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mesenchymal marker) is known to be representative of breast CSCs (Al-Hajj et al.
2003). Interestingly, activation of the EMT program by the induction of Snail or
Twist genes or addition of recombinant TGF-B resulted in the enrichment of a CD24-
low CD44-high population that had a high capability to form spheroids in vitro and
subcutaneous tumors in vivo (Mani et al. 2008). Induction of oncogenic Ras also
induced EMT and enriched the CSC population in breast cancer cells (Morel et al.
2008). In the liver, TGF- signaling appears to induce the differentiation of hepatic
stem/progenitor cells and suppress the development of HCC (Mishra et al. 2009),
suggesting that it may not work in the same manner observed in breast cancers.
Regardless, the association between the liver CSC phenotypes and the induction of
EMT/MET programs is completely unclear and should be pursued in future studies

(Fig. 16.2).

5 Conclusions

There is accumulating evidence that liver CSCs play a key role in the development
and perpetuation of HCC, and the relevance of targeting CSCs has also become
clear. Yet, experimental models for the treatment of HCC are still in the preliminary
stages. Identification of useful CSC markers and exploration of their roles in main-
taining stem-like traits are critical steps toward the clinical application of the CSC
hypothesis for the improved diagnosis and the treatment of HCC.
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Abstract In the aim of identifying significant transcriptional regulatory networks in the
liver contributing to diabetes, we have performed comprehensive active regulatory network
survey by network screening in 4weeks (w), 8-12w, and 18-20w Goto-Kakizaki (GK) rat
liver microarray data. The comprehensive survey of the consistency between the networks
and the measured data by the network screening approach in the case of non-insulin
dependent diabetes in the GK rat reveals: 1. More pathways are active during inter-middle
stage diabetes; 2. Inflammation, hypoxia, increased apoptosis, decreased proliferation, and
altered metabolism are characteristics and display as early as 4weeks in GK strain; 3.
Diabetes progression accompanies insults and compensations;

Keywords GK rat; Regulatory Network; Network Screening; Active Pathways; Diabetic
progression

1 Introduction

Type 2 diabetes mellitus (T2DM) is a complex systemic disease, with significant
disorders of metabolism [1]. The liver, a central energy metabolic organ, plays a
critical role in the development of diabetes [2]. Although gene expression levels are
able to be measured via microarray since 1996, it is difficult to evaluate the
contributions of one altered gene expression to a specific disease. One of the
reasons is that a whole network picture responsible for a specific phase of diabetes
is missing, while a single gene has to be put into a network picture to evaluate its
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importance.

In the aim of identifying significant transcriptional regulatory networks in the
liver contributing to diabetes, we have performed comprehensive active regulatory
network survey by network screening in 4weeks (w), 8-12w, and 18-20w
Goto-Kakizaki (GK) rat liver microarray data. We identify active regulatory
networks in GK rat by network screening in the following procedure. First, the
regulatory networks are compiled by using the known binary relationships between
the transcriptional factors and their regulated genes and the biological classification
scheme, and second, the consistency of each regulatory network with the
microarray data measured in GK rat is estimated to detect the active networks under
the corresponding conditions.

2 Materials and Methods

2.1 Network Screening

The candidates of active regulatory networks are detected by network screening
in the following manner. First, the regulatory network sets are generated by
combining the binary relationships between transcriptional factors (TFs) and their
regulating genes, which are compiled in TRANSFAC database [3], and the
functional gene sets defined in the Molecular Signatures Database (MSigDB) [4].
Then, we calculate the graph consistency probability (GCP) [5], which expresses
the consistency of a given network structure with the monitored expression data of
the constituent genes in this study, for each of the network structures obtained at the
first step. In addition, in each reference network, the enrichment probability of the
genes with the significant differences between GK and WKY rats (expression
signature) is further tested. For this purpose, the expression signature is determined
using the Student’s t-test (for a false discovery rate [FDR] < 5% in expression
between GK and WKY rats). The number of genes included in the expression
signature is tested for each network, based on the hyper-geometric probability. Thus,
we refine the candidates of active regulatory networks, in terms of both the network
structure by GCP and the extent of gene expression by enrichment probability. The
significance of both thresholds is set to 0.05.

