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Our theory may also give an account of the non-
metastatic and multicentric de novo occurrence charac-
teristics of HCC, which would be the result of persistent
HCV infection.
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RNA-dependent RNA polymerase of hepatitis C
virus binds to its coding region RNA stem—loop
structure, 5BSL3.2, and its negative strand
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The hepatitis C virus NS5B RNA-dependent RNA polymerase (RdRp) is a key enzyme involved in
viral replication. Interaction between NS5B RdRp and the viral RNA sequence is likely to be an
important step in viral RNA replication. The C-terminal half of the NS5B-coding sequence, which
contains the important cis-acting replication element, has been identified as an NS5B-binding
sequence. In the present study, we confirm the specific binding of NS5B to one of the RNA
stem-loop structures in the region, 5BSL3.2. In addition, we show that NS5B binds to the
complementary strand of 5BSL3.2 (5BSL3.2N). The bulge structure of 5BSL3.2N was shown to
be indispensable for tight binding to NS5B. /In vitro RdRp activity was inhibited by 5BSL3.2N,
indicating the importance of the RNA element in the polymerization by RdRp. These results
suggest the involvement of the RNA stem—loop structure of the negative strand in the replication

Accepted 24 December 2009 process.

The hepatitis C virus (HCV) is a positive-strand RNA virus
belonging to the family Flaviviridae (Miller & Purcell,
1990). HCV NS5B RNA-dependent RNA polymerase
(RdRp) is known to play a pivotal role in the viral
replication process (Behrens et al., 1996). Although HCV
replication is regulated by host cellular factors, the initial
replication complex formation requires an interaction
between NS5B and viral RNA (Hamamoto et al, 2005;
Tu et al, 1999; Wang et al., 2005; Watashi et al., 2005).
Interestingly, many of the RNA molecules appear to have
the potential to be substrates of NS5B RdRp in an in vitro
RdRp assay system (Behrens et al, 1996; De Francesco
et al., 1996; Ferrari et al., 1999). However, NS5B appears to
exhibit a binding preference for certain select RNA
molecules (Biroccio et al, 2002; Kanamori et al, 2009;
Lohmann et al,, 1997; Vo et al., 2003). Because of the high
error rate of the viral RdRp (Holland et al, 1982),
variability in the viral sequence is observed not only
between the different genotypes, but also within the same
genotype or subgenotype (Simmonds et al., 1993). Among
the HCV genome sequence variants, the well-conserved
RNA sequences are located at the 5'-end (Bukh et al.,, 1992;
Smith et al., 1995), 3'-end (Kolykhalov et al., 1996; Tanaka
et al., 1995; Yamada et al., 1996) and within a portion of
the NS5B-coding region (Walewski et al., 2001). The RNA
elements that interact with NS5B have been located mainly
in these conserved sequence areas. NS5B was shown to

bind to a highly conserved 98 nt 3’-terminal segment,
designated 3’-X, as well as to its upstream poly U/UC tract
in the 3'-non-coding region (NCR) (Cheng et al., 1999; Oh
et al, 2000). Recent studies have revealed that the
C-terminal half of the NS5B-coding RNA exhibits tighter
binding to NS5B (Kim et al., 2002; Lee et al., 2004). This
region contains certain conserved RNA stem-loop struc-
tures (Walewski et al, 2001; You et al, 2004). Among
these, the 5BSL3 stem-loop structures were candidates for
the NS5B-binding site (Lee et al., 2004), of which 5BSL3.2
was shown to contain the cis-acting replication element
(Friebe et al., 2005; Lee et al., 2004; You et al., 2004). We
and others have demonstrated the binding of NS5B to
5BSL3.2 (Kanamori et al., 2009; Zhang et al, 2005),
although the binding specificity of NS5B to 5BSL3.2
remains to be determined.

