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RBV dose was associated with a stepwise increase in
relapse rate from 11% to 60% (Fig. 3).
Improving the treatment tolerability for genotype 2 or
3 patients has focused on dose reduction of treatment
drugs. Weiland et al. examined low-dose PEG-IFN-¢-2a
(135 pg/week) with a weight-based standard dose of
RBV (11 mg/kg daily) for genotype 2 and 3 patients."**
Recently, inoue et al. reported neither PEG-IFN nor RBV
drug exposure were critical in reaching rapid virological
response and SVR.”
Reconimendation 23: In genotype 1 patients, PEG-IFN
is dose-dependently correlated with c-EVR, independent
of RBV dose. The administration over 80% of the sched-
uled dose of PEG-IFN-a-2a or over 1.2 ug/kg per week
of PEG-IFN-0-2b should be chosen as a starting dose: a
marked dose reduction of PEG-IFN should not be risked
at the start even for patients with disadvantage (e.g.
aged patients). (Level 2b/3, Grade B.)
Recommendation 24: In genotype 1 patients, RBV
shows a dose-dependent correlation with the relapse
after treatment. Maintaining the RBV dose over 80% of
the scheduled dose or over 10 mgfkg per day (12 mgfkg
per day, if possible) during the complete treatment
period can lead to suppression of the relapse in HCV
genotype 1 patients responding to PEG-IFN-0-2b plus
RBV, especially in ¢-EVR patients. (Level 2b/3, Grade
B.)
Recqmmendation 25: In genotype 2/3 patients, reducing
drug doses of PEG-IFN and RBV (down to 400 mg/day)
has no significant effect on virological responses. (Level
2a, Grade B.)
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Figure 3 Relapse rate according to pegylated interferon (PEG-
IFN}-a-2b and ribavirin doses during treatment of patients
who completed treatment, which was stratified with the mean
ribavirin doses (—&). Group with the mean PEG-IFN dose
<1.4 pg kg/week (-®-). Group with the mean PEG-IFN dose
21.4 pg kg/week. There was no significant difference between
the two PEG-IFN-a-2b-dose groups (P=0.17).
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Treatment for patients without elimination
of HCV

Tarao et al. showed the rate of HCC appearance was
significantly higher in HCV-related cirrhotic patients
with a high ALT value (80 IU/mL) than in those with
a lower ALT value (<80 IU/mL).”® This suggested that
suppression of inflammation in the liver with HCV
infection is very important to prevent the hepatocar-
cinogenesis in patients with HCV-related cirrhosis.

Omata et al. assessed the effects of oral ursodeoxy-
cholic acid (UDCA) on serum biomarkers. CH-C
patients with elevated ALT were assigned randomly to
150 (n=199). 600 (n =200) or 900 mg/day (n=197)
UDCA intake for 24 weeks. As a result, the median
changes in serum ALT at the end of treatment were
shown to be -15.3, -29.2 and —36.2%, respectively,
although serum HCV RNA did not change in any
group.'®’

A glycyrrhizin product, Stronger Neo-Minophagen C
(SNMC; Minophagen Pharmaceutical, Tokyo, Japan), is
used widely in Japan and has been reported to improve
ALT levels and liver inflammation.'s"*> Furthermore,
iIkeda et al. reported liver carcinogenesis was suppressed
by long-term administration of glycyrrhizin, using a
cohort of 1249 patients, and its favorable effect on hepa-
tocellular carcinogenesis in those patients with [FN-
resistant CH-C.'**'**

Repeated phlebotomy has been shown to be effective
for the improvement of serum ALT as well as progres-
sion of fibrosis,” however, it remains controversial
whether the effects of IFN improve with extensive
phlebotomy.'*-14 N

In Japan, Yano etal. showed the iron removal by
repeated phiebotomy improved serum ALT levels in
patients with CH-C.'™

Recommendation 26: Patients whose HCY RNA was

not eradicated by PEG-IFN plus RBV and whose ALT

andfor AFP levels were not improved by IFN mono-
therapy or those without indication for IFN therapy
should be treated with the liver-supporting therapy

(SNMC, UDCA), and if the effect of this medication is

inadequate, phlebotomy can be used in combination.

(Level 3/6, Grade B/C.)

Treatment of patients with
decompensated cirrhosis

The compensated patients who failed to eradicate HCV
by antiviral therapy and decompensated patients should
be referred for consideration of liver transplantation and
liver supporting therapy should be performed. Long-
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term nutritional supplementation with oral branched-
chain amino acid (BCAA) has been shown to be useful
to prevent progressive hepatic failure and to improve
surrogate markers.'”"1”? Early interventional with oral
BCAA was shown to prolong the liver transplant waiting
period by preserving hepatic reserve in cirrhosis.

Recommendation 27: Patients with compensated cirrho-
sis for the prevention of hepatocellular carcinogenesis,
should be treated by not only IFN but also with liver
supporting therapy (SNMC, UDCA) andjor phlebotomy
andfor BCAA in order to improve the liver inflammation

and AFP levels. (Level 3, Grade C.)