2.2 Microarray data

Microarray dataset is cited from the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/projects/geo/) database (GSE 13271). The data are composed of 31,099 probes
measured by using Affymetrix Microarray Suite 5.0 (Affymetrix), which are
reduced into 14,506 genes, for 5 samples of male Goto-Kakizaki (GK)
spontaneously diabetic rats and WKY rats at each of 5 time points (4, 8, 12, 16, and
20 weeks of age). Hyperglycemia begins to show at 4 weeks of age and stabilize
after 16 weeks in GK, thus we divided data into three functional groups: 4w, 8-12w,
and 16-20w.
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3 Results and Discussion

3.1 Activated pathways revealed by network screening and their
functions

We identify a total of 20 and 19 differentially activating transcriptional
regulatory networks in GK and WKY rats, respectively. There are fewer pathways
activating at 4w and 16-20w in GK rats which are at the beginning and the steady
state of diabetes. While during 8-12w, more pathways are significantly activated,
which indicates a dynamic process involving dysfunctions and compensations in the
development of diabetes, as showed outside blood glucose fluctuations. There are
more active pathways in the 4w and 8-12w than those in the 16-20w in WKY,
which may be due to body growth and development. It is worth pointing out that
many activating pathways in WKY are diminished in GK rats at 4w, suggesting that
those pathways in the liver important to keep glucose metabolism homeostasis are

dysfunction at very early stages of diseases.

Table 1: Active regulatory networks classification according to their functions.

GK

WKY

Metabolism

HSC_LATEPROGENITORS_ADULT
ATRIA_UP

GLYCEROPHOSPHOLIPID METABOLISM
GOLUB_ALL_VS_AML_UP
HOHENKIRK_MONOCYTE_DEND_UP
HSC_LATEPROGENITORS_ADULT
LONGEVITYPATHWAY
VHL_NORMAL_UP