Following the synthesis of the negative-strand viral RNA,
the positive-strand viral RNA is synthesized using the
replication intermediate as a template. A part of the 3'-end
structure of the negative-strand HCV RNA was shown to
bind to NS5B (Astier-Gin et al., 2005; Oh et al., 1999) while
the corresponding positive-strand (5'NCR) RNA appeared
not to bind to NS5B (Lee et al., 2004). The interaction of
NS5B with the 3’-end negative-strand RNA should be key
for the initiation of the positive-strand RNA synthesis
(Astier-Gin et al., 2005), but there have been only a few
studies on NS5B binding to other RNA regions on the
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negative strand. In the present study, we show that NS5B
binds not only to the 5BSL3.2 RNA but also to its
complementary strand, suggesting the importance of the
negative-strand viral RNA complementary to the cis-acting
replication element in the formation of the viral replication
complex. '

Among the HCV genome variants, NS5B SL3 is a well-
conserved region that is key for viral replication because of
the presence of a cis-acting replication element in this
region (Friebe et al., 2005; You et al., 2004). In addition,
NS5B appears to bind to RNA elements in this area (Lee
et al, 2004). Thus, we employed RNA gel mobility shift
analysis using three of the RNA stem-loop structures
(5BSL3.1, 5BSL3.2 and 5BSL3.3; Fig. 1a) to estimate which
structure contributes most to the recruitment of the viral
polymerase (Fig. 1c). A C-terminal 21 aa-truncated
glutathione S-transferase (GST)-NS5B (strain BK, genotype

1b) fusion protein was produced and purified by using
Escherichia coli BL21 as described previously (Kanamori
et al, 2009). Synthetic RNA oligonucleotides were **P-
labelled at the 5'-end by using T4 polynucleotide kinase
and [p-*’P]JATP (PerkinElmer). The *?P-labelled RNA
oligonucleotides (5 nM, final concentration) were incu-
bated with NS5B protein (100 nM) in a total of 10 pl
binding buffer [8 mM HEPES, pH 7.9, 40 mM NaCl,
5mM MgCl,, 2mM EDTA, 0.2 mM dithiothreitol,
0.2 mM PMSF and 1.6 % glycerol (v/v)] containing 50 pg
tRNA ml~' for 15 min at 22 °C, then loaded onto 4%
polyacrylamide gels (80:1 acrylamide-bisacrylamide elec-
trophoresis in 0.25 x Tris borate/EDTA buffer) and run at
300 V at 4 °C. The 5BSL3.2 RNA exhibited substantial
binding to NS5B, while the other stem-loop structures
(5BSL3.1 and 5BSL3.3) did not exhibit binding. The
binding specificity of 5BSL3.2 RNA to NS5B was confirmed
by a cold competition experiment (Fig. 2a). Competition

(a) _

5BSL3,1 5BSL3.2

uu u~"c

A

%—UA uA G
818 Nyic®
u-s Av 5BSL3.3
U-G A-y u
G_C u-c
R b &
c- Td AU
c-g &Cgue, U-A
5 v P c-G

= A c-G
E_g" a-c 8¢ u-G
G-U G-C c-G
U u G-C A-U
C-G G-C U-A
G~C C-G C-G
G-U G-C c-G
CG A- G-C

5'- C-GuuaC-GguucauguggU-A-3
(c) (d)

-*>
-

NSSB () ) ) () ()
5BSL3.15BSL3.25B5L3.3

Relative ] 100 0 100

binding

5BSL3.25BSL3.2N

(b)

5BSL3.2N
UG 5BSL3.1N
G %, AR
v A
& o
Gy yA &€
5BSL3.3N C-G  U-A
A AU C A
GTA G-C G-C
g S
U-A c®A™=C g
c-G G A G
c-G GeYy o A
cC A c-G
c-G o
A-U & KK
U-A C-G
c-G €8 . G
c-G G-C c
o A-U G
5'- U~-AccacaugaacC-GuaaC-G~-3
(e) .
L4 -
# -
-
[

NS5B () (+) () () ) ()
S5BSL3.1IN5BSL3.2N 5BSL3.3N

98 16 100 2

Fig. 1. Evaluation of the RNA-NS5B binding by RNA gel electrophoretic mobility shift assays. The predicted secondary
structure of the HCV NS5B-coding region RNA is shown. The probes used in the experiments are shown in upper case. (a) The
sequence of the positive-strand 5BSL3.1 (44 nt), 5BSL3.2 (48 nt) and 5BSL3.3 (31 nt) is from the Con1 clone, and the
predicted secondary structure was described by Friebe et al. (2005). (b) The RNA secondary structure of the negative-strand
RNA was predicted by using Zuker's Mfold program and is shown (Zuker, 2008). RNA gel mobility shift analysis using (c)
5BSL3.1, 5BSL3.2 and 5BSL3.3, (d) 5BSL3.2 and 5BSL3.2N, (e) 5BSL3.1N, 5BSL3.2N and 5BSL3.3N. Open arrows
indicate RNA probes. Solid arrows indicate the positions of the RNA—protein complexes. The relative binding was calculated

