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Figure 1 Effect of C-CPEs on infection of Huh7 cells with HCVpv

After 2 h of incubation of anti-CD81 antibody (A) or C-CPEm19 (B) at the indicated
~concentration, Huh7 cells were treated with the mixture for 24 h. Then, the cells
were lysed, and the luciferase activity was measured. Data are means = SD (n=3).
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WT-BV CLA-BV CLB-BV

Figure 2 Induction of anti-CL antibody in mice immunized with CL-BV.
WT-BV or CL-BV (0.5 mgflane) were subjected to SDS-PAGE, followed by

immunaoblot analysis with the mouse serum.
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Figure 3 Enrichment of phages with affinity to CL1-BV.

CL1-BV coated on immunotubes were incubated with the scFv phage library. The
phages bound to CL1-BV were recovered (1%t output phage). The CL1-BV-binding
phages were subjected to two additional panning cycles, resulting in 279, 3 output
phage. The ratio of output phage to input phage titers was calculated
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Figure 4 Monoclonal analysis of scFv phages.
CL1-BV-bound phage clones were isolated, and the interaction of the monoclonal
phage with CL1-BV was examined by ELISA with HRP-anti-M13 Ab.
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Figure 5 Interaction of scFv-phage clones with CL-B
Each phage clones were added onto BV-coated immunoplate, and
BV-bound phages were detected by ELISA with HRP-anti-M13 mAb.
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Table 1 Amino acid sequence of CL-BV-bound scFv clones

VL FR1 CDR1 FR2 CDR2 £R3 CDR3 FR4 (Gas)3
Clone A [ oMToSOKFMS  sooex WYQOKPG . GVPDRFTGSGSQGTDF .o connny kg 0G00SG0GG
TSVGDRVSVTC 000K QSPKALIY TLTISNVQSEDLAEYFG ‘ SGGGGS
5 ,
CloneB DNITQSHKFMST — KASGDV  WYQOKPG GVPDRFTGSGSGTDFT GGGGSGOGG
B PoVOORVETG.  GTAVA  GSPKLLY | X | TENVOSEDLADYFG 00000xex FGAGTKLEVKR “ganaas
VH FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4
Clone A . , - . , v
QVQLOQAPGTELVKPG — WVYKQRPG xocococooosc, KATLTYDTASSTAYMQ - xxxxxooocx WGOGTTLOSSS
o ASVKMSCKASGYTFS QGLEWIG xxxxx. LSRLTSEDSAVYYCAR  xxxxxxx
DVQLVESGAELAKPG . WVKQRPG xxooooxx . KATLTYDTSSNTAYMG  xxxxxioxxx
CloneB  CixISOKASGFTFT XX QaLEWG wooocx LSSLTSEDSAVYYCAR oo WOQGTTLOSSS
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Hepatoprotective Effect of Syringic Acid and Vanillic Acid on CCl,-
Induced Liver Injury
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The mycelia of the edible mushroom Lentinula edodes can be cultured in solid medium containing lignin,
and the hot-water extracts (L.E.M.) is commercially available as a nutritional supplement. During the cultiva-
tion, phenolic compounds, such as syringic acid and vanillic acid, were produced by lignin-degrading peroxidase
secreted from L. edodes mycelia. Since these compounds have radical scavenging activity, we examined their pro-
tective effect on oxidative stress in mice with CCl,-induced liver injury. We examined the hepatoprotective effect
of syringic acid and vanillic acid on CCl,-induced chronic liver injury in mice. The injection of CCl, into the
peritoneal cavity caused an increase in the serum aspartate aminotransferase (AST) and alanine aminotrans-
ferase (ALT) levels. The intravenous administration of syringic acid and vanillic acid significantly decreased the
levels of the transaminases. Four weeks of CCl, treatment caused a sufficiently excessive deposition of collagen
fibrils. An examination of Azan-stained liver sections revealed that syringic acid and vanillic acid obviously sup-
pressed collagen accumulation and significantly decreased the hepatic hydroxyproline content, which is the quan-
titative marker of fibrosis. Both of these compounds inhibited the activation of cultured hepatic stellate cells,
which play a central role in liver fibrogenesis, and maintained hepatocyte viability. These data suggest that the
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administration of syringic acid and vanillic acid could suppress hepatic fibrosis in chronic liver injury.