HASLINGER B_CLL_MUTATED
VEGF_HUVEC 30MIN_UP
YAGI_AML_PROG_ASSOC
ZHAN MM CD138_CD! VS_REST

HSC_LATEPROGENITORS_ADULT NGUYEN_KERATO_UP
Immune LINDSTEDT DEND_8H_VS§_48H_DN ICF_UP

LEL_HOXC8_DN

TESTIS_EXPRESSED_GENES

TSADAC_RKOEXP_UP

HSC_LATEPROGENITORS_ADULT VEGFPATHWAY

Transcription

ATRIA_UP
GOLUB_ALL_VS_AML_UP
HOHENKIRK_MONOCYTE_DEND_UP
HSC_LATEPROGENITORS_ADULT
MEF2DPATHWAY
P35ALZHEIMERSPATHWAY

HCC_SURVIVAL_GOOD_VS_POOR_UP
HSC_LATEPROGENITORS_SHARED
SCHURINGA_STATSA_UP
NUCLEAR_RECEPTORS

CELL_DEATH

NI2_LUNG_DN
PARK_RARALPHA MOD
NUCLEAR_RECEPTORS
TGFBPATHWAY

Signaling
transduction

INTEGRINPATHWAY
INTEGRIN_MEDIATED_CELL_ADHESION_KEGG
MEF2DPATHWAY

P3SALZHEIMERSPATHWAY

RCC_NL_UP

VHL_NORMAL_UP
ASTON_OLIGODENDROGLIA_MYELINATION_SUBSET
BRCA_BRCAI_NEG

LEI_HOXC8_DN

TESTIS_EXPRESSED_GENES

TSADAC_RKOEXP_UP
VEGFPATHWAY
HSC_LATEPROGENITORS_ADULT

P21_P53 MIDDLE_DN
UVB_NHEKI_C2

ALKPATHWAY
BRENTANI_PROTEIN_MODIFICATION
CELL_DEATH

NI2_ LUNG DN
PARK_RARALPHA_MOD
TGFBPATHWAY
NUCLEAR_RECEPTORS

_60_



Significant Regulatory Networks from GK Rat Liver Microarray Data 199

3.2 Classification of activated pathways revealed in terms of their
functions

Apart from the view of differentially activated networks along the time points,
the networks in the GK and WKY strains can be classified into 4 functional
categories in Table 1, which are metabolism, immune, transcription, and signal
transduction. Note that some activated pathways share their functions. In that case,
they are listed under several functional groups as long as the condition met. Then,
we combine the activated networks belonging to the same functional category, if
any constituent genes of transcriptional factor (TF) and its regulated gene share
each other in the networks. Thus TF-gene expression networks for each functional
category are created (Figs 1A-E). Interestingly, significantly activated networks in
GK and WKY strains are very different even in the same functional category. We
will describe the details of the activated networks in 4 functional categories, below.

3.2.1 Metabolism

Metabolic TF regulatory network in WKY rats reveals increased expression of
several genes are important to keep metabolic homeostasis, e.g. bone
gamma-carboxyglutamic acid-containing protein (BGLAP), Hepatocyte nuclear
factor 4 alpha (HNF4A) and Lipoprotein lipase (LPL) (Fig.1A). In addition to its
role in bone-building, BGLAP stimulates pancreatic beta cells releasing more
insulin and increases insulin sensitivity via enhancing adipocytes adiponectin
secretion [6]. HNF4A plays a key role in liver development. Mutations in this gene
have been associated with maturity-onset non-insulin-dependent diabetes of the
young (MODY) [7]. Our analysis indicates that reduced HNF4A expression may
also favor T2DM development in GK rats. LPL is an enzyme that hydrolyzes
triglyceride in lipoproteins such as very low-density lipoproteins (VLDL) and
reforms high-density lipoproteins (HDL). Lipoprotein lipase deficiency leads to
elevated levels of triglycerides in the bloodstream [8]. Interestingly, like HNF4A,
LPL is also suggested to be a diabetes susceptibility gene by human studies [9].

Metabolic networks in GK rats are more complicated than those in WKY rats
(Fig.1B). Besides the reduced expression of three genes described in the previous
paragraph in diabetic GK rats, some pathways identified by network screening
further contribute to metabolism disorders. Cytokines induce activation of the
JAK-STAT pathway results in expression of various suppressors of cytokine
signaling (SOCS). Expression of SOCS2 and STATS but not SOCS3 is decreased in
GK rats. Decreased expression of SOCS2 leads to enlarged internal organs, which
consists with the description in the original paper that liver weight as a percentage
of total body weight is significantly larger in GK [10]. Insulin directly stimulates
SOCS2 and STATS expression, and the decreased SOCS2 and STATS levels are due
to insulin deficiency or resistance. IGF-1 (insulin-like growth factor-1) has
functions similar to insulin, and it can also improve blood sugar profiles in type 2
diabetics [11]. IGF-1 levels are increased at 4w, but significantly decreased,
thereafter may partially explain the insulin resistance after 8 weeks of age in GK
rats.

We also observed some compensative pathways activation in GK to fight against
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msulin resistance. For instance, insulin receptor substrate 2 (IRS2) is up-regulated
and SOCS]1 1s down-regulated at 8-12w. Cytokine-induced SOCS-1 interacts with
the phosphorylated insulin receptor and promotes ubiquitination (Ub) and
degradation of IR-IRS complex, thereby preventing insulin signaling pathways [12].
Decreased SOCS-1 is correlated to insulin sensitivity. However, compensations fail
to stop development of diabetes.