Novel antiviral drugs

Telaprevir, a protease inhibitor specific to the HCV non-
structural 3/4A serine protease, reduced HCV RNA levels
rapidly in early studies. McHuthison et al. reported the
improved SVR rate with triple therapy for 12 weeks fol-
lowed by PEG-IFN-a-2a and RBV for 12 weeks.

Thus, the treatment for CH-C is progressing. There-
fore, as a treatment strategy, PEG-IFN plus RBV combi-
nation therapy should be performed early for aged
patients and the patients with the advanced fibrosis.
However, the novel antiviral drugs, such as protease
inhibitors and polymerase inhibitors, should be taken
into account as a candidate of treatment for the patients
who can wait for the oncoming drugs.

- Recommendation 28: Novel antiviral drugs, such as a
protease inhibitor or a polymerase inhibitor, in combi-
nation with PEG-IFN plus RBV, can improve the SVR
rates in genotype 1 CH-C patients. (Level 2a, Grade A.)
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Abstract

Background/Aim: Hepatic iron overload and steatosis play critical roles in the
progression of hepatitis C virus (HCV)-associated chronic liver disease.
However, how these two pathophysiological features affect each other remains
unknown. The aim of this study was to investigate how hepatic iron overload
contributes to the development of hepatic steatosis in the presence of HCV
proteins. Methods: Male C57BL/6 transgenic mice expressing the HCV poly-
protein and nontransgenic littermates were fed an excess-iron diet or a control
diet. Mice in each group were assessed for the molecules responsible for fat
accurnulation in the liver. Results: Hepatic iron levels were positively corre-
lated with triglyceride concentrations in the liver for all mice. As compared
with the livers of nontransgenic mice fed the control diet, the livers of
transgenic mice fed the excess-iron diet showed a lower expression of carnitine
palmitoyl transferase 1, a higher expression of sterol-regulatory element-
binding protein 1 and fatty acid synthetase and an activated unfolded protein
response indicated by a higher expression of unspliced and spliced X-box
DNA-binding protein 1 (XBP-1), phosphorylated eukaryotic initiation factor-
2o (p-elF2a), CCAAT/enhancer-binding protein homology protein (CHOP)
and abundant autophagosomes concomitant with increased production of
reactive oxygen species. Six-month treatment with the anti-oxidant N-acetyl
cysteine dramatically reduced hepatic steatosis in transgenic mice fed the
excess-iron diet through decreased expression of unspliced and spliced XBP-1,
p-elF2a, and CHOP. Conclusions: The iron-induced unfolded protein re-
sponse appears to be one of the mechanisms responsible for fat accumulation
in the liver in transgenic mice expressing the HCV polyprotein.

Hepatic steatosis and iron overload are not only the
pathophysiological features of hepatitis C virus (HCV)-
associated chronic liver disease (1, 2) but also risk factors
for the development of hepatocellular carcinoma (HCC)
(3, 4). Thus, these pathophysiological features appear to
play critical roles in the pathogenesis of HCV-associated
chronic liver disease. The mechanisms underlying HCV-
related steatosis are diverse. HCV core protein has been
demonstrated to inhibit microsomal transfer protein activ-
ity and very low-density lipoprotein secretion (5) and
to upregulate the promoter activity of sterol-regulatory
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element-binding protein (SREBP) lc, a transcription
factor involved in lipid synthesis (6). Persistent activation
of peroxisome proliferator-activated receptor & has also
been reported to be essential for the development of
hepatic steatosis in transgenic mice expressing the HCV
core protein (7). As for hepatic iron overload, we have
shown that HCV-induced reactive oxygen species (ROS)
increase the hepatic iron concentration by reducing
hepcidin transcription in transgenic mice expressing the
HCV polyprotein (8}, and that even modest iron supple-
mentation results in the development of liver tumours,
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including HCC, through mitochondrial injury in these
transgenic mice (9). However, it remains unknown how
these two pathophysiological features affect each other in
the progression of HCV-associated chronic liver disease. In
our previous study, marked hepatic steatosis was observed
at 6 months after commencement of iron overloading in
transgenic mice, which was followed by the development of
liver tumours. These results clearly indicated that hepatic
iron overload was involved in the development of hepatic
steatosis in the presence of HCV proteins. The aim of this
study was to investigate how hepatic iron overload con-
tributes to the development of hepatic steatosis in trans-
genic mice expressing the HCV polyprotein. In the present
study, we report that iron-induced ROS-activated unfolded
protein response may be postulated as one of the possible
mechanisms of HCV-related fat accumulation in the liver.

