility area that is agreeable for them. This is because when the
number of agents becomes large, finding an agreement point is quite hard using
negotiation protocols and comparing optimality could be impossible. To create
a common area, agents’ utility spaces are randomly generated. Then a common
area is randomly generated whose value is more than an agent’s threshold.

The results demonstrated that optimality is more than 80% in all cases
in spite of not finding solutions to 7 issues in existing work. Although high
optimality came from the above common area assumption, the scalability of our
new protocol is ensured by this experiment. Our proposed approach works well
in single issue negotiations and multiple independent issues negotiations as well
because such negotiations have lower computational complexity than multiple
interdependent issues negotiations.

Figure 10 shows the failure rate for finding solutions in the three protocols.
(A) is the representative based protocol and selection method RAS. (B) is the
representative based protocol and selection method RANDOM. (C) is the basic
bidding based mechanism without threshold adjustment explained in Section 2.
Even if the number of agents increases, (A) is almost 0. On the other hand, (C)
shows a drastic increase over five agents because the bid limitation starts when

16
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Figure 10: Failure rate

there are five agents. Also, for more than five agents, the existing mechanism
fails to find solutions. Furthermore, (A) and (B) show that RAS has a lower
failure rate than RANDOM. Thus, the representative protocol with selection
method RAS has better failure rates.

Figure 11 compares optimality rates among “(A) Representative based Pro-
tocol (RAS),” “(B) Representative based Protocol (RANDOM),” and !H(C)
Basic Bidding.” Comparing (A) and (C), the difference of optimality is small,
around 0.05 at most. This difference reflects that since the representative based
protocol tends to find solutions at an early stage, it might miss better solutions.
Furthermore, (A) and (B) show that RAS has higher optimality than RAN-
DOM because more solutions are found in representatives with large revealed
areas. Thus, the representative protocol with selection method RAS has better
optimality rates

Figure 12 shows the variance of the utility value per agent. By this experi-
ment, we can recognize the satisfactory rate of individual agents. The variance
of the utility per agent is critical in bargaining theory because some experi-
mental results suggest that fairness influences decision-making per agent ([10]
etc.). (C) is better than (A) because the utility of the representatives is higher
than that of the unrepresentatives in the representative protocols. However, all
agents definitely satisfy the agreement points because their utility values are
higher than their reservation value.

Figure 13 shows the optimality and failure rates on the number of repre-
sentative agents. In this experiment, there are seven agents and three issues.
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Figure 11: Comparisons of optimality

Figure 13 (A) shows that optimality increases when the number of representative
agents increases. Even if agents have low utilities, they tend to be persuaded by
representative agents when the number of representatives is small. Figure 13 (B)
shows that the failure rate sharply increases when the number of representative
agents exceeds, which is where the bid limitation starts.

5 Related Work

Most previous work on multi-issue negotiation [3, 4, 5] has addressed only linear
utilities. Recently some researchers have been focusing on more complex and
non-linear utilities. [11] does not describe what kind of utility function is used,
nor does it present any experimental analyses. It is therefore unclear whether
this strategy enables sufficient exploration of the utility space. [12] presents
an approach based on constraint relaxation. However, there is no experimental
analysis and this paper presents only a small toy problem with 27 contracts. [13]
modeled a negotiation problem as a distributed constraint optimization prob-
lem. This paper claims the proposed algorithm is optimal, but does not discuss
computational complexity and provides only a single small-scale example.

[14] presented a protocol, based on a simulated-annealing mediator, that was
applied with near-optimal results to medium-sized bilateral negotiations with
binary dependencies. This work is distinguished by demonstrating both scala-
bility and high optimality values for multilateral negotiations and higher order
dependencies. [15, 16] also presented a protocol for multi-issue problems for
bilateral negotiations. [17, 18] presented a multi-item and multi-issue negotia-
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Figure 12: Comparison on variance of utility

tion protocol for bilateral negotiations in electronic commerce situations. [19]
proposed bilateral multi-issue negotiations with time constraints. These studies
were done from very interesting viewpoints, but focused on just bilateral trading
or negotiations.

[20] proposed multi-issue negotiation that employs a third-party to act as
a mediator to guide agents toward equitable solutions. This framework also
employs an agenda that serves as a schedule for the ordering of issue negotiation.
Agendas are very interesting because agents only need to focus on a few issues.

[21] proposed a checking procedure to mitigate this risk and show that by
tuning this procedure’s parameters, outcome deviation can be controlled. These
studies reflect interesting viewpoints, but they focused on just bilateral trading
or negotiations.

6 Conclusion

In this paper, we proposed a multi-round representative based protocol in very
complex negotiations among software agents. The representative based protocol
always reached agreements if the number of agents was large. It is important for
agents to make agreements without revealing their private information during
the negotiations. This proposed protocol reached an agreement while revealing
as little agents’ utility space as possible. The experimental results demonstrated
that the representative based protocol reduced the amount of private informa-
tion required for an agreement among agents, and its failure rate was almost
0. Furthermore, we compared RAS with RANDOM in the experiments. The
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Figure 13: Optimality rate and failure rate in number of representative agents

failure rate in RAS was lower than RANDOM.

In a real parliamentary system, the representatives (in theory) have done
their best to model the utility functions of the people they represent, so the
solutions that satisfy the representatives are likely to be good for (the major-
ity of) the people they represent. In the approach described in this paper,
the utility functions of the representatives are purely idiosyncratic to them, so
the solutions preferred by the representatives may be different from the solu-
tions that are best for the other agents. Therefore, our approach has difficulty
finding the best solution in one-shot negotiation. Changing representatives in
multi-round negotiation helps support this because the possibility of selecting
the best representatives in multi-round negotiation is higher than in one-shot
negotiation. However, the changing mechanism proposed here is simple. Thus
investigating changing mechanisms is possible future work. The effect of chang-
ing mechanisms on selecting representatives is an especially important analytic
point.
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