3.2.2 Immune

Many proinflammatory pathways are activating in GK compared to WKY rats
(Fig 1C). From the TF-regulatory gene expression networks in GK rats, two hubs
which play important role in immune damages are displayed. ,

Cytochrome b-245, beta polypeptide (CYBB) is a gene encoding gp91(phox)
protein, a phagocyte NADPH oxidase. The protein is also known as P91-PHOX and
NOX2. Reactive oxygen species (ROS) produced by NOX2 are able to kill
phagocytized bacteria. Because of its highly reactive nature, CYBB has been
considered harmful mediators of inflammation [13]. NF-KB and interferon-gamma
further increase CYBB expression. Prolonged highly CYBB expression enhanced
production of reactive oxygen species, which are critical sources mediating
neurovascular damage. Significantly overexpressed CYBB in GK stain is a critical
contributor to the microvascular complications associated with diabetes.

Activating transcription factor 3 (ATF3) is a stress-inducible gene and encodes
ATF3 transcription factors. ATF3 expression has been reported up-regulated in
insulitis and type 1 or type 2 diabetics. Induction of ATF3 is mediated by
proinflammatory factors, such as nitric oxide and NF-kB. Importantly, the induction
of ATF3 leads cell apoptosis, while signals without ATF3 up-regulation do not
cause cell damage [14]. Increased gene expression of ATF3 in GK rats are related to
increased immune response and apoptosis.

Besides these two hubs, about 20 immune related genes are changed in GK
strain. In sum, inflammation is significantly increased in diabetic Gk rats.

3.2.3 Transcription

Pathways analysis reveals that WKY transcriptional network is a balanced and
well-controlled system.
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Fig 1. Combined networks in the four functional categories. A: metabolism in WKY,
B: metabolism in GK, C: immune in GK, D: transcription in GK, and E: signal
transduction in GK (see details in the text).

Some involves in cell replication, good survival and self renewal. Others, including
P21-P53 Middle DN, UBV_NHEKI1 C2, and TGFBPATHWAY, emphasize
anticancer and cell cycle checkpoints regulation (Table 1).

In GK rats, two out of 7 pathways are related to apoptosis (Table 1 and Fig 1D).
Caspase 1 (CASP1), which has been shown to induce cell apoptosis, is
overexpressed. Transforming growth factor alpha (TGFA), which stimulates neural
cell proliferation, is inhibited. Interestingly, diabetes activates several genes
mvolving in neurodegenerative disorders. Alzheimer's disease shares many
commons with T2DM, so that some scientists proposed to call Alzheimer’s disease
"type 3 diabetes” or "diabetes of the bram."  Calpain small subunit 1 (CAPNSI1),
a highly-conserved cysteine protease, which have been implicated in
neurodegenerative processes after oxidative stress stimulation, is more active in GK.
Casein kinase I isoform alpha (CSNK1A1), also called CKlo, is associated with
phosphorylate tau and amyloid formation. The expression of CKlo gene is much
higher in GK.

3.24 Signal Transduction
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The key difference in signal transduction category is activation of hypoxia and
coagulation related pathways in GK rats (Table 1 and Fig 1E). Coagulation factor
XIII A chain (F13A1) is the last zymogen activating in the blood coagulation
cascade, which stabilize clots. In GK rats, F13A1 gene expression levels are
significantly elevated which enhance thrombosis. Macrophages expressing high
affinity immunoglobulin gamma Fc receptor I (FcgRla) also display coagulation
function via binding platelets and initiate thrombosis. Tissue plasminogen activator
(PLAT) breakdowns blood clots. GK rats present significantly higher PLAT
expression levels, which may explain hemolysis and thrombosis co-existing in
diabetics. Dr. Auwerx reported in diabetics, PLAT and plasminogen activator (PA)
inhibitor are both activated [16]. The elevated levels of PA-inhibitor activity abolish
PLAT activity inducing a reduced fibrinolytic capacity.