and is shown at the bottom of the gels.
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Fig. 2. Evaluation of the RNA-NS5B binding by RNA gel electrophoretic mobility shift competition assays and in vitro RdRp
assays. (a) RNA gel mobility shift analysis by using 5BSL3.2 as the probe. Cold competitor oligonucleotides (20-, 100- or 500-
fold excess of 5BSL3.1, 5BSL3.2 or 5BSL3.3) were added to the reaction mixture and analysed. (b) RNA gel mobility shift
analysis by using 5BSL3.2N as the probe, the cold competitor oligonucleotides were added (a 20-, 100- or 500-fold excess of
5BSL3.1N, 5BSL3.2N or 5BSL3.3N) and analysed. The relative RdRp activity in the presence of each RNA stem-loop
structure [(c) 50 nM of 5BSL3.1, 5BSL3.2, 5BSL3.3 or tRNA, (d) 5BSL3.1N, 5BSL3.2N, 5BSL3.3N or tRNA] is shown by a
bar graph. Experiments were performed in triplicate and the standard deviations are shown in the figure. ***, P<0.001; **,
P<0.01; *, P<0.05 (unpaired Student's t-test) compared with (=). (e) Either the 5BSL3.2 or 5BSL3.2N RNA probe was
incubated with different concentrations of NS5B (0-200 nM, final concentration) and analysed by RNA gel mobility shift

analysis.

experiments were performed by adding excess unlabelled
oligonucleotides to the binding reaction (a 20-500-fold
excess) 5 min prior to adding the probe. Binding was
competed by excess cold 5BSL3.2, but not by excess cold
5BSL3.1 or 5BSL3.3 oligonucleotides.

Although it is not possible to estimate the effect of all
cellular factors, the in vitro RARp system is a versatile assay
to evaluate the ability of inhibitory factors, including
oligonucleotides against RdRp activity. We used a primer-
dependent RdRp assay system to evaluate the inhibitory
effects of the RNA stem-loop structures on the RdRp
activity of NS5B (Fig. 2c). RdRp activity was measured by
using the poly(C)-oligo(G) system, as described previously
(Uchiyama et al, 2002). The 5BSL3.2 RNA efficiently
inhibited the RdRp activity (39 %), while 5BSL3.1 did not
exert any influence on the RdRp activity. The 5BSL3.3 RNA
inhibited the RdRp activity, but to a lesser extent (22 %).
The difference in the degree of inhibition of RdRp activi-

ties by 5BSL3.2 and 5BSL3.3 was statistically significant
(P<0.05, unpaired Student’s t-test). This suggests that the
5BSL3.3 stem-loop structure may inhibit RdRp activity via
a different mechanism than 5BSL3.2, which binds to NS5B.

The predicted RNA secondary structure of the negative
strand RNA corresponding to 5BSL3 is shown on Fig. 1(b).
Each RNA element (5BSL3.1N, 5BSL3.2N and 5BSL3.3N)
appears to form a mirror image structure of the positive-
strand RNA. It is notable that 5BSL3.2 and its negative
strand (5BSL3.2N) share the identical 6 bp upper- and
8 bp lower-stem sequences. Both the 5BSL3.2 positive- and
negative-strand = stem—loop structures contain 12-base
terminal loops and 8-base bulges, the nucleotide sequences
of which are unique to each strand. Because of the
similarity between the secondary structures of 5BSL3.2 and
its negative strand, we thought that 5BSL3.2N might bind
to NS5B. In fact, 5BSL3.2N bound to NS5B with a bind-
ing strength similar to 5BSL3.2 (Fig. 1d). In contrast,

http://vir.sgmjournals.org
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5BSL3.IN exhibited very weak binding to NS5B, and
5BSL3.3N did not exhibit any binding (Fig. le). A cold
competition RNA gel shift experiment indicated that
neither 5BSL3.IN nor 5BSL3.3N oligonucleotides inhibited
the binding of the 5BSL3.2N RNA element to NS5B, while
excess cold 5BSL3.2N oligonucleotides competed with the
binding (Fig. 2b). The inhibitory activities of the negative-
strand RNA stem-loop structures on RdRp activities were
well correlated with their binding ability to NS5B (38, 67
and 3% for 5BSL3.1N, 5BSL3.2N and 5BSL3.3N, respec-
tively; Fig. 2d). The difference between the degree of inhi-
bition of RdRp activities by 5BSL3.1N and 5BSL3.2N was
statistically significant (P<0.001, unpaired Student’s t-test).

