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Figure legends

Fig 1: Key players in immune reactions in viral hepatitis
CTL, cytotoxic T lymphocyte; DC, dendritic cell; HBV, hepatitis B virus; HCV, hepatitis C virus;

NK, natural killer cell; NKT, natural killer T cell; Th, helper T cell. (a)-(h), see text.

Fig 2: Dendritic cell as a conductor of innate and adaptive immunity

Dendritic cells sense viral and endogenous antigens and evoke or regulate immune reactions by
interacting with various lymphocytes.

CTL, DC, NK, NKT, Th are as described in Fig 1.y T célls, gamma delta T cells; Treg, regulatory T

cells

Fig 3: Strategy of dendritic cell vaccine against hepatitis virus infection

Most of the clinical trials utilize autologous monocytes as source of DC. Monocytes are cultured ex
vi?o for a several days in the presence of cytdkines, .such as GM-CSF and IL-4. Mature DC are
loaded with viral antigens (peptides, proteins or mRNA) and subsequently adn;inistered to the
patients. DC could migrate to lymphoid tissue where they‘ stiniulate NK cells and T cells. When
induced, antigen-specific CTL migrate to the liver where they attack virus-infected hepatocytes,

resulting in apoptosis coincided with hepatitis virus elimination.
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Abstract Although the anti-tumor effect of IL-12 is
mediated mostly by IFNy, which cell types most efficiently
produce IFNy and therefore initiate or promote the anti-
tumor effect of IL-12 has not been clearly determined. In
the present study, we demonstrated hydrodynamic injection
. of the IL-12 gene led to prolonged IFNy production,
NK-cell activation and complete inhibition of liver
metastasis of CT-26 colon cancer cells in wild-type mice,
but not in IFNy knockout mice. NK cells expressed higher
levels of STAT4 and upon IL-12 administration displayed
stronger STAT4 phosphorylation and IFNy production than
non-NK cells. Adoptive transfer of wild-type NK cells into
IFNy knockout mice restored IL-12-induced IFNy pro-
duction, NK-cell activation and anti-tumor effect, whereas
transfer of the same number of wild-type non-NK cells did
not. In conclusion, NK cells are predominant producers of
IFNy that is critical for IL-12 anti-tumor therapy.
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Introduction

IL-12 is a 70-kDa heterodimer protein, composed of p35
and p40 subunits, mainly produced by antigen-presenting
cells. IL-12 was originally found as a “patural killer-
stimulating factor” and a “cytotoxic lymphocyte matura-
tion factor” [1, 2]. IL-12 has multi-potent effects, inducing
a Thl response, enhancing the CD8 T-cell response, acti-
vating natural killer cells and inducing production of IFNy
[3, 4]. Therapeutic use of IL-12, either using its recombi-
nant protein or gene, can induce an efficient anti-tumor
effect on primary or metastatic tumors in various murine
models and humans [5, 6]. )

Research has shown that IL-12 mediates anti-tumor
effects in a variety of ways. They include anti-proliférative
effects, anti-angiogenic effects [7, 8] and cytotoxic effects
of effector lymphocytes. A variety of effector cells has
been reported to be required for IL-12-mediated anti-tumor
effects: they include CD8 T cells [9], NKT cells [10], CD4
T cells [11] and NK cells [12]. The relative contribution
of these cells may differ among IL-12 doses and types of
tumor models [13]. Endogenous IFNy production is
required for most, if not all, of the anti-tumor effects of
IL-12 administration [14, 15]. IL-12 stimulates a variety of
immune cells, such as T cells [16], B cells [17] and NK
cells [18], to produce IFNy. However, which cell types are
most critical for producing IFNy during IL-12 therapy is
not clearly known.

In the present study, we used a murine model of liver
metastasis of CT-26 colon cancer cells and found that NK
cells highly expressed the IL-12 signaling molecule
STAT4 and most efficiently produced IFNy. IFN)J was
essential for the anti-tumor effect of IL-12, and NK-cell
production of IFNy sufficed to produce the full-blown anti-

tumor effects. These results demonstrated that NK cells
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serve not only as an effector but also as an important
mediator producing IFN7y that is critical for the anti-tumor
effects of IL-12.

Materials and methods
Mice

Specific pathogen-free female Balb/c mice were purchased
from Clea Japan, Inc (Tokyo, Japan). Rag2 knockout (Rag2
KO) mice with a Balb/c background were purchased from
Taconic (Germantown, NY). IFNy knockout (GKO) mice
with a Balb/c background were kindly provided by
Dr. Yoichiro Iwakura (Institute of Medical Science,
University of Tokyo). All mice used were at the age of 6 to
10 weeks. They were housed under conditions of con-
trolled temperature and light with free access to food and
water at the Institute of Experimental Animal Science,
Osaka University Graduate School of Medicine. All
animals received humane care, and the study protocol
complied with the institution’s guidelines.