Materials and methods
Animals

The transgene pAIbSVPA-HCYV, containing the full-length
polyprotein-coding region under the control of the murine
albumin promoter/enhancer, was described in detail (10,
11). HCV polyprotein has been demonstrated to be
processed into individual proteins in the liver and to be
expressed at a biologically relevant level in which tran-
scripts of RNA encoding the complete viral polyprotein are
detectable only by a reverse-transcription polymerase chain
reaction (11). Of the four transgenic lineages with evidence
of RNA transcription of the full-length HCV-N open
reading frame (FL-N), the FL-N/35 lineage proved capable
of breeding in large numbers. There is no inflammation in
the transgenic liver (11). Male FL-N/35 transgenic mice
and age-matched C57BL/6 mice {control mice) were fed a
normal rodent diet including carbonyl iron (45 mg/kg diet,
control diet) or an excess-iron diet {carbonyl iron 225 mg/
kg diet) at the age of 8 weeks, bred, maintained and killed
by an intraperitoneal injection of 10% pentbarbital sodium
preceded by 12-h fasting at 12 months after initiation of
feeding according to the criteria outlined in the Guide for
the Care and Use of Laboratory Animals. As another
experiment, six FL-N/35 transgenic mice were fed the
control diet for 6 months, and then they were divided into
two groups: three fed the excess-iron diet for 6 months with
administration of N-acetyl cysteine (NAC) and those with-
out NAC. NAC was contained in drinking water (1 g/L).

Hepatic iron and triglyceride content

Iron concentrations in the livers were measured by atomic
absorption spectrometry (Hitachi Z-6100, Hitachi Ltd.,
Tokyo, Japan), as described previously (9), and expressed
as ng Fe/g of tissue (wet weight). Lipids were extracted
from the homogenized liver tissue by the method of Bligh
and Dyer (12). The triglyceride levels were measured with a
TGE-test Wako kit (Wako Pure Chemicals, Tokyo, Japan)
according to the manufacturer’s instructions. The protein
concentrations in the liver were determined by the method
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of Lowry et al. (13), using a DC protein assay kit {Bio-Rad
Laboratories, Hercules, CA, USA).

Immunoblotting

Lysates of liver were separated by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis. The proteins were
transferred to polyvinylidene difluoride membranes (Milli-
pore, Bedford, MA, USA), blocked overnight at 4 °C with
5% skim milk and 0.1% Tween 20 in Tris-buffered saline
and subsequently incubated for 1h at room temperature
with an anti-human ferritin antibody (Dako, Glostrup,
Denmark), anti-rabbit carnitine palmitoyl transferase I
(CPT 1) antibody, anti-rabbit CPT II antibody (Alpha
Diagnostic International, San Antonio, TX, USA), anti-
rabbit SREBP1 antibody (Santa Cruz Biotechnology Inc.,
Santa Cruz, CA, USA), anti-rabbit fatty acid synthetase
(FAS) antibody (Cell Signaling Technology Inc., Boston,
MA, USA), anti-mouse X-box DNA-binding protein 1
(XBP-1) antibody (Santa Cruz Biotechnology Inc.) or
anti-bacterially expressed, mouse CCAAT/enhancer-bind-
ing protein homology protein (CHOP) fusion protein
antibody (Abcam, Cambridge, England). Exceptionally,
the proteins were blocked for 1h at room temperature
and subsequently incubated overnight at 4°C with an
anti-rabbit phosphorylated eukaryotic initiation factor-2o
(p-elF2a) antibody (Cell Signaling Technology Inc.).

Histological staining

A portion of liver was immediately snap frozen in liquid
nitrogen for determination of hepatic triglyceride and
iron concentrations. The remaining liver tissue was fixed
in 4% paraformaldehyde in phosphate-buffered saline
and embedded in paraffin for histological analysis. Liver
sections were stained with haematoxylin and eosin.

Electron microscopy

Liver specimens were fixed in 2.1% glutaraldehyde, post-
fixed in 1% osmium tetroxide, dehydrated in graded
ethanol and propylene dioxide and embedded in Epok.
Thick sections (1 pm in width) were stained with tolui-
dine blue to identify steatosis by light microscopy. Thin
sections were stained with uranyl acetate and lead citrate,
and examined using a Hitachi-7000 transmission elec-
tron microscope (Hitachi Ltd.).

In situ detection of reactive oxygen species

In situ ROS production in the liver was assessed by
staining with dihydroethidium, as described previously
(8). In the presence of ROS, dihydroethidium (Invitrogen
Corp., Carlsbad, CA, USA) is oxidized to ethidium
bromide and stains nuclei bright red by intercalating
with the DNA (14). Fluorescence intensity was quantified
using NIH image analysis software for three randomly
selected areas of digital images in each mouse.
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Statistical analysis

Quantitative values are expressed as mean 4 SD. Two
groups among multiple groups were compared by the
rank-based, Kruskal-Wallis anova test, followed by the
Scheffé test. Data between two groups were compared by
Student’s t-test. The statistical significance of correlation
was determined by the use of a simple regression analysis.
A Pvalue of < 0.05 was considered to be significant.