It is notable that both 5BSL3.2 and 5BSL3.2N probes
exhibited multiple shifted bands of different mobility in gel
mobility shift experiments in the presence of NS5B (Fig.
Ic—e and Fig. 2a, b). By increasing the concentration of
NS5B in the reaction mixture (Fig. 2e), the upper bands
appeared to increase in relative intensity. This probably is
the result of the binding of the oligomerized NS5B when
the concentration of the protein is high, and is consistent
with the binding data obtained in the earlier study by Lee
et al. (2004).

Next, we introduced base substitutions and/or deletion of
the bulge structure on the 5BSL3.2N region to evaluate

which portion of the RNA secondary structure is important
for binding to NS5B (Fig. 3). Replacement of the bulge
sequence (5BSL3.2NG13C and 5BSL3.2NBA) reduced the
binding capacity of the RNA, but only to a small extent. In
contrast, the deletion of the bulge sequence (5BSL3.2NAB)
reduced the binding to less than half. The bulge of the
positive-strand 5BSL3.2 also appeared to play a key role in
the binding to NS5B, because the removal of the bulge
from the positive-strand 5BSL3.2 RNA reduced the binding
capacity of the RNA to 23% (data not presented in the
figures). Because the stem portions of 5BSL3.2 and
5BSL3.2N are identical, we thought that the stem portions
should also have an important role in NS5B binding. In
fact, in the positive-strand version, replacement of a
nucleotide on the lower stem reduced the binding to
NS5B by half (Kanamori et al., 2009). In contrast, similar
replacement of a nucleotide (with compensatory base
substitution to maintain the secondary structure) on the
lower stem of 5BSL3.2N (5BSL3.2NG7C) did not reduce
the binding capacity of the RNA to NS5B. Additional base
substitutions on the bulge sequence (5BSL3.2NBAM) did
not reduce the binding capacity of the RNA to NS5B
very much either. Interestingly, in the absence of the
bulge structure, the lower stem sequence appeared to
exert more influence on the binding to NS5B (the relative
binding strength for 5BSL3.2NAB, 5BSL3.2NABG7C and
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Fig. 3. Secondary structures and binding strengths of mutated and/or deleted RNA clones. The predicted secondary
structures of the tested RNA oligonucleotides by Mfold analysis (Zuker, 2003) are shown. The filled circles near each nucleotide
indicate the CGGG motifs. Open circles indicate substituted nucleotides. The relative binding capacity of each RNA
oligonucleotide to NS5B was determined by RNA gel mobility shift analysis, and is shown at the bottom of each RNA secondary
structure. RdRp activities in the presence of RNA stem-loop structures are shown by a bar graph in the bottom portion. The
RdRp activity in the absence of the competitor RNA was set to 100.
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5BSL3.2NABM, which were 43, 26 and 3% of that for
5BSL3.2N, respectively). Inhibition of the RdRp activ-
ity was less in the mutants with a higher number of
base substitutions in a series of mutants with a bulge
(5BSL3.2N, 5BSL3.2NG7C, 5BSL3.2NG13C, 5BSL3.2NBA
and 5BSL3.2NBAM; 0, 1, 1, 3 and 5 nt substitutions, plus
compensatory base substitutions, respectively). In a series
of mutants without the bulge, RdRp inhibition was also
less, with a greater number of base substitutions in the GC-
rich motif on the stem (5BSL3.2NAB, 5BSL3.2NABG7C
and 5BSL3.2NABM; 0, 2 and 4 nt substitutions, respec-
tively). These results indicate the importance of the bulge
structure, as well as the lower stem sequence, for the tight
binding of the 5BSL3.2N RNA stem-loop structures to
NS5B.

HCV 5BSL3.2 is one of several RNA stem-loop structures
in the NS5B-coding RNA, and is considered to be a highly
important cis-acting replication element (Friebe et al,
2005; You et al., 2004). The hairpin-loop sequence on
5BSL3.2 and the sequence on the loop of the 3'-X (3'SL2)
have the potential to form a pseudoknot, which is regarded
as essential for viral replication. In addition, a more recent
study by Diviney et al. (2008) provided evidence that the
long range RNA interaction between 5BSL3.2 and its
approximately 200 base upstream CGGG motif is also
important for viral replication.