Tumor models

Intra-splenic injection of tumor cells was used to establish
micro-disseminated liver tumors in mice [19]. CT-26 colon
cancer cells originating from Balb/c mice were maintained
in RPMI1620 supplemented with 10% FCS. Syngeneic
mice were anesthetized with pentobarbital and given a cut
on the left side flank. CT-26 cells (1 x 10%) were sus-
pended in 200 pl of PBS and injected into the spleen.

Injection of naked plasmid DNA

A plasmid coding the murine IL-12 gene, pCMV-IL-12,
- was generously provided by Dr. M Watanabe (Labora-
tory of Experimental Immunology, Division of Basic
Sciences, National Cancer Institute-Frederick Cancer
Research and Development Center) [20]. Plasmid DNA
was prepared using an EndoFree plasmid system (Qia-
gen, Hilden, Germany,) according to the manufacturer’s
instructions. Hydrodynamic injection of plasmid DNA
was performed as previously described [21]. In brief,
25 pg of plasmid DNA was diluted with 2.0 ml of lac-
tated Ringer’s solution and injected into the tail vein,
using a syringe with a 26-gauge needle. DNA injection
was completed within 5 to 8 s. ‘

ELISA

Blood samples were serially obtained from the venous
plexus in the retro-orbita under light anesthesia. The levels
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of serum IL-12 p70, IFNy (BD Biosciences-Pharmingen,
San Diego, CA), IFNy-inducible protein 10 (IP-10) and
monokine induced by IFNy (MIG) (R&D Systems, Inc,
Minneapolis, MN) were measured using commercially
available ELISA kits in accordance with the manufac-
turer’s instructions.

Mononuclear cells

Mononuclear cells were isolated from the liver or spleen as
previously described. The NK activity of mononuclear
cells was assessed by a standard 4-h ° 1Cr'-releasing assay
using Yacl cells as targets. In some experiments, mono-
nuclear cells were separated into DX5% cells (NK cells)
and DX5™ cells (non-NX cells) using the MACS system
(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany).
The purity of the isolated NK-cell population was found to
be greater than 90% by FACS analysis.

Flow cytometric analysis

. Liver mononuclear cells were isolated 2 days after pPCMV-

IL-12 injection. Cytokine secretion was then blocked by
the addition of brefeldin A for 4 h. Next, liver mononuclear
cells were stained with FITC-conjugated anti-TCRf anti-

_body and biotin-conjugated anti-CD49b antibody (DX5),

fixed and permeabilized with Cytofix/Cytoperm (BD Bio-
sciences), and stained with PE-conjugated anti—INFj' anti-
body or corresponding isotype controls. Analysis was
performed using a FACSCalibur (Becton Dickinson), with
the resulting data analyzed using.the CELLQuest program .
(Becton Dickinson). NK cells were identified as DX5%/
TCRA™ lymphocytes, NKT cells as DX5'/TCRA' lym-
phocytes and T cells as DX5/TCRf™ lymphocytes.

Adoptive transfer

For adoptive transfer experiments, GKO mice were injec-

. ted intravenously 1 day before plasmid DNA injection with
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2.0 x 10® whole mononuclear cells or 4.0 x 10° NK cells,
or non-NK cells or whole mononuclear cells, all of which
had been harvested from wild-type mice that can produce
IFNy. ‘

Western blotting

Mouse recombinant IL-12 was purchased from R&D
Systems, Inc (Minneapolis, MN). Mononuclear cells
were treated with or without IL-12. Whole cell lysate
was prepared from mononuclear cells from mice, and
20 pg of protein was separated by SDS-PAGE and
transferred to the PVDF membrane. The membrane was
stained with anti-STAT4 antibody (BD biosciences),
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anti-phospho-specific STAT4 (pY693) antibody (BD
biosciences), anti-STAT1 antibody (Cell Signaling), anti-
phospho-specific STAT1 antibody (Cell Signaling) and
visualized by chemiluminescence.