Key words

The edible mushroom Lentinula edodes (shiitake) contains
bioactive compounds that have immune-modulating, antitu-
mor, antibacterial, antiviral, and antiparasitic effects.' ™ The
mycelia of L. edodes can be cultured in solid medium, and
the hot-water extract (L.E.M.) is commercially available as a
nutritional supplement. The main components of L.E.M. are
sugars, proteins, and polyphenolic compounds. Polyphenols
have protective effects against cancers, cardiovascular dis-
ease, and neurodegenerative disorders.”~” Among polyphe-
nols, syringic acid and vanillic acid are enriched in the solid
medium of cultured L. edodes mycelia.® L. edodes grown in
lignocellulose secretes lignin-degrading peroxidase into the
culture medium.” The mycelia-derived enzymes degrade the
lignin to produce phenolic compounds, particularly syringic
acid and vanillic acid. In our previous study, we demon-
strated that these phenolic compounds had a hepatoprotective
effect on concanavalin A (ConA)-induced liver injury in
mice.® We intraperitoneally injected syringic acid or vanillic
acid into mice shortly before a ConA injection into the tail
vein, which greatly increased the levels of serum aspartate
aminotransferase (AST) and alanine aminotransferase (ALT).
In addition, the inflammatory cytokines tumor necrosis factor
(TNF)-q, interferon-y (IFN-¥), and interleukin (IL)-6 in the
serum increased rapidly, within 3h of the ConA administra-
tion. The administration of syringic acid or vanillic acid sig-
nificantly decreased the transaminase and inflammatory cy-
tokine levels and suppressed the disorganization of the he-
patic sinusoids. Since ConA-induced liver injury is a mouse
model of immune-mediated liver injury that resembles viral
and autoimmune hepatitis in humans, the phenolics appeared
to have immunomodulating activity.

Polyphenols act as antioxidants by scavenging reactive
oxygen species (ROS), which produce oxidative stress and
can adversely affect many cellular processes. In the present
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c-mail: yagi@phs.osaka-u.ac.jp

hepatoprotection; Lentinula edodes; syringic acid; vanillic acid; pelyphenol

study, we examined the possible hepatoprotective effects of
two phenolic compounds, syringic acid and vanillic acid, on
oxidative stress in chronic CCl,-induced liver injury in mice.
We found that both phenolic compounds could suppress ox-
idative damage, especially liver fibrosis caused by repeated
administration of CCl,.

MATERIALS AND METHODS

Reagents Syringic acid, vanillic acid, and CCl, were
purchased from WAKO Pure Chemicals, Co., Ltd. (Osaka,
Japan). The chemical structures of syringic acid and vanillic
acid were shown in Fig. 1. L.E.M, was obtained from
Kobayashi Pharmaceutical Co., Ltd. (Osaka, Japan). CCl,
was dissolved in olive oil, and L.E.M., syringic acid, and
vanillic acid were dissolved in phosphate buffered saline
(PBS) for administration into mice. L.E.M., syringic acid,
and vanillic acid were dissolved in culture medium for hepa-
tocytes or hepatic stellate cells for in vitro experiments.

Animals BALB/c mice and Sprague-Dawley rats were
purchased from SLC (Shizuoka, Japan). The animals were
housed in an air-conditioned room at 22 °C before the experi-
ment. The animal experiments were conducted according to
the ethical guidelines of Osaka University Graduate School

COOH COOH

HZCO ‘OCH, ‘OCH;

OH oH
Syringic acid Vanillic acid
Fig. 1. Chemical Structures of Syringic Acid and Vanillic Acid
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of Pharmaceutical Sciences. The experimental protocol was
submitted to the Committee on the Guidelines for Animal
Experiments in Graduate School of Pharmaceutical Sciences,
and the experiments were conducted after gaining the ap-
proval. Mice in the chronic liver injury model received in-
traperitoneal injections of CCl, (0.5 ml/kg body weight) and
intravenously administered L.E.M., syringic acid, or vanillic
acid (10mg/kg body weight) twice a week for 4 weeks.
Twenty-four hours after the L.E.M., syringic acid, or vanillic
acid injection, the mice were anesthetized. Then, blood sam-
ples were collected to determine the transaminase activity,
and the livers were excised for Azan staining and determina-
tion of hydroxyproline and malondialdehyde.