Combined with the results from the analysis of the
aptamers against NS5B in our previous study, we thought
it likely the CGGG motif, which is found on the lower stem
of 5BSL3.2, would play an important role in binding to
NS5B (Kanamori et al., 2009). The CGGG motif is also
present on the lower stem of the negative-strand 5BSL3.2N
stem—loop structure. Furthermore, an additional CGGG
sequence appears on the bulge portion. Removal of
the bulge structure reduced the binding of 5BSL3.2N.
In the cases of RNA structures without the bulge
(5BSL3.2NABG7C and 5BSL3.2NABM), the base substitu-
tions on the CGGG motif reduced the binding, as was
reportedly observed in the case of the positive-strand
version, 5BSL3.2 (Kanamori et al., 2009).

At the initiation of positive-strand RNA synthesis, NS5B is
likely to bind to the 3'-end structures of the negative-
strand viral RNA (Astier-Gin et al., 2005). In addition, it is
possible that NS5B binds to RNA elements such as
5BSL3.2N on the negative-strand RNA before the synthesis
of the positive-strand RNA starts, and this stabilizes the
replication complex for more efficient positive-strand viral
RNA synthesis. Because 5BSL3.2N appears to form the
RNA secondary structure mirror image of the positive-
strand 5BSL3.2, 5BSL3.2N may also interact with the
distant negative-strand RNA motifs to facilitate viral RNA
synthesis.

In the present study, it has been shown that NS5B
specifically binds to 5BSL3.2 and its negative-strand struc-
ture. NS5B binding to the negative-strand 5BSL3.2N RNA
may also be a key step in viral RNA replication.
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Background: Bioactive lipid mediator S1P has been suggested to play pathophysiological roles in various
fields of clinical science as a circulating paracrine mediator. We previously established a reliable method of
measuring plasma S1P concentration, and reported that the one in healthy subjects has a gender difference
and a correlation with red blood cell (RBC)-parameters, however, the reports of $1P measurements in the
blood in patients with a specific disease have been scarce. Because our previous evidence suggests that STP is
involved in liver pathophysiology, we examined plasma S1P concentration in chronic hepatitis C patients.
Methods: S1P assay was performed using a high-performance liquid chromatography system.

Results: Plasma S1P concentrations were reduced in chronic hepatitis C patients compared with in healthy
subjects with the same hemoglobin concentration, irrespective of gender. Among the blood parameters,
serum hyaluronic acid concentration, a surrogate marker for liver fibrosis, was most closely and inversely
correlated with plasma S1P concentration. Furthermore, plasma S1P concentration decreased throughout the
progression of carbon tetrachloride-induced liver fibrosis in rats.

Conclusions: Plasma S1P concentration was reduced in chronic hepatitis C patients, and liver fibrosis might be
involved, at least in part, in the mechanism responsible for this reduction.
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© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Sphingolipids are now known as modulators of membrane signal
transduction systems, being involved in diverse cellular processes.
Sphingosine 1-phosphate (S1P), one of these sphingolipids, first
emerged as an intracellular mediator affecting cellular proliferation
and survival [1,2]. S1P subsequently gained even more attention after
it was shown to act as an extracellular mediator with a wide variety of
cellular responses, including proliferation, survival, migration and
contraction [3-5]. Indeed, recent investigations have revealed that
S1P acts through at least five high-affinity G protein-coupled
receptors referred to as S1P;_s [6-10]. Furthermore, several lines of
evidence have demonstrated various phenotypes of S1P receptor
mutants [11,12]. So far, S1P has been shown to be involved in the
regulation of important physiological functions of the vascular

Abbreviations: LPA, lysophosphatidic acid; RBC, red blood cell; S1P, sphingosine 1-
phosphate.
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system, such as vascular morphogenesis and maturation, cardiac
function, vascular permeability, and tumor angiogenesis [13-18].
Furthermore, S1P interaction with S1P; has been shown to be
essential for lymphocyte egress from the secondary lymphoid tissues
to the lymph [19-21], and S1P; downregulation by FTY720 is now
attracting much attention as an effective way of immunosuppression
in experimental models of transplantation and autoimmunity, causing
a marked decrease in the number of circulating lymphocytes in the
peripheral blood [22]. Very recently, S1P and S1P; have been further
shown to play a role in bone homeostasis [23]. Thus, these
accumulating findings strongly suggest that S1P has normal in vivo
roles as well as potentially pathophysiological roles as a circulating
paracrine mediator.