3.3 Further remarks

In order to understand the dynamical changes of regulatory networks in the
development of diabetes, the active networks can be also interpreted in terms of each
time segments. The characteristic features of the active networks, especially
relationship between active networks and diabetic progression, will be reported in
near future.

This study is the first time to use network screening to explain the role of liver
in development of diabetes and the underline mechanism. The results provide many
important rational information and insights into guiding experiments design. It is
worth pointing out that the molecular relationships change dynamically, depending
on the conditions in a living cell, which suggests implicitly that all of the
relationships in the knowledge-based network do not always exist.
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Abstract We analyzed both RNA profile to reveal gene expression changes and glycan
profile to identify structural changes in glycans between four parental somatic cell (SC) lines
and nine hiPSC lines that were originally established. The sum of these information by a
combination of standard statistical techniques and a network approach showed significant
differences in expression between the iPSCs and SCs. Subsequent network analysis of the
gene expression and glycan signatures revealed glycan transfer network associated with
known epitopes for differentiation. The present study is the first to uncover the relationships
between gene expression patterns and cell surface changes in hiPSCs, and reinforces the
importance of the cell surface to identify established iPSCs from SCs.
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1 Introduction

Human iPS cells (hiPSCs) attract great attention for the application to drug
screening and analysis of the mechanisms of diseases, and even as the next
generation materials for regenerative medicine. Genetic reprogramming to a
pluripotent state of human somatic cells was first achieved by ectopic expression of
four factors (Sox2, Oct4, KIf4 and c-Myc) using retrovirus [1]. Subsequently, this
method was applied to various human cells using different combination of defined
factors [2, 3]. However, transcription factor-induced acquisition of replication
competence and pluripotency raises the question as to how exogenous factors
induce changes in the inner and outer cellular states [4-6].

Here, we analyzed both RNA profile to reveal gene expression changes and
glycan profile to identify structural changes in glycans between four parental
somatic cell (SC) lines and nine hiPSC lines that were originally established. The
sum of these information by a combination of standard statistical techniques and a
network approach showed significant differences in expression between the iPSCs
and SCs. Subsequent network analysis of the gene expression and glycan signatures
revealed glycan transfer network associated with known epitopes for differentiation.
These results shed new light on the potential linkages between the inner and outer
cellular states for acquisition of replication competence and pluripotency in hiPSCs.

2 Materials and Methods

2.1 Cell experiments

Cell experiment was performed as described [7, 8]. Somatic cell pellets were
harvested by scraping. The hiPSCs were incubated at 37°C in a solution that
contained 1 mj%{ml collagenase IV (Invitrogen, Carlsbad, CA), 1| mM CaCl,, 20%
KNOCKOUT ™ Serum Replacement (KSR), and 10% ACCUMAX (Innovative
Cell Technologies, Inc., San Diego, CA). When the edges of the colonies started to
dissociate from the bottom of the dish, the collagenase solution was removed and
the cells were washed with medium. Colonies were then picked up and collected.

2.2  Gene expression analysis

Changes in mRNA levels were monitored using an Agilent Whole Human
Genome Microarray chip (G4112F). This array covers 41,000 well-characterized
human genes and transcripts. After background correction using a Normal plus
Exponential convolution model, which adjusts the foreground to the background,
we used an offset to dampen the variation of the log-ratios for intensities close to
Zero.

2.3 Network Analysis
We calculated the graph consistency probability [9], which reflects the
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consistency of a given network structure with the expression data of the constituent
genes monitored in the present study, for each of the 146 network structures
constructed using the previous ChIP-on-Chip data of four factors [10] and the gene
classification scheme of the Molecular Signatures Database (MSigDB) [11]. The
statistical significance level of the thresholds was set at 0.05.