NK-cell depletion

For depletion of NK cells in vivo, anti-asialoGM1 antibody
(WAKO, Osaka, Japan) was intraperitoneally administered.
We determined the appropriate dosing to be 500 pg/mouse
(50 pul when dissolved according to the manufacturer’s
instructions) based on FACS analysis of hepatic mononu-
clear cells. The percentage of DX57/TCRB™ cells (NK
cells) is 12.6 & 2.4% in IgG-injected liver, whereas it
decreased to 0.76 =+ 0.04% one day after anti-asialo GM1
antibody injection (N = 3/group). This effect remained at
least 3 days after anti-asialo GM1 antibody injection. NKT
cells were less affected than NK cells, because 90% of
DX5H/TCRB™ cells (NKT cells) still remained in the liver
after the treatment. Anti-asialoGM1 antibody was injected
1 day after tumor inoculation and then every 5 days. For
the control, the same amount of normal rabbit immuno-
globulin (DAKO, Copenhagen, Denmark) was intraperi-
toneally administered.

Histology

The formalin-fixed livers were paraffin-embedded, and
liver sections were analyzed by hematoxylin-eosin stain-
ing. Acetone-fixed fresh frozen liver sections were immu-
nostained with anti-mouse CD4 (H123.19), anti-mouse
CD8a (53-6.7) or anti-CD31 (390) monoclonal antibody
(all from BD Biosciences), using a VECSTAIN ABC kit
(Vector Laboratories, Burlingame, California, USA).

Statistics

Data are represented as mean == SD. Comparisons between
groups were analyzed by unpaired r-test with Welch’s
correction. p <0.05 was considered statistically
significant.

Results

Hydrodynamic injection of IL-12-expressing plasmid
led to prolonged production of IFNy

Hydrodynamics-based gene delivery into mice establishes
efficient foreign gene expression predominantly in the
liver, especially in hepatocytes. Serial measurement of
serum IL-12 demonstrated that pCMV-IL-12 injection led
to substantial IL-12 production on day 1. The levels of

serum IL-12 then rapidly declined (Fig. 1a). We also
measured IFNy production in serum, since IL-12 is known
to activate IFNy production. pCMV-IL-12 and, to a lesser
extent, pPCMYV injection increased serum IFNy on day 1. In
contrast to the pPCMV injection group, high levels of serum
IFNy were maintained at later time points in the pCMV-IL-
12 injection group (Fig. 1a): Thus, hydrodynamic injection
of pCMV-IL-12 led to prolonged production of IFNy.
Transient IFNy production followed by control plasmid
may be an indirect effect of liver injury caused by bolus
injection of saline or DNA injection.

IL-12 therapy induced NK activation
and anti-metastatic effects, both of which
are critically dependent on IFNy

To examine the biological effects of the produced IL-12,
we evaluated the NK activity of mononuclear cells from
the liver. pCMV-IL-12 injection, but not control pCMV
injection, increased Yacl lytic activity of hepatic mono-
nuclear cells (Fig. 1b). When GKO mice were injected
with pCMV-IL-12 or pCMV, the hepatic mononuclear
cells did not display any lytic ability to Yacl cells, sug-
gesting that IL-12-mediated NK-cell activation required
IFNy.

To examine the anti-metastatic effect of IL-12, pCMV-
IL-12 or pCMV was injected into wild-type mice 2 days
after intrasplenic injection of CT-26 cells. At 14 days after
tumor injection, the mice were killed for evaluation of liver
tumor (Fig. 1c). While pCMV-injected mice displayed
huge liver tumors, pCMV-IL-12-injected mice did not
show any macroscopic or microscopic tumor (Fig. 1d).
Liver weight was significantly higher in pCMV-injected
mice than pCMV-IL-12-injected mice, reflecting liver
tumor formation. To examine the involvement of IFNy in
the IL-12-induced anti-tumor effect, we injected pPCMV or
pCMV-IL-12 into GKO mice 2 days after CT-26 injection.
At 14 days after CT-26 injection, both groups showed
similar degrees of tumor formation and there was no sig-
nificant difference in liver weight between the two. This
indicated that IL-12-induced anti-metastatic effect was
strictly dependent on IFNy.

NK cells were the most poteht producer of IFNy during
IL-12 therapy

To evaluate which cell types most efficiently produced
IFNy, we isolated hepatic mononuclear cells from mice
2 days after plasmid injection and then stained cell surface
TCRf and DX5 as well as intracellular IFNy (Fig. 2).
TCRB/DX5* NK cells, TCRF/DX5" NKT celis and
TCRB*/DX5™ T cells from pCMV-IL-12-injected mice
showed significant levels of IFNy production compared
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Fig. 1 Effects of hydrodynanﬁc injection of IL-12-encoding plasmid. » A