In order to know these roles of S1P, the S1P concentration in the
blood in vivo and its regulatory mechanism should be known. It was
previously reported that S1P is present in human plasma at a readily
detectable concentration [24], and of note, this concentration of S1P is
comparable to the concentration of S1P causing various responses in
cells in vitro [25]. We then recently established a reliable method of
measuring the S1P concentration in the blood and reported the
plasma S1P concentrations in the healthy subjects [26], however, the
reports of S1P measurements in the blood in patients with a specific
disease have been scarce.
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We have been focusing our attention on the potential role of S1P in
liver pathophysiology. We first demonstrated that S1P stimulates
proliferation and contractility via S1P, in rat hepatic stellate cells
[27.28]. We also revealed that S1P inhibits proliferation in rat
hepatocytes with Rho activation via S1P, and that the administration
of S1P in 70% hepatectomized rats reduces the synthesis of DNA in
hepatocytes [29]. We then examined the phenotypes of S1P, mutants
and observed accelerated hepatocyte regeneration and reduced liver
fibrosis in those mice [30]. Serriere-Lanneau et al. also reported a
reduced wound healing response to liver injury in S1P,-deficient mice
[31]. With these findings, we wondered if the S1P concentration in the
blood could be modulated in liver injury. In this study, we examined
the plasma S1P concentration in patients with chronic hepatitis C, one
of the most common liver diseases worldwide.

2. Patients and methods
2.1. Patients

We enrolled 15 patients with chronic hepatitis C who were seen in
the Department of Gastroenterology, the University of Tokyo Hospital,
Tokyo, Japan. The patients with chronic hepatitis C were diagnosed
based on serum positivity for anti-hepatitis C virus antibodies and
detectable hepatitis C virus RNA. The exclusion criteria were co-
infection with hepatitis B virus and other causes of liver disease. The
study was carried out in accordance with the Declaration of Helsinki
(2000) of the World Medical Association, and was approved by the
Institutional Research Ethics Committee of the Faculty of Medicine of the
University of Tokyo. Informed consent from the patients was obtained
for the use of samples in this study.

2.2. Plasma sample preparation

Blood samples were collected with ethylenediamine tetraacetic acid
dipotassium salt 2H,0 and citrate-theophylline-adenosine-dipyrida-
mole (BD Biosciences, Tokyo, Japan), and centrifuged at 2500 xg at4 °C
for 30 min to obtain the plasma [26].

2.3. S1P assay

The S1P assay was performed using a high-performance liquid
chromatography system as previously described [26]. The value of
within-day assay CV for the plasma S1P concentrations was 2.4%
(n=10), while between-day assay CV was 7.6% (n=5).

2.4. Animals

Male Sprague-Dawley rats (230-250g; Shizuoka Laboratory
Animal Center, Shizuoka, Japan) were fed a standard pelleted diet
and water ad libitum and were used in all the experiments. All animals
received humane care with the anesthetic procedures used in full and
the precautions to ensure that they did not suffer unduly during and
after the experimental procedure in compliance with the Institutional
Guidelines of the University of Tokyo.

2.5. Carbon tetrachloride (CCly) treatment

To induce liver fibrosis, rats were treated with 20% CCl, in olive oil at
0.15 ml/kg intraperitoneally twice a week and with phenobarbital
(0.4 g/1) in drinking water for 4 and 8 weeks [32]. Control rats received
injections of the carrier (olive oil) alone and phenobarbital in drinking
water.

2.6. Histological analysis

Excised livers were analyzed by hematoxylin-eosin and Masson's
trichrome staining [33]. The analysis of fibrosis development was
carried out with the Nikon Digital Camera DXM1200 (NIKON, Japan)
using the public domain Scion Image developed by the Scion
Corporation. The extent of liver fibrosis was quantitated by calculating
the area of fibrosis/area of section.

2.7. Statistical analysis

To compare the means between groups, a Student t-test was
performed. The relationships between variables were analyzed using
the Spearman's correlation coefficient by rank, and a partial correlation
coefficient was calculated to remove the influence of confounding
variables. Differences were considered significant at a p<0.05.