2.4 Glycan analysis

We analyzed cell surface glycans using a lectin microarray [12]. Briefly, 43
lectins were spotted at a concentration of 0.5 mg/ml in triplicate onto
epoxysilane-coated glass slides. Cell membrane fractions labeled with Cy3 NHS
ester were then incubated with the lectin microarray, and fluorescence images were
acquired using an evanescent-field activated fluorescence scanner SC profiler. The
fluorescence signal for each spot was quantified with background value correction,
and the lectin signals were defined by the average of triplicate spots.

3 Results and Discussion

3.1 Gene expression signature of hiPSCs descended from different
parent SCs

To determine the gene expression signatures of hiPSCs, a detailed genome-wide
expression analysis was performed to compare iPSCs and their parental SCs from
amniotic mesodermal (AM), placental artery endotherial (PAE), uterine
endometrium (UtE), and MRC-5 (MRC) cell sources. In total, 51 cell samples of 13
cell lines (39 hiPSCs samples of 9 hiPSC lines [7, 8]) were studied in the present
study, so as to statically compare the hiPSCs and parental SCs. Unsupervised
hierarchical clustering of the gene expression data across the four hiPSC lines (AM,
PAE, UtE, MRC) and their corresponding parental SCs revealed interesting patterns
of gene expression heatmap (Fig. 1A). First, the hiPSCs were clearly
distinguishable from their respective parental SCs. Second, the four hiPSC lines had
gene expression profiles that were linked to those of their parental SCs, while the
hiPSCs from different passages clustered more closely with each other than with the
hiPSCs from the corresponding parental SCs (Fig. 1A). In support of these findings,
a Pearson correlation analysis demonstrated that the gene expression profiles of
hiPSCs from different passages were more closely related to each other than to the
hiPSCs from the same parental SCs, (Fisher’s z-transformation comparison of
correlations) (data not shown).

Analyses of the differences in gene expression between the four hiPSC lines and
the parental SC lines revealed that 8,287 (out of 16,483) genes in the AM cells,
7,249 genes in the MRC cells, 7,465 genes in the PAE cells, and 6,314 genes in the
UtE cells showed significant differences between the hiPSC lines and the
corresponding parental lines, as determined using the Student’s z-test (for a false
discovery rate [FDR] < 5% and requiring a>2.0 -fold change in expression between
the cells). In total, 2,502 genes were categorized into a gene expression signature
common to the above four gene sets with expression differences (Fig. 1B). In this
expression signature, 62% of the genes (1549 genes) were upregulated and 38%
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(953 genes) downregulated in the hiPSCs compared to the parental SCs.

A 3¢ AM PAE HE MR

Figure 1 Gene Expression Signature. A: Heat map and hierarchical clustering for
all cells and genes. Cell types are indicated by the bars, and the following
abbreviations are used for the source of cell types of the human somatic cells (SCs)
and induced pluripotent stem cells (hiPSCs): AM, amniotic membrane cell; PAE,
placental artery cell; UtE, uterine endometrium cell; MRC, MRC-5 cell. B: Heat
map of 2,502 genes in the hiPSCs and parental cells. Cell types are indicated by the
bars.

3.2 Significant correlation between reprogramming and glycan
biosynthesis based on network analysis

To elucidate the nature of the expression signature of the hiPSCs, we
incorporated information on gene binding and function into a network analysis
approach. To prepare the network analysis, we identified in the expression signature
146 regulatory networks of 313 genes, which were classified with their functions
using the gene sets defined previously [11] (see also Methods), among 519 genes
that were identified as being bound by four factors in ChIP-on-chip experiments
[10]. We then analyzed the 146 reference networks, which were regarded as being
directly induced by the four factors (OCT3/4, SOX2, KLF4, c-MYC), to define the
network signature of the hiPSC, according to the two following thresholds: 1) the
enrichment probability of the genes in the expression signature for each network;
and 2) the consistency of the network structure in relation to the gene expression
profile [9]. Thus, we defined as the network signature 28 networks of 76 genes that
fulfilled these conditions (Fig. 2A).