a Wild-type mice were hydrodynamically injected with either pPCMV-
1L-12 (hatched bars) or pCMV (closed bars) and bled at the indicated
time points to measure the levels of serum IL-12 and IFNy. Results
are indicated as mean and SD (n = 6/group). b NK-cell activation
after IL-12 administration. Hepatic mononuclear cells were isolated
from wild-type mice (leff) or GKO mice (right) which had been
injected with pCMV-IL-12 (closed squares) or pCMV (closed
diamonds) 4 days earlier. Yacl lytic ability was measured by a
standard °'Cr-release assay at the indicated effector and target ratios
(E/T ratio). All experiments were performed at least 3 times and
representative data are shown. ¢ and d Anti-metastatic effects of
1L-12 therapy. Wild-type mice (leff) or GKO mice (right) were
intrasplenically injected with CT-26 cells and, 2 days later, hydro-
dynamically injected with either pPCMV-IL-12 or pCMV. At 14 days
after the plasmid injection, the mice were killed to examine liver
tumor development. ¢ Data are indicated as mean and SD of the liver
weight at the top (n = 6/group) and a representative picture of the
liver in each group is shown at the bottom. *p < 0.001. d Represen-
tative histology of liver sections ’

with those from naive mice or pCMV-injected mice. The
levels of IFNy production were highest in NK cells among
those cells. Even at a later time point, 7 days after plasmid
injection, NK cells were found to produce the highest
levels of IFNy (data not shown).

IL-12-induced STAT4 signaling and IFNy production
increased in NK cells

IL-12 activates Janus kinases Tyk2 and Jak2, STAT4 as
well as other STATs. To examine the activation of STAT1
and STAT4, we isolated splenocytes from wild-type mice
and GKO mice and stimulated them with IL-12 and/or
IFNy in the presence or absence of anti-IFNy Ab (Fig. 3a).

IL-12 led to phosphorylation of both STAT1 and STAT4 in

wild-type splenocytes. In contrast, the same treatment led
to phosphorylation of STAT4, but not of STAT1, in GKO
splenocytes. Addition of IFNy restored STAT1 phosphor-
ylation in GKO splenocytes. Furthermore, adding anti-
IFNy inhibited STAT1 phosphorylation in wild-type cells.
These findings demonstrated that phosphorylation of
STAT4 is a direct effect of IL-12 but phosphorylation of

STAT1 is indirect, via an autocrine or paracrine IFNy-

dependent manner.

To examine STATI and STAT4 activation and IFNy
production in NK cells and non-NK cells, we prepared
whole mononuclear cells as well as NK and non-NK
populations from wild-type spleens and stimulated the cells
with IL-12 (Fig. 3b). NK cells expressed higher levels of
STAT4 than non-NK cells. Upon IL-12 treatment, STAT4
was rapidly phosphorylated in NK cells, but to a lesser
extent in non-NK cells. In contrast, NK cells expressed
lesser levels of STATI1 than non-NK cells. STATI1 was
similarly phosphorylated in NK cells and non-NK cells
upon IL-12 treatment. Both NK cells and non-NK cells
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produced significant levels of IFNy, but the levels were
much higher in NK cells than non-NK cells (Fig. 3c).
These results indicated that compared with non-NK cells,
NK cells possessed higher levels of STAT4, a direct sig-
naling molecule of IL-12, and produced higher levels of
IFNy than non-NK cells.

NK cells were sufficient for IL-12-mediated anti-tumor
effects

The above observation indicated that NK cells are a pre-
dominant producer of IFNy, which was critical for the
IL-12-induced anti-tumor effects. To examine whether NK
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Fig. 2 IFNy expression of mononuclear cells after IL-12 adminis-
tration. Wild-type mice were injected with pCMV-IL-12 or pCMV, or
were untreated (naive). Mononuclear cells were isolated from the
liver 2 days after plasmid injection and stained with anti-TCRf mAb,
anti-DX5 mAb and anti-IFNy mAb. Closed histograms show the IFNy
expression in the gated populations (TCRB/DX5™ cells for NK cells,
TCREY/DX5* cells for NKT cells and TCRBT/DX5™ cells for T
cells). Isotype control stainings are shown by open histograms.
Numbers in histograms represent averages == SD of percentages of
positive cells (n = 3 mice/group). *p < 0.0001 vs. mock in NK
populations. **p < 0.05 vs. mock in each population

cells are sufficient for the anti-metastatic effects of IL-12,
we examined the anti-metastatic effect in Rag2 KO mice
which lack T cells, B cells and NKT cells. pCMV-IL-12
injection enhanced the Yacl lytic ability of hepatic
monenuclear cells in Rag2 KO mice higher than in wild-
type mice (Fig. 4a). To examine whether NK cells are
sufficient for IL-12-mediated rejection of hepatic metas-
tasis, we injected pCMV-IL-12 or pCMV into mice that
had been intra-splenically injected with CT-26 cells 2 days
earlier. Serum IFNy levels of Rag2 KO mice were about
4 times higher than those of wild-type mice (Fig. 4b).
pCMV-IL-12 completely suppressed hepatic metastasis in
Rag2 KO mice (Fig. 4c).