Assays Serum AST and ALT levels were measured by
using an assay kit (Transaminase C-II, WAKO, Osaka,
Japan).

Histological Analysis Liver specimens were fixed in 4%
paraformaldehyde and embedded in paraffin, Sections were
cut from the tissue blocks and mounted on slides. Azan stain-
ing was then performed to evaluate the extent of liver fibro-
sis.

Measurement of Hydroxyproline Content Hepatic hy-
droxyproline content was measured by using Kivirikko’s
method'” with some modifications. Briefly, liver tissue
(50 mg) was hydrolyzed with 6 mol/l HCI at 110°C for 24h
in a glass test tube. After centrifugation at 3000 rpm for
10min, 2ml of the supernatant was neutralized with 8~
KOH. Two grams of KCI and 1 ml of 0.5 mol/l borate buffer
were then added to the neutralized supernatant, followed by a
15-min incubation at room temperature and then a 15-min in-
cubation at 0 °C. Freshly prepared chloramine-T solution was
then added, and the sample was incubated at 0 °C for 1 h, fol-
lowed by the addition of 2 ml of 3.6 mol/l sodium thiosulfate.
The samples were incubated at 120 °C for 30 min. Then, 3 ml
of toluene was added, and the samples were incubated for
20 min at room temperature. After centrifugation at 2000 rpm
for 5min, 2 ml of the supernatant was added to 0.8 ml buffer
containing Ehrlich’s reagent and incubated for 30min at
room temperature. The samples were then transferred to a
plastic tube, and the absorbance was measured at 560 nm.
The hydroxyproline content was expressed as micrograms of
hydroxyproline per gram of liver.

Measurement of Malondialdehyde Lyophilized liver
tissue (25 mg) was boiled for 30 min in a solution containing
250ml of 1.15% KCl, 150ml of 1% H,PO,, and 500 ml of
0.67% thiobarbituric acid. Two milliliters of n-butanol was
added to the ice-chilled sample, and then the sample was
stirred for 30min. After centrifugation at 3000xg for
10 min, the upper n-butanol phase was collected, and the
amount of malondialdehyde was colorimetrically determined
at 535 and 520 nm.

Isolation and Culture of Hepatic Stellate Cells He-
patic stellate cells (HSCs) were isolated from 10-week-old
male Sprague-Dawley rats by digesting the liver with
Pronase-E (Merck Darmstadt, Germany) and collagenase
type 1 (WAKO Pure Chemicals Co., Osaka, Japan) as previ-
ously described.'” Isolated HSCs were seeded at a density of
2x10°cells/cm® onto 24-well polystyrene culture plates
(Asahi Techno Glass, Funabashi, Chiba, Japan) to observe
the morphology and analyze fibrosis-related gene expression.
Cells were cultured in Dulbecco’s modified Eagle’s medium
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(Sigma, St. Louis, MO, U.S.A.) supplemented with 10% fetal
bovine serum.

Isolation and Culture of Hepatocytes Hepatocytes
were isolated from male BALB/c mice by perfusing the liver
with collagenase, according to the method of Seglen.'? Cells
were seeded at a density of 1x10°cells/em? into multi-well
culture plates pre-coated with collagen type I (Asahi Techno
Glass, Funabashi, Chiba, Japan). The basal medium con-
sisted of 50 U/ml penicillin G, 50 pug/ml streptomycin (ICN
Biochemicals, Inc., Costa Mesa, CA, US.A)), 1 um insulin,
1 um dexamethasone (WAKO Pure Chemicals Co., Osaka,
Japan), and 10% fetal bovine serum in William’s medium E
(MP Biomedicals, Inc., Kayserberg, France). Six hours after
the cells were seeded, the basal medium was replaced with
medium containing L.E.M., syringic acid, or vanillic acid at a
final concentration of 1.0 mg/ml without insulin and dexam-
ethasone. Cells were then cultured for 24—48h, and viable
cells were counted after trypan blue staining,