Results

Correlation between iron and triglyceride contents in the
liver

Dietary intake and body weight were measured every 4
weeks until 12 months after commencement of iron
loading, and these parameters did not differ significantly
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among any of the 4 groups. The hepatic iron content
(267 94 pg/g liver weight) of FL-N/35 transgenic mice
fed the excess-iron diet was significantly greater than that
of nontransgenic and FL-N/35 transgenic mice fed the
control diet at 12 months after commencement of iron
loading (Fig. 1A), and was comparable to that of a large
number of patients with chronic hepatitis C in extensive
studies (15, 16). The hepatic ferritin level of FL-N/35
transgenic mice fed the excess-iron diet was significantly
greater than that of nontransgenic mice fed the control diet
(Fig. 1B). The hepatic iron content was positively corre-
lated with the hepatic triglyceride concentration when both
parameters were compared for all mice (r=0.63, P=0.002,
Fig. 1C). These resuits were consistent with our previous
observation that FL-N/35 transgenic mice fed the excess-
iron diet demonstrated the most severe steatosis in the liver
among the four groups (9).
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Fig. 1. Hepatic iron contents and ferritin levels, and correlation between iron and triglyceride contents in the liver. (A) The hepatic iron content
was measured by atomic absorption spectrometry in five mice in each group at 12 months after initiation of iron loading. (B) Immunoblots for
ferritin were performed using liver lysates obtained from four mice in each group. The protein expression was normalized with B-actin. (C) The
correlation between hepatic iron and triglyceride levels was determined in 20 mice from four groups. nTgM-C: nontransgenic mice fed the
control diet, nTgM-Fe: nontransgenic mice fed the excess-iron diet, TgM-C: FL-N/35 transgenic mice fed the control diet, TgM-Fe: FL-N/35
transgenic mice fed the excess-iron diet. *P < 0.05, **P < 0.01.
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Fig. 2. Expression of carnitine palmitoyl transferase | (CPT1), carnitine palmitoy! transferase | (CPT2), sterol-regulatory element-binding protein
I (SREBP1) and fatty acid synthetase (FAS) in the liver. Immunoblots for CPT1 (A), CPT2 (B), SREBP1 (C) and FAS (D) were performed using liver
lysates obtained from four mice in each group at 12 months after initiation of iron loading. The protein expression was normalized with f-actin.
*P < 0.05, **P < 0.01. nTgM-C, TgM-C, nTgM-Fe and TgM-Fe; see legend for Figure 1.

Decreased expression of carnitine palmitoyl transferase [
and increased expression of sterol-regulatory element-
binding protein 1

As we previously reported reduced oxidation activity of
fatty acid in iron-overloaded transgenic mice (9), we first
examined the expression levels of CPT1 and CPT2, which
regulate oxidation of long-chain fatty acids in the mito-
chondria. The expression of CPT1, but not CPT2, was
significantly reduced in FL-N/35 transgenic mice fed the
excess-iron diet compared with the nontransgenic mice
fed the control diet (P =0.0003, Fig. 2A and B). We next
examined the expression level of SREBP1, a transcription
factor that activates the genes required for lipogenesis
(17), and FAS, a target gene of SREBPI1. As shown in
Figures 2C and D, the expression of SREBP1 and FAS was
significantly greater in FL-N/35 transgenic mice fed the
excess-iron diet than in nontransgenic and FL-N/35
transgenic mice fed the control diet, suggesting the
involvement of activated lipogenesis in hepatic steatosis
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in FL-N/35 transgenic mice fed the excess-iron diet. It
should also be noted that modest iron supplementation
significantly activated lipogenesis in FL-N/35 transgenic
mice, but not in nontransgenic mice.

Activated unfolded protein response

Upon endoplasmic reticulum (ER) stress, the SREBP-
SREBP cleavage-acting protein (SCAP) complex dissociates
from the ER retention protein and subsequently translo-
cates to the Golgi apparatus, where SREBP is cleaved and
activated (18, 19). We therefore investigated whether
increased expression of SREBP1 was related to ER stress.
The unfolded protein response-signalling cascades are
initiated by three ER-resident sensors: inositol-requiring
enzyme 1 (IRE1), RNA-activated protein kinase (PKR)-like
ER kinase (PERK) and activating transcription factor 6
(ATF6) (20). IRE1 activation splices unspliced XBP-1
(uXBP-1) to form spliced XBP-1 (sXBP-1) mRNA (21),
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Fig. 3. Expression of spliced X-box DNA-binding protein 1 (sXBP-1), unspliced X-box DNA-binding protein 1 (uXBP-1), phosphorylated
eukaryotic initiation factor-2a (p-elF2a) and CCAAT/enhancer-binding protein homology protein (CHOP) in the liver. Immunablots for sXBP-1
and uXBP-1 (A), p-elF2x (B) and CHOP (C) were performed using liver lysates obtained from seven full-length HCV-N open reading frame (FL-N/
35) transgenic mice fed the excess-iron diet and four mice in the three other groups at 12 months after initiation of iron loading. The protein
expression was normalized with B-actin. *P < 0.05, **P < 0.01. nTgM-C, TgM-C, nTgM-Fe, and TgM-Fe; see legend for Figure 1.

and was assessed with the sXBP-1 protein level (22).
PERK activation was evaluated by measurement of
p-elF2a and CHOP (23). ATF6 activation was assessed
with uXBP-1 expression (24). The expression of uXBP-1,
sXBP1, p-elF2a and CHOP was significantly greater in
FL-N/35 transgenic mice fed the excess-iron diet than
that in nontransgenic mice fed the control diet (Fig. 3).