As expected, the network signature almost completely covered the pathways
that were previously implicated in the reprogramming of hiPSC pluripotency (Figs.
2A and B). For example, the relationship between reprogramming for pluripotency
and signal transduction was emphasized for the TGF-§ [13], Wnt [14], and MAPK
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pathways [15]. In addition, pathways related to cell-cell interactions were
implicated. Although the molecular mechanisms underlying the cell-cell
interactions in the inner cellular states are less understood, several studies have
reported the importance of cellular communication through the extracellular matrix
with respect to changes in the cellular states, such as those that occur during
development and differentiation [16]. Furthermore, relationships to cancer-related
pathways were identified, which is consistent with the fact that the four factors
induce various cancer cells [17]; this finding may be useful in the prevention of
cancer induction by hiPSCs. Although several pathways in the network signature
remain to be characterized, the network signature provides clues as to the molecular
mechanisms underlying reprogramming for hiPSC pluripotency and self-renewal.

A

Pathway

B
glycan o
biosynthesis (0

cell-cell interaction

N CYTOSKELETON Eleies:
SYNTHESIS 3 caneer

APOPTUSE
APOFTNE

transduction
RANSENDUTHELIAL MIGRATION

1 CELL SIGNALING IN_HELICOBADTER_PYLORL_INPECTION
SMOGTH M SONTRACTION

Figure 2 Network signature. A: List of network signatures. The pathways with
significant probabilities are classified into the following categories: 2™-7" row,
signal transduction; 8"-12", cell-cell interactions; 13" and 14™, glycan biosynthesis;
15"-21%, cancer; and otherwise, unclassified pathways. B: Schematic presentation of
networks. The four induced factors are described in the center, and the binding genes,
which are grouped according to the classification scheme described in A, are
connected by thin lines.

Interestingly, two regulatory networks related to the glycome for linkage of the
inner and outer cellular states appeared in the network signature (Fig. 2A). In
general, glycan biosynthesis is a multi-step process that requires a variety of
enzymes, i.e., glycosyltransferases and enzymes involved in cytosolic sugar
metabolism, and in many cases, glycan biosynthesis follows a glycan-specific linear
pathway. As most glycosyltransferases are regulated at the transcription level, an
assessment of the transcriptional profile of glycan biosynthesis genes is warranted.
In the two pathways, we found three genes (ST6GALI, B3GNT3, and GCNT2)
related to glycan transfer and two genes (EX7] and HS6ST?2) related to heparan
sulfate biosynthesis that were included in the expression signature. These findings
are consistent with recent studies that have revealed associations between N-glycan
and the maintenance of embryonic stem cell (ESC) pluripotency [18] and between
heparan sulfate and the reprogramming of ESCs [19]. Therefore, the identified
genes in the above two pathways are candidates for the maintenance of the outer
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cellular state of iPSCs.

3.3 Unique glycan signatures of hiPSCs distinct from parent SCs

In addition to the expression and network signatures of the inner cell state, we
examined the differences in the outer cellular states of the hiPSCs and parental SCs
using a lectin array, which detects glycan structures on cell surface proteins based
on glycan-lectin interactions [12]. In this analysis, the hiPSCs were clearly distinct
from their parental SCs, and the dendrogram of the lectin microarray generated by
unsupervised hierarchical clustering showed a clear separation between the hiPSCs
and the parental SCs (Fig. 3A). Although the binding relationships between lectins
and glycans and the relationships between the changes in glycan structures and the
corresponding glycosyltransferases are redundant [20], we summarized the
lectin-glycan-glycosyltransferase relationships using KEGG GLYCAN [21] and
manual curation of previous papers. We found strong correlations between the gene
expression profiles of the glycosyltransferases and the corresponding lectin
fluorescence intensities (data not shown). This result indicates that
glycosyltransferases are coordinately expressed with reprogramming, which the
result that the hiPSCs bear glycan structures that are distinct from those of their
parental SCs, reflecting reprogramming of the inner cellular state.