Adoptive transfer of wild-type NK cells into GKO mice
restored the anti-tumor effects of IL-12

Since NK cells were sufficient for producing IL-12-induced
anti-tumor effects, we postulated that their production of
IFNy may play an important role in these effects. To test
this, we performed adoptive transfer experiments with
GKO mice. First, whole mononuclear cells isolated from
the spleens of wild-type mice (2.0 x 10% cells) were
adoptively transferred to GKO mice 1 day before plasmid
injection. pCMV-IL-12 injection increased Yacl lytic
activity of hepatic mononuclear cells in the adoptively

88

A

WT WI GKO GKO WT
rmiIL-12 0 5o TR 0 TR ¢
rmlFNy ) ©) e ) ©)
anti-IFNyAb 00 ) ) )
pSTAT1
pSTAT4
B ‘

Ohr 2hr 24 hr

S o AN 4@ LU0 AN @ LY A
PEF S EF

C
1200
g 300 OWhole
e BDI5(+)
- SDX5(;
E 400 ©
o

whale DX5¢+) DX5()

Fig. 3 STAT signaling and IFNy production of mononuclear cells
in vitro treated with IL-12. a STATI and STAT4 activation of
splenocytes in vitro treated with IL-12. Splenocytes were isolated
from wild-type mice or GKO mice and treated with or without
recombinant IL-12 (20 ng/mL) in the presence or absence of
recombinant IFNy (500 ng/mL) or anti- IFNy antibody (20 pg/mL)
for 24 h. Cellular lysates were analyzed by Western blot for the
expression of phospho-STATI, phospho-STAT4 and fS-actin. b and ¢
STATs expression and signaling of NK cells and non-NK cells.
Splenocytes were isolated from wild-type mice. Whole splenocytes
were further purified into DXS5% cells and DX5™ cells. Each cell
population was cultured with recombinant I1-12 (20 ng/mL) for the
indicated times. b The cells were lysed to examine expression of
whole STAT and phospho-STAT by Western blot. ¢ The levels of
IFNy in the culture supernatant at 24 h were detérmined by ELISA.
Data are expressed as mean and SD (n = 3)

transferred group, but not in the untreated group (Fig. 5a).
pCMV-IL-12 induced significant increase in serum IFNy
levels 4 days after plasmid -injection in the adoptive
transferred group, but not in the other groups (Fig. 5b). The
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Fig. 4 Anti-tumor effects of IL-12 in Rag2 KO mice. Serum IFNy
levels and NK-cell activation. Wild-type or Rag2 KO mice were
hydrodynamically injected with either pCMV-IL-12 or pCMV and
killed at 4 days. a Yac1 lytic ability of hepatic mononuclear cells was
determined by Cr releasing assay as the indicated effector and target
ratios (E/T ratio). Experiments were done 2 times and representative
data are shown. b The levels of serum IFNy were determined by

anti-metastatic effect of IL-12 was restored in GKO mice
when whole mononuclear cells from wild-type mice were
adoptively transferred (Fig. 5c).

To evaluate the contribution of IFNy production from
each subset of mononuclear cells to the anti-metastatic
effect of IL-12, we adoptively transferred the same number
of whole mononuclear cells, NK cells or non-NK cells
from wild-type mice (4.0 x 10° cells) 1 day before
pCMV-IL-12 injection and analyzed liver tumor formation.
Only in the NK-cell-transferred group, pCMV-IL-12
injection induced NK cytolytic ability in the liver and IFNy
elevation in serum 4 days after plasmid injection, but not in
the other groups (Fig. 5d, e). No liver tumor formed in the
NK-cell-transferred group. In contrast, livers in other
groups had massive tumors, and the liver weights were
significantly heavier than those in the NK-cell-transferred
group (Fig. 5f). These results clearly demonstrated
the strong impact of IFNy produced from NK cells on
IL-12-induced anti-tumor effects compared with that from
non-NK cells.
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ELISA. Data are expressed as mean and SD (n = 7/group).
*p < 0.0001. ¢ Anti-metastatic effect. Rag2 KO mice were intrasple-
nically injected with CT-26 cells and, 2 days later, hydrodynamically
injected with either pCMV-IL-12 or pCMV. Fourteen days after
plasmid injection, mice were killed to examine tumor development in
the liver. The numbers of hepatic tumors in each group are expressed
as mean and SD (n = 7/group). ND not detectable