Autophagy

We next examined the formation of autophagosomes at the
ultrastructural level to confirm the activation of the un-
folded protein response, because autophagy has been shown
to be induced by the unfolded protein response (25-27). As
shown in Figure 4, autophagosomes (indicated by arrows)
were abundantly found in the liver in FL-N/35 transgenic
mice fed the excess-iron diet. In contrast, autophagosomes
were not present in the liver of nontransgenic mice fed the
excess-iron diet. These results were compatible with the

Liver International (2010)
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increased expression of uXBPl, sXBP1, p-elF-2o¢ and
CHOP in FL-N/35 transgenic mice fed the excess-iron diet,
suggesting activation of the unfolded protein response.
Thus, activation of the unfolded protein response appeared
to be involved in the development of hepatic steatosis in FL-
N/35 transgenic mice fed the excess-iron diet.

Reactive oxygen species generation and endoplasmic
reticulum stress

Superoxide has been reported to be selectively involved in
ER stress-mediated apoptosis (28). It is also reported that
anti-oxidants reduce ER stress and improve protein secre-
tion (29). These results suggest that ROS production
induces ER stress. We evaluated in situ ROS production in
the liver by staining with dihydroethidium and assessed
whether treatment with an anti-oxidant reduced hepatic
steatosis through inhibition of the unfolded protein re-
sponse. ROS production was significantly higher in FL-N/35
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Fig. 4. Electron microscopy of the liver of an FL-N/35 transgenic mouse and a nontransgenic mouse, both of which were fed the excess-iron
diet for 12 months. (A) Nontransgenic mouse, (B) full-length HCV-N open reading frame (FL-N/35) transgenic mouse and (C) Magnified picture
of B. Autophagosomes (indicated by arrows) are abundantly found in the liver of the FL-N/35 transgenic mouse fed the excess-iron diet.
Magnification scales are indicated below each picture.
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Fig. 5. Reactive oxygen species production in the liver. (A) Frozen liver sections of mice in each group were stained with dihydroethidium. (B)
Fluorescence intensity was quantified by NIH image analysis software for three randomly selected areas of digital images for three mice in each
group at 12 months after initiation of iron loading. **P < 0.01. nTgM-C, TgM-C, nTgM-Fe, and TgM-Fe; see legend for Figure 1.

transgenic mice fed the excess-iron diet than in mice in
the three other groups, even though abundant ROS
production was found in all mice, except for nontrans-
genic mice fed the control diet (Fig. 5A and B). ROS
production was significantly higher in transgenic mice
than in nontransgenic mice irrespective of iron over-
loading. Iron overloading also significantly increased

ROS production irrespective of whether the mice were
transgenic or nontransgenic (Fig. 5B). FL-N/35 trans-
genic mice fed the excess-iron diet had the highest level of
ROS production.

A six-month treatment with an anti-oxidant, NAC,
dramatically reduced hepatic steatosis in FL-N/35 trans-
genic mice fed the excess-iron diet (Fig. 6A), together

>

Fig. 6. Liver histology, and the ratio of liver weight to body weight, serum alanine aminotransferase (ALT) levels, reactive oxygen specie’s
production and expression of carnitine palmitoyl transferase | (CPT1), sterol-regulatory element-binding protein | (SREBP1), spliced X-box DNA-
binding protein 1 (sXBP1), unspliced X-box DNA-binding protein 1 (uXBP1) and CCAAT/enhancer-binding protein homology protein (CHOP) in
the liver of full-length HCV-N open reading frame (FL-N/35) transgenic mouse fed the excess-iron diet with/without N-acetyl cysteine (NAC)
treatment. (A) NAC treatment drastically reduced hepatic steatosis in mice. (B) Frozen liver sections of mice in each group were stained with
dihydroethidium. Fluorescence intensity was quantified with the method described in the legend for Figure 5 in three mice in each group. (C)
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with a significant reduction in the ratio of liver weight to
body weight and ROS production (Fig. 6B). The serum
alanine aminotransferase level was also reduced by NAC,
but this change was not statistically significant because of
the large variance of the data. The expression of uXBP1,
sXBP1 and CHOP was significantly reduced after treat-
ment with NAC, suggesting an inhibitory effect of the anti-
oxidant on the unfolded protein response (Fig. 6C). The
expression of SREBP1 was also reduced by treatment with
NAC, but this reduction was not statistically significant
(P=0.08). The expression of CPT1, which regulates oxidi-
zation of long-chain fatty acids in the mitochondria, did
not change after NAC treatment. These results suggested
that iron-induced ROS generation induced hepatic steato-
sis through the activation of the unfolded protein response.
It also seemed that the increased lipogenesis through the
activated unfolded protein response contributed more to
the development of hepatic steatosis than the reduced
B-oxidation activity in FL-N/35 transgenic mice fed the
excess-iron diet, because the anti-oxidant almost comple-
tely inhibited the development of hepatic steatosis without
affecting the expression of CPT1.