Lectin Reaction Transferase
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BPL Gal bi-3 GaiNAe  BIGALTS, BIGALTH
TiAY  Nedao:2edal ST6GALL
884 it 2 f STeGALL
ABA  Gulbi-3GalNAc  BIGALTS
UiaiNAg 3 GALNTG, GALNTE GALNT 10, GALNTIL GALNTI4. GALNTL2
£ Pl GALNTG, GALNTE, GALNTIO, GALNTIZ, GALNTE4, GALNTL2
AAL FUT2
ACA : BIGALTS
Jacatin Ualt KAz BIGALTS
[ Th: GALNTS, GALNTE GALNT 0, GAINTI2, GALNTI4, GALNTL2

MPA

GALNT6, GALNTE GALNTID GALNTIZ GALNTIA GALNTL2
i BIGNT2

STL 3 Ga
Ua  Gic i BIGNTZ

Figure 3 Glycan signature. A:Heat map and hierarchical clustering of lectins. The
hiPSCs and parental SCs are discriminated. B: Correspondence between lectin gene
expression patterns and glycan signatures. The lectin-glycosyltransferase
relationships are described, together with their reactions. The lectins were selected
under the condition that the corresponding glycosyltransferases were found in the
expression signature.

Based on the Student’s #-test (FDR <0.01) analysis, 28 of the 43 lectins in the
lectin microarray showed significant differences between the hiPSCs and parental
SCs (data not shown). We assigned 16 lectins to the glycan signature, which
interacted with the 12 glycosyltransferases, which were related to the six patterns of
glycan reactions, based on correspondence with the expression signature (Fig. 3B).

3.4 Molecular candidates for linkages between the inner and outer
cellular states

_71_



Potential Linkages Between the Inner and Outer States of iPS cells 387

Based on the correspondences between the expression and network signatures
and between the expression and glycan signatures, we identified a total of 14
glycosyltransferases, owing to the appearance of ST6GALI in both sets of
correspondences. These glycosyltransferases are potential candidates for the linkage
between the inner and outer cellular states in hiPSCs. Interestingly, these
glycosyltransferases may be related to the biosynthesis of a glycolipid that is
characteristic of hiPSCs. Indeed, allocation of the above glycosyltransferases to the
pathways of “Glycan Biosynthesis and Metabolism” in KEGG GLYCAN revealed
that the glycosyltransferases identified in the present study are important in
glycolipid biosynthetic pathway. We identified B3GALTS5 in the biosynthetic
pathway for the carbohydrate chains of the globo-series glycosphingolipids that
carry the well-known SSEA-3 and SSEA -4 epitopes for ESCs and iPSCs, [22 ,23],
and although FUT?2 is not directly involved in the synthesis of these glycans, it was
found in the neighboring pathway that leads to the type IV H antigen. Furthermore,
B3GALTI and GCNT2, in addition to B3GALTS and FUT2, were found in the
extensive biosynthetic pathway of the carbohydrate chains of the lacto- and
neolacto-series glycosphingolipids that carry SSEA-1, which is intensively
expressed in ESCs but is absent in cells that have differentiated from ESCs [24]. In
addition, members of the GALNT family, responsible for the O-glycan biosynthetic
pathway of sialyl-T antigen, which is the most abundant glycan in several
carcinoma cell lines, and ST6GALI were only found in the N-glycan biosynthetic
pathway, which is involved in the generation of cell-surface carbohydrate
determinants and the differentiation antigens HB-6, CDw75, and CD76 [25]. These
analyses identify the glycosyltransferases that are directly and indirectly related to
known glycan epitopes, thereby indicating the key molecules and the marker
epitopes involved in reprogramming.
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