Anti-tumor effects of IL-12 deteriorated slightly.
in mice depleted of NK cells

To examine the involvement of NK cells in the tumor
deletion by IL-12 therapy, we induced depletion of NK
cells by repeatedly injecting anti-asialoGM1 antibody. The
cytolytic ability of NK cells was completely abolished in
the anti-asialoGM1 antibody-injected group (Fig. 6a).
Serum IFNy induction by IL-12 in the NK depletion group
was about half of that in the control immunoglobulin
injected group (Fig. 6b). Unexpectedly, pCMV-IL-12
injection inhibited macroscopic liver metastasis of CT-26
cells in NK cell-depleted mice (Fig. 6c). However, a
number of microscopic tumor regions were observed after
IL-12 therapy in NK cell-depleted mice but not in control

' IgG-injected mice (Fig. 6d). This finding indicated that NK
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cells are required for a full-blown IL-12 anti-tumor effect,
but IL-12’s anti-tumor effect was still observed even if the
NK cells were knocked down. To examine the underlying
mechanisms of anti-tumor effect in NK cell-depleted mice,
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Fig. 5 Adoptive transfer of wild-type cells into GKO mice. Adoptive.

transfer of wild-type splenocytes restored anti-tumor effects of IL-12 in
GKO mice. a GKO mice were intravenously injected with or without
20 x 108 splenocytes from wild-type mice and, 1 day later, hydrody-
namically injected with either pPCMV-IL-12 or pCMV. Mice were killed
4 days after plasmid injection. Yacl lytic ability of hepatic mononuclear
cells was expressed as the indicated effector and target ratios (E/T ratio).
Experiments were done 3 times and representative data are shown. b and
¢ GKO mice were intrasplenically injected with CT-26 cells and, 1 day
later, intravenously injected with or without 2.0 x 10® splenocytes from
wild-type mice. Two days after CT-26 injection, mice were hydrody-
namically injected with either pPCMV-IL-12 or pCMYV. b The levels of
serum IFNy 4 days after plasmid injection are expressed as mean and SD
(n = 6/group). ¢ Fourteen days after plasmid injection, mice were killed
to examine liver tumor development by measuring liver weight. The
results are indicated as mean-and SD (n = 6/group). ND not detectable,
*p < 0.01. Adoptive transfer of wild-type NK cells, butnot non-NK cells,
restored anti-tumor effects of IL-12 in GKO mice. d Wild-type
splenocytes were purified into DX5* cells and DX5™ cells. GKO mice
were intravenously injected with 4.0 x 10° whole mononuclear cells or
DX5" cells or DX5™ cells and, 1 day later, hydrodynamically injected
with either pCMV-IL-12 or pCMV. Mice were killed 4 days after
hydrodynamic injection. Yac] lytic ability of hepatic mononuclear cells
is expressed as the indicated effector and target ratios (E/T ratio).
Experiments were done 3 times and representative data are shown. e and
f GKO mice were intrasplenically injected with CT-26 cells'and, 1 day
later, intravenously injected with whole mononuclear cells, DX5% cellsor
DX5™ cells (4.0 x 10%mouse). Two days after CT-26 injection, mice
were hydrodynamically injected with either pPCMV-IL-12 or pCMV.
e The levels of serum IFNy are expressed as mean and SD (n = 6/group).
f Fourteen days after plasmid injection, mice were killed to examine liver
tumor development by measuring liver weight. The results are expressed
as mean and SD (n = 6/group). ND not detectable. *p < 0.001

serum levels of IP-10 and MIG, chemokines downstream
of IFNy, were measured after IL-12 therapy (Fig. 6e).
pCMV-IL-12-injected mice showed significant increase in
both levels compared with pCMV-injected mice. Signifi-
cant increase after pCMV-IL-12 injection was also found
in NK cell-depleted mice, but not in GKO mice. This result
suggests that production of these chemokines was not
completely suppressed in NK cell-depleted mice in our
experimental condition. Immunohistochemical analysis
revealed that tumoral accumulation of CD4-positive cells
and CDS8-positive cells was observed in pCMV-IL-12-
injected mice but not in pCMV-injected mice. On the other
hand, similar levels of CD31 expression were observed in
tumors of pCMV-injected mice and pCMV-IL-12-injected
mice (Fig. 6d). These results suggest that IL-12’s anti-

“tumor effects might be mediated by T-cell accumulating in

the tumor rather than anti-angiogenesis.