3. Results

The biological characteristics of patients with chronic hepatitis C
are summarized in Table 1. The plasma S1P concentration in these
patients with chronic hepatitis C was 280.3 & 29.6 nmol/l, which
was significantly lower than the previously reported plasma S1P
concentration in healthy subjects, 386.8 + 55.5 nmol/l (p<0.0001)
[26]. Because the plasma S1P concentration in healthy subjects was
significantly higher among men than among women [26], we also
analyzed the plasma S1P concentrations in male and female
patients with chronic hepatitis C. The plasma S1P concentrations
were 280.1 4 31.4 nmol/l in men and 280.7 - 27.8 nmol/l in women
with chronic hepatitis C, both of which were significantly lower
than that in gender-matched healthy subjects (p<0.001), as shown
in Fig. 1. These results indicate that the plasma S1P concentration
was significantly reduced in patients with chronic hepatitis C,
compared with in healthy subjects, irrespective of gender.

A close correlation between the plasma S1P concentration and red
blood cell (RBC)-parameters has recently been revealed [26]. Thus, it
was possible that the reduced plasma S1P concentration in patients with
chronic hepatitis C could be caused by a reduction in RBCs; however, the
hemoglobin concentration, indicating the amount of RBCs, in chronic
hepatitis C patients was 13.5 4 1.7 g/dl as shown in Table 1, which is not
significantly different from that in healthy subjects in the previous
report (14.1+ 1.9 g/dl) [26]. In this study, there was no difference in the
hemoglobin concentration between male (13.8 + 1.8 g/dl) and female
(13.0+ 1.4 g/dl) patients with chronic hepatitis C.

To elucidate the mechanism responsible for the reduced plasma
S1P concentrations in patients with chronic hepatitis C, we analyzed
the relation between the plasma S1P concentration and various blood

Table 1
Baseline characteristics of the patients.
Variables n=15
Male/female 9/6
Age (yr)* 689 (55-92)
Hemoglobin (g/dl)* 13.5+1.7 (10.7-17.2)

Platelet (x10%ml)*

Albumin (g/d1)*

Aspartate aminotransferase (IU/1)*
Alanine aminotransferase (IU/1)*
+y-Glutamyltransferase (IU/1)*
Total bilirubin (mg/dl)*

Total cholesterol (mg/dl)*
Prothrombin time (%)*

Hyaluronic acid (ng/ml)?

133449 (63-22)
37405 (29-42)

43 +19 (25-89)
38+17 (20-75)

36+ 31 (11-136)
1.0+0.6 (03-256)
170+ 42 (116-248)
80.4+ 164 (55.8-100)
355+ 316 (43-1040)

* Expressed as mean +SD (range).
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Fig. 1. Plasma S1P concentrations in male and female patients with chronic hepatitis C. The
Plasma S1P concentration was measured in 9 male and 6 female patients with chronic
hepatitis C. Horizontal bars indicate the means + SD of healthy male and female subjects.
There was a significant difference between male patients with chronic hepatitis C and
healthy male subjects (p<0.0001) and that between female patients with chronic hepatitis
C and healthy female subjects (p<0.001).

parameters. As demonstrated in Table 2, the strongest inverse
correlation was found between the plasma S1P concentration and the
serum hyaluronic acid concentration, followed by the correlation
between the serum albumin concentration and the hemoglobin
concentration. Fig. 2 depicts the relation between the plasma S1P
concentration and the serum hyaluronic acid concentration (A), the
serum albumin concentration (B), or the hemoglobin concentration (C).
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Table 2
Correlation between plasma S1P level and various blood parameters.
Variables Spearman'’s rank p value
correlation coefficient
Hemoglobin {g/dl) 0514 0.0498
Platelet (x10%ml) 0.286 NS
Albumin (g/dl) 0.521 0.0466
Aspartate aminotransferase {IU/1) ~0.104 NS
Alanine aminotransferase (1U/l) 0173 NS
vy-Glutamyltransferase (1UA) —0.054 NS
Total bilirubin (mg/dl) —0,052 NS
Total cholesterol {mg/dl) —~0.034 NS
Prothrombin time (%) 0.125 NS
Hyaluronic acid (ng/ml) —0611 0.0156