Reverse Transcription-Polymerase Chain Reaction (RT-
PCR) The HSCs were cultured for 7d and the total RNA
was extracted using High Pure RNA Isolation Kit (Roche,
Mannheim, Germany). The gene expression of collagen 1
ofl) was analyzed using the following primers: forward
5'-TGCCGTGACCTCAAGATGTG-3' and reverse 5'-CAC-
AAGCGTGCTGTAGGTGA-3'. The gene expression of
a smooth muscle actin (a-SMA) was analyzed using the
following primers: forward 5-CCGAGATCTCACCGAC-
TACC-3" and reverse 5'-TCCAGAGCGACATAGCACAG-3'.
The gene expression of f-actin was analyzed using the
following primers: forward 5'-CCCAGAGCAAGAGAGGC-
ATC-3" and reverse 5'-CTCAGGAGGAGCAATGATCT-3".

The RT-PCR was examined using RNA PDR Kit (TaKaRa,
Kyoto, Japan).

Statistical Analysis The data were analyzed for statisti-
cal significance by using Student’s r-test and Dunnett’s test.

RESULTS

Effect on CCl-Induced Chronic Liver Injury We ex-
amined the hepatoprotective effect of syringic acid and vanil-
lic acid on CCl -induced chronic liver injury in mice. As
shown in Fig. 2, after 4 weeks of CCl, treatment, the activi-
ties of blood AST and ALT increased 30-fold and 127-fold,
respectively, compared with controls. The intravenous ad-
ministration of syringic acid or vanillic acid significantly de-
creased the activities of AST and ALT. These results suggest
that syringic acid and vanillic acid suppress the hepatic in-
flammation caused by repeated CCl, treatments. We also ex-
amined the effect of syringic acid and vanillic acid on liver
fibrogenesis. Figure 3 shows typical Azan staining results, in
which fibrous materials are stained blue. In the controls (Fig.
3A), hardly any blue staining was observed in the pericentral
area. In contrast, the livers injured by chronic CCl, treatment
displayed a considerable accumulation of fibrous materials
(Fig. 3B). CCl, treatment for 4 weeks caused an excessive
deposition of collagen fibrils that was sufficient for the evalu-
ation of the antifibrogenic effect of syringic acid and vanillic
acid. Based on the results of Azan staining, the syringic acid
and vanillic acid treatments obviously suppressed collagen
accumulation (Figs. 3D, E). To quantitatively evaluate the ef-
fect of syringic acid and vanillic acid on fibrogenesis, we
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Fig. 2. Effect of Syringic Acid and Vanillic Acid on CCl,-Induced
Chronic Hepatic Injury

Mice received an intraperitoneal injection of CCl, and an intravenous injection of
L.E.M., syringic acid, or vanillic acid twice a week for 4 wecks. The serum levels of
AST (solid column) and ALT (open column) were determined. The values are
mean=S.D (n=4). The data were analyzed by Student’s rtest (+p<0.05, as compared
to uninjured control mice) and Dunnett’s method (*p<<0.05, as compared to CCl,-
injured control mice).

Fig. 3.

Livers were excised from normal mice (A), CCl,-injured control mice (B), L.E.M.-
treated mice (C), syringic acid-treated mice (D), and vanillic acid-treated mice (E).
Original magnification x400.