Discussion

The hepatic iron content of FL-N/35 transgenic mice fed
the excess-iron diet was comparable to that of a large
number of patients with chronic hepatitis C in extensive
studies (15, 16). The positive correlation between the
iron level and the triglyceride concentration in the liver
was consistent with our previous observation that even
modest iron supplementation enhanced hepatic steatosis
in FL-N/35 transgenic mice (9), suggesting a potential
role of iron in the development of HCV-related steatosis.
Although previous studies revealed a direct contribution
of HCV core protein to the development of hepatic
steatosis (5-7), how iron overload, which is one of
pathological features in chronic hepatitis C, affects
hepatic steatosis remains unknown. The decreased ex-
pression of CPT I suggested reduced p-oxidation activity,
because this transmembrane enzyme of the mitochon-
drial outer membrane has been shown to be the rate-
limiting step in the B-oxidation of long-chain fatty acids
(30). This result was consistent with our previous ob-
servation that the degradation activity of fatty acids
in vivo was reduced in iron-overloaded transgenic mice.
The decreased expression of CPT I may be related to the
association of HCV core protein with the mitochondrial
outer membrane (31). However, the decreased expres-
sion of CPT I seemed to reflect the rather increased
synthesis of fatty acids because CPT 1 is negatively
regulated by malonyl-CoA, an intermediate product
in fatty acid synthesis, at the transcriptional level (30).
In fact, the expression of FAS was significantly increased
in FL-N/35 transgenic mice fed the excess-iron diet,
which was presumably driven by upregulation of a
transcription factor, SREBP1. We could not differentiate
SREBPI1c from SREBP1a at the protein level because of

690

Nishina et al.

the lack of an adequate antibody; nevertheless, the
expression of SREBP1 was assumed to mainly reflect that
of SREBPIc, because the SREBPlc¢ transcript extremely
predominates over the SREBP1a transcript in the mouse
liver (32).

The regulation of SREBP activation occurs at two levels:
transcriptional and post-transcriptional (17). Upregulation
of SREBPlc promoter activity has been reported in HCV
core gene-transgenic mice (6), but we did not find a
significant difference in SREBP1 expression between trans-
genic and nontransgenic mice without iron overloading.
This contradiction may have arisen from a difference in the
transgenic mice used in the two studies. In addition, a
recent report found no significant difference in the hepatic
expression of SREBP1c mRNA between subjects with HCV
infection and those with a histologically normal liver (33).
HCV has been demonstrated to induce proteolytic cleavage
of SREBP1 and 2 in HCV replicon cells (34). As described
previously, modest iron supplementation restored a major
phenotype of FL-N/35 transgenic mice marked by hepatic
steatosis and liver tumour development (9). Thus, the
present animal model was useful for understanding the
critical role of iron overloading in the development of
HCV-related hepatic steatosis. We therefore focused on the
post-transcriptional regulation of SREBP1 by iron in the
presence of HCV proteins. Upon ER stress, the SREBP-
SCAP complex dissociates from the ER retention protein
and subsequently translocates to the Golgi apparatus, where
SREBP is cleaved and activated (18, 19). FL-N/35 transgenic
mice fed the excess-iron diet showed the activated unfolded

~protein response, assessed by the increased expression of

uXBP-1, sXBP-1, p-elF2a and CHOP, suggesting that the
unfolded protein response was activated by iron overload-
ing in the presence of HCV proteins. On the other hand, it
is demonstrated that the trans-activating activity of XBP-1
is suppressed, but ATF6 functions properly in HCV repli-
con cells (35), which is in part contradictory to the present
results. Methodological differences (in vivo or in vitro, iron
overload or not, etc.) in two studies may account for this
contradiction. Thus, the role of the unfolded protein
response in HCV infection alone is still a matter of debate.

To confirm activation of the unfolded protein response
in FL-N/35 transgenic mice fed the excess-iron diet, we
wanted to assess not only the activation of ER-resident
sensors but also the morphological change induced by
the unfolded protein response. Autophagy has been
shown to play important roles in cell survival after ER
stress (25-27). A double-membrane structure, which is
called the autophagosome or the autophagic vacuole, is
formed de novo to sequester cytoplasm. Then the vacuole
membrane fuses with the lysosomal membrane to deliver
the contents into the autolysosome, where they are
degraded and the resulting macromolecules are recycled.
Some studies demonstrated a critical role of IRE! in
inducing autophagy under ER stress (25, 36), whereas
another study reported the involvement of the PERK-
elF2x signalling pathway, not IREL, in autophagy induc-
tion by ER stress (37). Thus, it is still controversial as to
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which transducer is utilized for ER stress-induced autop-
hagy in mammalian cells. The abundant presence of
autophagosomes was consistent with the activation of
both ER-resident sensors, IRE1 and PERK, in the liver in
FL-N/35 transgenic mice fed the excess-iron diet.
Although there is no direct link between induction of
autophagy and hepatic steatosis in FL-N/35 transgenic
mice fed the excess-iron diet, induction of autophagy
seemed to support the ER stress-related hepatic steatosis
because autophagy is one of the morphological changes
under ER stress (25-27).