Discussion

IL-12 is recognized as a master regulator of adaptive type
1, cell-mediated immunity. One major action of IL-12 is its
induction of other cytokines, particularly IFNy. A large
amount of evidence has indicated that IL-12 administration
leads to IFNy production from a variety of immune cells,
such as T cells [16], B cells [17], NK cells [18] and NKT
cells [22]. The relative impact of each immune cell as the
source of IFNy has been controversial. The present study
highlighted NK cells as a most efficient producer of IFNy
that is critical for IL-12-induced anti-tumor effects.

Flow cytometric analysis revealed higher in vivo pro-
duction of IFNy of NK cells than that of other cell types.
The levels of serum IFNy were around fourfold higher in
Rag2 KO mice which only possess NK cells than in wild-
type mice. On the other hand, NK-cell depletion in wild-
type mice led to twofold reduction of serum IFNy levels.
These data indicate substantial contribution of NK cells in
IFNy production in vive. Previous research has demon-
strated that the specific cellular effects of IL-12 are due
mainly to activation of STAT4 [23, 24]. IL-12-induced
STAT4 phosphorylation leads to the production of IFNy
[25]. In agreement with these reports, our in vitro analysis
showed that, in contrast to STAT1, STAT4 was directly
phosphorylated upon IL-12 stimulation, being independent
of IFNy. Of interest is the finding that NK cells express
higher levels of STAT4 than non-NK cells, suggesting that
NK cells possess an ideal expression profile of STATSs for
producing TFNy upon IL-12 stimulation. Indeed, in vitro
analysis revealed that NK cells, upon IL-12 exposure,
displayed higher levels of IFNy production as well as
STAT4 phosphorylation than non-NK cells. These in vitro

@_ Springer
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Fig. 6 Anti-tumor effects of IL-12 in NK-cell-depleted mice. Serum
IFNy levels and NK-cell activation. Wild-type mice were intraper-
itoneally injected with either anti-asialoGM1 antibody (ASGM1) or
control IgG, and, 1 day later hydrodynamically injected with either
pCMV-IL-12 or pCMV. Mice were killed 4 days after plasmid
injection. a Yacl lytic ability of hepatic mononuclear cells is
expressed as the indicated effector and target ratios (E/T ratio).
Experiments were done 2 times and representative data are shown.
b The levels of serum IFNy are expressed as mean and SD (n = 6/
group). ND not detectable. *p < 0.005. Anti-metastatic effects. Wild-
type mice were intrasplenically injected with CT-26 cells and, 1 day
later and then every 5 days, intraperitoneally injected with either anti-
asialoGM1 antibody (ASGM1) or control IgG, and hydrodynamically
injected with either pCMV-IL-12 or pCMV 2 days after CT-26

data are consistent with the in vivo observation that NK
cells are efficient producers of IFNy during IL.-12 therapy.

Many studies have demonstrated that IFNy production is
required for the anti-tumor effects of IL-12 [14, 26, 27]. In
fact, we have demonstrated that deletion of IFNy abolished
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injection. Fourteen days after plasmid injection, mice were killed to
examine liver tumor development by measuring liver weight. ¢ The
results are indicated as mean and SD (n = 6/group). *p < 0.001.
d Representative histology of liver sections analyzed by hematoxylin-
eosin staining and immunochistochemistry of CD4, CD8 and CD31.
e Serum Jevels of IP-10 and MIG. Wild-type or GKO mice were
hydrodynamically injected with either pPCMV-IL-12 or pCMV. Wild-
type mice were intraperitoneally injected with either anti-asialoGM1
antibody (ASGM1) or control IgG, and 1 day later hydrodynamically
injected with either pCMV-IL-12 or pCMV. Four days later, each
mice were bled to measure the levels of serum IP-10 and MIG.
Results are” expressed as mean and SD (n = 6/group). ND not
detectable. *p < 0.001