Azan Staining of Liver Sections

measured the hepatic hydroxyproline content, which parallels
the extent of fibrosis. After 4 weeks of CCl, treatment, the
hepatic hydroxyproline content increased 4.6-fold as com-
pared with the controls (Fig. 4). The intravenous administra-
tion of syringic acid or vanillic acid significantly decreased
the hepatic hydroxyproline content. These data suggest that
syringic acid and vanillic acid can suppress hepatic fibrosis
in chronic liver injury. Next, we measured the amount of
malondialdehyde in the liver samples as a marker of oxida-
tive stress. The malondialdehyde content was drastically in-
creased after 4 weeks of CCl, treatment, but the intravenous
administration of syringic acid or vanillic acid significantly
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Fig. 4. Effect of Syringic Acid and Vanillic Acid on the Hydroxyproline
Content of the Liver

The hydroxyproline content of the liver was measured after 4 weeks of treatments.
The values are mean*S.D. (n=4). The data were analyzed by Student’s t-test
(mp<0.01, as compared to uninjured control mice) and Dunnett’s method (* p<<0.05, as
compared to CCl,-injured control mice).

18 r
14
i.
g,
5
ag 08
= 0§
é 04 g » *
02
0
co, - + + + +
Syringic Acid  — — P + —
Vanillic Acid ~ — — — — +
LEM - - + P =

Fig. 5. Effect of Syringic Acid and Vanillic Acid on the Suppression of
Oxidative Stress

The malondialdehyde content of the liver was determined after 4 weeks of experi-
ments. The values are mean+S.D. (n=4). The data were analyzed by Student’s f-test
(# p<0.01, as compared to uninjured control mice) and Dunnett’s method (* p<0.05, as
compared to CCl,-injured control mice).

decreased the malondialdehyde content to an almost normal
level (Fig. 5). The protective effects of syringic acid and
vanillic acid were almost comparable to that of L.E.M. (Figs.
2—5).

In Vitro Effect on HSC Activation and Hepatocyte Via-
bility We examined the direct effect of syringic acid and
vanillic acid on the activation of HSCs, which play a central
role in liver fibrogenesis, using the monolayer culture. HSCs
are activated during the monolayer culture to transform into
proliferating myofibroblast-like cells. As shown in Fig. 6A,
HSCs were activated after 7d of culture to be fibroblastic
cell-type. The addition of syringic acid or vanillic acid dose-
dependently suppressed the activation (Fig. 6B). HSCs main-
tained their quiescent state by the addition of more than
0.5mg/ml of the respective compound. Next, the effect of sy-
ringic acid and vanillic acid on gene expression of Type I
collagen and o-SMA, which are markers of activated HSCs,
was examined. HSCs were cultured for 7 d in the presence or
absence of syringic acid or vanillic acid, and the gene expres-
sion was analysed by RT-PCR. As shown in Fig. 7, syringic
acid and vanillic acid remarkably suppressed the expression
of collagen and o-SMA genes, indicating that the phenolic
compounds directly act on HSCs and suppress the activation
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Fig. 6. Phase-Contrast Micrographs of Cultured HSCs

Freshly isolated HSCs were cultured for 7d in the absence (A) and presence (B) of
syringic acid or vanillic acid at the indicated concentration. Original magnification
X200.
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Fig. 7. RT-PCR Analysis of Gene Expression Relating to HSC Activation

Bottom figure shows the relative expression of collagen 1 o(I) (closed bar) and a-
SMA (open bar) compared with the non-addition control.
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Fig. 8. Effect of Syringic Acid and Vanillic Acid on Viability of Cultured
Hepatocytes

" Freshly isolated hepatocytes were cultured for 24h in the absence or presence of
1.0mg/ml syringic acid or vanillic acid. Viability was measured by trypan blue exclu-
sion test. The data were analyzed by Dunnett’s method (* p<<0.05, as compared to con-
trol).

to maintain the quiescent state. We then examined the effect
of the compounds on liver parenchymal hepatocytes using

the primary culture (Fig. 8). Hepatocytes were isolated and
cultured in the presence or absence of syringic acid or vanil-
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lic acid. After 24 h of culture, viable cells were counted using
trypan blue exclusion test. The addition of syringic acid or
vanillic acid significantly maintained viability of cultured he-
patocytes. These results suggested that syringic acid or vanil-
lic acid might suppress liver fibrogenesis and inflammation
by inhibiting HSC activation and protecting hepatocytes, re-
spectively in chronically liver injured mice.