Iron ovetload is potentially one of multiple sources of
ROS production, as represented in the iron-catalysed Fenton
reaction (38). FL-N/35 transgenic mice fed the excess-iron
diet had a significantly higher level of ROS production than
mice in the three other groups, suggesting a cooperative role
of HCV proteins and iron in inducing oxidative stress. ROS
have been demonstrated to be involved upstream of the
unfolded protein response (28). Anti-oxidants have also
been shown to reduce the unfolded protein response and
improve protein secretion (29). The present findings that
the expression of uXBP1, sXBP1 and CHOP, but not CPT1,
was significantly reduced with NAC treatment were consis-
tent with these previous observations, suggesting that iron-
induced ROS activated the unfolded protein response in the
presence of HCV proteins. How then does ER stress activate
SREBP1? There are several lines of evidence suggesting that
one mechanism by which ER stress leads to activation of
SREBPs is related to downregulation of insulin-induced
genes. Downregulation of insulin-induced genes is asso-
ciated with less retention of SREBPs in the ER, which leads
to increased SREBP activation (39—41). As another mechan-
ism, it has been shown that overexpression of glucose-
regulated protein 78, one of the ER resident chaperone
proteins, inhibits SREBP activation (42). Irrespective of how
ER stress activates SREBP, the predominant role of SREBP1
in the ER stress-related hepatic steatosis in FL-N/35 trans-
genic mice fed the excess-iron diet was similar to that
observed in a murine intragastric ethanol-feeding model
(43). In conclusion, considering the complexity of the
argument and the limited number of evaluated mechanisms,
iron-induced ROS-activated unfolded protein response may
be postulated as one of the possible mechanisms of HCV-
related fat accumulation in the liver.
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Introduction

Abstract

Bartonella henselae is the causative agent of cat scratch disease (CSD). To clarify the
population structure and relationship between human and cat strains of
B. henselae, 55 specimens isolated in Japan, including 24 B. henselae DNA-positive
clinical samples from CSD patients and 31 B. henselae isolates from domestic cats,
were characterized by multilocus sequence typing (MLST) and the 165-23S tRNA-
Ala/tRNA-Ile intergenic spacer (S1) sequence, which were used previously for
strain typing of B. henselae. Three different sequence types (STs) were identified by
MLST, one of which was novel. Fifty-two strains (94.5%), including all strains
detected in CSD patients, were assigned to ST-1. Eight S1 genotypes were observed,
three of which were novel. The 52 ST-1 strains were classified into seven S1
genotypes, two of which were predominant in both human and cat strains. In
addition, 5.5% of the strains {(3/55) contained two different intergenic spacer S1
copies. These results indicate that the predominant B. henselae MLST ST-1 in
Japan is a significantly genetically diverse population on the basis of the sequence
diversity of intergenic spacer Sl, and that highly prevalent S1 genotypes among
cats are often involved in human infections.

Isolation of B. henselae from patients is extremely difficult
(La Scola & Raoult, 1999). The diagnosis of CSD relies

Bartonella henselae is the causative agent of cat scratch
disease (CSD). Cats represent the major reservoir for B.
henselae. Infected cats are usually asymptomatic and develop
relapsing bacteremia for long periods (Kordick et al., 1995).
Human infection usually occurs through scratches or bites
by infected cats and presents as CSD, typically with localized
lymphadenopathy. Occasionally, the infection may have an
atypical presentation due to blood-borne spread, such as
bacteremia, endocarditis, encephalopathy, neuroretinitis, or
systemic CSD with hepatic and splenic granuloma (Ander-
son & Neuman, 1997; Murakami et al,, 2002; Tsuneoka &
Tsukahara, 2006). Disease symptoms depend on the im-
mune status of the host; in immunocompromised hosts, the
bacteria are often present in blood and involved in angio-
proliferative disorders such as bacillary angiomatosis and
peliosis hepatis (Welch et al.,, 1992).
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on clinical manifestations, history of contact with cats,
serology, or the detection of bacterial DNA in tissue
specimens by PCR (Regnery et al., 1992; Anderson et al,,
1994; Murakami et al., 2002; Woestyn et al., 2004; Tsuneoka
& Tsukahara, 2006). Bartonella henselae strains are
divided into two 16S rRNA (rrs) genotypes (16S type
I/Houston-1 and 16S type 1l/Marseille), which correspond
to two distinct human serotypes (Drancourt et al., 1996;
La Scola et al., 2002). Although both genotypes are present
worldwide, 16S type II appears to be dominant in the
European cat population, whereas 165 type 1 is more
common in Asia, including Japan (Maruyama et al, 2000;
Boulouis et al., 2005).