NK cytotoxicity and the anti-metastatic effect of IL-12
therapy in the liver. A large amount of evidence supports
the concept that a major action of IL-12 is to promote the
differentiation of naive CD4 + T cells into Thl cells,
which produce IFNy. Previous research reported that CD4
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T-cell depletion caused inhibition of anti-tumor effects.
More recent studies have supported a critical role of IFNy
as a third signal for CD8 T-cell differentiation. There have
been many reports focusing on IFNy production from T
cells induced by IL-12 for the anti-tumor effect of IL-12
[28]. Segal et al. performed an elegant study showing a
critical role of T-cell production of IFNy in the anti-tumor
effect by adoptively transferring T cells into GKO mice in
a subcutaneous tumor model [29]. However, apart from this
study, little is known about the contribution of each
immune cell as a producer of IFNy in terms of an anti-

tumor effect. In our model, T-cell mediated adaptive

~ responses were not required for the anti-metastatic effect of
IL-12. More importantly, the anti-metastatic effects of
IL-12 were restored in GKO mice by an adoptive transfer
of wild-type NK cells. The same number of non-NK cells
could not provoke IL-12-induced anti-tumor effects in
GKO mice. The present study demonstrated for the first
time a potent effect of NK cells on producing IFNy that
was critical for anti-metastatic effect during IL-12 therapy.

Our study showed that the main IFNy producer of IL-12
was NK cells. So we focused on NK cells which were
activated by IL-12 in an IFNy-dependent manner to
examine the cellular mechanism of protection against
hepatic metastasis. Many studies have shown the impor-
tance of each subset (NK- [12], NKT- [10] and T [9, 30]
cells) for anti-tumor effects of IL-12. In the present study,
NK cells were sufficient while T cells, B cells, NKT cells
were dispensable for IL-12-mediated NK-cell activation
and anti-metastatic effects as IL-12 therapy showed Yacl
lytic ability and antimetastatic effects in Rag2 KO mice.
On the other hand, NK-cell depletion by a repeated injec-
tion of anti-aialoGM1 antibody protected wild-type mice
from macroscopic liver metastasis, but did not from

microscopic liver metastasis. Thus, although NK cells were-

required for a full-blown IL-12 anti-tumor effect, other
anti-tumor pathways are activated by IL-12 in the absence
of NK cells. Serum levels of IP-10 and MIG suggest that
production of these chemokines downstream of IFNy was
not suppressed in NK-cell-depleted mice in our experi-
mental condition. When compared with the experiment on
GKO mice, accumulation of CD4-positive cells and CD8§-

positive cells were more evident in NK-cell-depleted mice

than in GKO mice (Supplementary Figure). On the other
hand, there was no remarkable difference in the expression
of CD31 between pCMV injection and pCMV-IL-12
injection. These results suggested that in NK-cell-depleted
mice IL-12 may exert anti-tumor effect via T-cell accu-
mulation rather than anti-angiogenesis. .

Since the liver contains an abundance of immune cells
(especially NK cells) [31], the cytokine-mediated activa-
tion of these cells may be a promising approach toward
anti-tumor therapy in this organ [32]. IL-12 is a cytokine

known to elicit a potent anti-tumor effect in mouse
experimental models. However, clinical trials attempted to
date were interrupted by fatal adverse effects. Systemic
IL-12 therapy has been associated with dose-limiting tox-
icity [33]. IL-12 induces activation of the pro-inflammatory
pathway which causes the complications of high dose
cytokine, independent of the action of IFNy [34]. On the
other hand, the levels of immunosuppressive cytokine, for
example, TGF-f1 or IL-10 were significantly higher in
patients with hepatocellular cancer and colon cancer [35—
38]. In particular, TGF-f1 in serum can limit NK-cell IFNy
production [39]. Thus, in patients with advanced disease,
IL-12 may not be able to exert its potent anti-tumor
immune-effects because IFNy, which is an important
mediator of the IL-12-induced immune response, is less
effective in a tumor environment. In the present study, we
demonstrated that NK-cell IFNy production induced by
IL-12 was sufficient for the anti-metastatic effect of IL-12°
in the liver. Thus, a strategy of efficiently producing IFNy
from NK cells may be important for avoiding toxicity of
IL-12 therapy. '

IL-12 gene therapy has an advantage to allow local
production of the cytokine at the tumor sites with low
serum concentration. Studies demonstrated that intratu-
moral administration of adenovirus encoding IL-12 to
animals with different types of carcinoma caused complete
tumor eradication and increased long-term survival [40,
41). Moreover, injection of IL-12-encoding adenovirus in
one nodule of liver tumor resulted in regression of distant
nodules in the liver [41]. However, in a clinical trial anti-
tumor activity of IL-12-encoding adenovirus was only
observed in the injected tumor sites, but not in distant
tumors [42]. The present study shed light on hydrodynamic
transfection of hepatocytes as a promising strategy to
eradicate disseminated tumors from whole liver.

In summary, NK cells are not just an effector for innate
immunity but a mediator producing IFNy that is critical for
the IL-12 anti-tumor effects. Extremely higher expression
of STAT4 may be a basis for efficient production of IFNy
from NK cells.
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