DISCUSSION

The physiological functions of plant-derived phenolic
compounds have been extensively reported.”'>' Syringic
acid and vanillic acid possess antimicrobial, anti-cancer, and
anti-DNA oxidation properties.'>—'” We recently found that
syringic acid and vanillic acid could act as immunomodula-
tors in mice with ConA-induced liver injury.¥ In the present
study, we show that syringic acid and vanillic acid have pro-
tective effects in mice with CCl,-induced liver injury. Both
phenolic compounds dramatically suppressed liver fibrogene-
sis in the chronic CCl,-treatment model. When these pheno-
lics are orally administered to hamsters, they are adsorbed
and appear in the blood within 40 min.'"® Although these
compounds are intravenously administered in the present
study, oral administration could also elicit the hepatoprotec-
tive effect. The syringic acid and vanillic acid contents in
L.E.M. are 450 and 378 pig/g, respectively. Thus, the contents
are relatively small, but these compounds are commercially
available at low prices. Therefore, syringic acid and vanillic
acid might be promising oral agents for the prevention of
liver disease.

We evaluated the hepatoprotective effect of phenolic com-
pounds in mice with CCl,-induced liver injury. After intra-
venous administration, CCl, is introduced into the liver,
where it is toxic to hepatocytes. Cytochrome P-450 in the
endoplasmic reticulum of hepatocytes catalyzes the dehalo-
genation to produce an unstable complex trichloromethyl
radical,'” resulting in the extensive necrosis of hepatocytes
that leads to liver inflammation. In the present study, the
transaminase level in the serum was drastically increased by
CCl, treatment. Generation of ROS degrade polyunsaturated
lipids to form malondialdehyde, which is a marker of oxida-
tive stress. The chronic CCl, treatment significantly in-
creased the malondialdehyde content of the liver. Syringic
acid and vanillic acid clearly suppressed the transaminase
and malondialdehyde levels in CCl,-treated mice. Since both
of these compounds have 1,1-diphenyl-2-picrylhydrazyl
(DPPH) radical scavenging activity,” the suppression of ROS
generation appears to be responsible for the hepatoprotective
effect. Moreover, the CCl-induced liver fibrogenesis was
suppressed by the administration of syringic acid and vanillic
acid. The activation of HSCs is responsible for the develop-
ment of liver fibrosis.?>?" During liver injury with persistent
inflammation, HSCs are activated to differentiate into prolif-
erating myofibroblast-like cells and overproduce extracellular
matrix, leading to fibrogenesis. Since HSCs are activated
spontaneously during cell culture,”” we examined the effect
of syringic acid and vanillic acid on the activation of primary
cell cultures of rat HSCs. Both of these compounds clearly
inhibited the change from spherical to spindle shape and the
expression of o-smooth muscle actin and collagen Type lo
genes, which are the markers of HSC activation. We also
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examined the effect of syringic acid and vanillic acid on the
maintenance of hepatocyte viability in vitro. Both of these
compounds significantly maintained the viability of primary
cell cultures of hepatocytes. Thus, syringic acid and vanillic
acid could directly exert a physiological effect on hepato-
cytes and HSCs. Both phenolic compounds might affect
CCl, metabolism to inhibit the generation of cytotoxic
trichloromethyl radical in the liver. However, the direct ef-
fects of syringic acid and vanillic acid on HSCs and hepato-
cytes were shown in this study, and the protective effect was
also shown in ConA-induced liver injured mice in our previ-
ous study.®) Moreover, these phenolic compounds have strong
radical scavenging activity. These results suggest that during
the repeated treatment of CCl,, these compounds could pro-
tect hepatocytes and HSCs from CCl-induced oxidative
stress to suppress liver inflammation and fibrogenesis.

The hot-water extracts from cultured mycelia of L. edodes
have versatile physiological effects and might contain prom-
ising seed compounds for pharmaceutical development. We
have shown that syringic acid and vanillic acid have anti-ox-
idative and immunomodulating activities. In addition to these
phenolics, L.E.M. could contain novel compounds with phar-
maceutical potential. We are currently trying to isolate bioac-
tive components from L.E.M.
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