Multilocus sequence typing (MLST) is a nucleotide
sequencing-based genotyping method in which variations
in approximately 450-500-bp internal fragments of
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housekeeping genes (generally seven) are indexed (Maiden,
2000). MLST analysis of 182 feline and human B. henselae
isolates from Europe, North America, and Australia revealed
that sequence type (ST)-1 was most significantly associated
with human infection, but that the geographical distribu-
tion of STs was not homogenous (Arvand et al, 2007).
However, the use of highly conserved housekeeping genes in
MLST often fails to detect variability in closely related
strains. Compared with housekeeping genes, intergenic
spacers are highly variable, thus generating a clearer popula-
tion structure (Li et al, 2009). In the multispacer typing
(MST) scheme for B. henselae, the 165-23S tRNA-Ala/
tRNA-Ile intergenic spacer {81} is the most variable spacer,
containing a 15-bp variable number tandem repeat (VNTR)
(Li et al., 2006). PCR-based genotyping methods can be
applied directly to clinical specimens (Rodrick et al., 2004;
Li et al., 2007). However, no data are available regarding the
predominant strains causing CSD in Japan.

In this study, we examined 55 human and feline
B. henselae specimens by MLST and S1 sequence to uncover
the genotypic distribution and relationship between human
and cat strains of B. henselae in Japan. Furthermore,
we analyzed the structural diversity of ST-1 using the
intergenic spacer S1 sequence to generate a clear population
structure.

Materials and methods

Clinical specimens

Twenty-four human clinical specimens consisted of five
lymph node specimens and 16 pus specimens from patients
with typical CSD, one blood specimen from a patient with
bacteremia, one liver specimen from a patient with hepatic
granuloma, and one spleen specimen from a patient with
splenic granuloma. The specimens were obtained from
various regions of western Japan, including Yamaguchi
prefecture, from 1997 to 2008.

Bacterial strains

The 31 B. henselae isolates were derived from 290 blood
samples collected from domestic cats in western Japan,
mainly Yamaguchi prefecture, from 2003 to 2004 (Tsuneoka
et al., 2004). Primary isolates of B. henselae from cat
blood samples were grown on chocolate agar plates with
5% defibrinated sheep blood at 35°C in 5% carbon
dioxide (CO;) for 2 weeks. The strains were stored
at — 80 °C until use. Subcultures were performed on choco-
late agar plates with 5% defibrinated sheep blood at 35 °C in
5% CO, for 5 days. A single colony of each isolate was
passaged once on agar before the extraction of bacterial
DNA.
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DNA extraction

Total genomic DNA was extracted using the QlAamp DNA
Mini Kit (Qiagen, Hilden, Germany)} according to the
manufacturer’s instructions.

Identification of B. henselae

Bartonella henselae was detected with PCR targeting 414 bp
of the hitrA gene and 172 bp of the Bartonella species-specific
165-23S rRNA internal transcribed spacer region, and
confirmed by partial sequencing of the 165 rRNA gene using
broad-host-range primer 16SF together with 16SR, as de-
scribed previcusly (Anderson et al., 1994; Bergmans et al,
1996; Jensen et al., 2000). No bacterial species other than B.
henselae was detected in any sample.

PCR amplification and sequencing

For MLST, ecight genes (rrs, batR, gitA, ftsZ, groEL, nlpD,
ribC, and rpoB) were amplified and sequenced directly using
MLST primers for B. henselae as described previously
(Iredell et al., 2003). The intergenic spacer 51 was amplified
and sequenced directly using S1 forward primer and 51
reverse primer as described previously (Li et al, 2007).
When direct sequencing of spacer S$1 was unsuccessful
because of an atypical number of VNTRs, locus-specific
PCR was performed using S1 forward primer with one of
two locus-specific primers: BH12700-R (5'-ACGCCAATGT
GTTATCCACTT-3'} or BH13810-R (5'-GAAACTTGTCGA
TGATCAGGC-3'). The PCR mixture contained 1 x Phusion
HF Buffer (Finnzymes, Espoo, Finland), 0.4U Phusion
DNA polymerase (Finnzymes), 200uM dNTP, 500 nM of
each primer, 4-100 ng DNA template, and sterile-distilled
water, in a final volume of 20 uL. The reaction conditions
were as follows: denaturation at 98 °C for 30's; 35-50 cycles
at 98 °C for 105, 56-62 °C for 30, and 72 °C for 30-120s;
and a final extension step at 72 °C for 10 min. PCR products
were purified using the High Pure PCR Product Purification
Kit {Roche Diagnostics GmbH, Mannheim, Germany) and
then sequenced directly using the BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems, Foster City, CA)
on both strands with a 3130 Genetic Analyzer (Applied
Biosystems).

Sequencing analysis and phylogenetic analysis

The nudeotide sequences were analyzed with DNA seQUEN-
CING ANALYsIS software version 5.1 (Applied Biosystems).
Alleles, STs, and S1 genotypes were assigned in accordance
with published data (Iredell et al., 2003; Li et al., 2006, 2007;
Arvand et al., 2007). The novel allele and S1 sequence were
carefully confirmed on multiple occasions, and the se-
quences were deposited in the DNA Data Bank of Japan
(DDBJ). New S1 genotypes were deposited in the MST-Rick
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