In contrast, no significant correlation was found between the plasma
S1P concentration and the platelet count (Fig. 2D), serum aspartate
aminotransferase concentration, serum alanine aminotransferase
concentration, serum vy-glutamyltransferase concentration, serum
total bilirubin concentration or prothrombin time. Because the
plasma S1P concentration has been shown to strongly correlate
with red blood cell (RBC)-parameters in healthy subjects [26], a
partial correlation coefficient between the concentrations of plasma
S1P and serum hyarulonic acid was calculated to remove the
influence of the hemoglobin concentration as a confounding factor
in patients with chronic hepatitis C. As a result, the plasma S1P con-
centration was still significantly and inversely correlated with the
serum hyarulonic acid concentration (partial correlation coefficient =
—0.636, p=0.014).

o

y=37.191x + 143,22
Spearman’s rank correlation coefficient 0.521
p <0.05
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Fig. 2. Relation between plasma $1P concentration and serum hyaluronic acid concentration (A}, serum albumin concentration (B), hemoglobin concentration (C) or platelet count (D).
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Among the blood parameters that were significantly correlated
with the plasma S1P concentration, hyaluronic acid is known to be a
surrogate marker for liver fibrosis [34). Thus, we examined whether
the plasma S1P concentration was reduced during liver fibrosis by
using a rat model treated with CCly. As previously described [35], the
severity of liver fibrosis increases according to the duration of CCly
treatment from 4 to 8 weeks, in which the significant difference of
liver fibrosis was found between no CCl; treatment and CCly
treatment for 8 weeks (p<0.05) but not between no CCl, treatment
and CCl, treatment for 4 weeks (Fig. 3A). In these rats, the plasmaS1P
concentration was not altered by CCl4 treatment for 4 weeks but was
significantly reduced by CCly treatment for 8 weeks (p<0.05)
(Fig. 3B).

4. Discussion

As described in the Introduction, the reports of StP measurements in
the blood have been scarce; the serum S1P concentration is reportedly
an indicator of obstructive coronary artery disease in human [36].
Furthermore, the serum S1P concentration has been also shown to be
enhanced in rats with CCls- and bile duct ligation-induced liver fibrosis
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Fig. 3. Extent of liver fibrosis (A} and plasma S1P concentration (B} in rats treated with
CCl4 for 4 and 8 weeks. The extent of liver fibrosis (A) and the plasma S1P concentration
(B) were measured in rats treated with CCl, for 4 and 8 weeks (n=5). The columns and
bars represent the means = SEM. (A) There was a significant difference between rats
treated with CCl, for 8 weeks and untreated control rats (n=8) (p<0.01) or between
rats treated with CCl, for 8 weeks and those for 4 weeks (p<0.05). (B) There was a
significant difference between untreated control (black column) and CCls-treated rats
for 8 weeks {white column).

[37], which is different from the current evidence. However, the recent
study has clearly indicated that the S1P concentration measured in the
serum samples is largely attributable to the release from platelets during
the sample preparation, indicating that S1P in the blood should be
measured in plasma but not in serum in order to investigate its clinical
or pathological significance [26]. Thus, the current study constitutes the
first evidence of the clinical significance of S1P measurements in the
blood in patients with a specific disease.

A close inverse correlation between the plasma S1P concentration
and the serum hyaluronic acid concentration in chronic hepatitis C
patients suggests that the plasma S1P concentration decreases during
the progression of liver fibrosis, which was confirmed in rats with
liver fibrosis due to CCis-treatment. Because the serum albumin
concentration is known to decline during the process of liver fibrosis
in chronic hepatitis C, the significant correlation between the plasma
S1P concentration and the serum albumin concentration found in this
study may also be related to the progression of liver fibrosis.
Collectively, the reduction in the plasma S1P concentration in chronic
hepatitis C patients may be caused by, at least in part, liver fibrosis.

Regarding the regulatory mechanism of plasma S1P concentration,
RBCs reportedly store and release S1P in the blood [38,39]. Pappu et al.
reported that plasma S1P is mainly hematopoietic in origin, with RBCs
being the major contributor, in a study using conditional knockouts of
sphingosine kinases [40]. Inline with this, the plasma S1P concentiation
was correlated with RBC-related parameters in healthy subjects and a
gender difference in the plasma S1P concentration in healthy subjects
may be explained by a difference of RBC-related parameters between
male and female subjects: a significant lower concentration of
hemoglobin in female healthy subjects than in male healthy subjects
[26]. Furthermore, platelets are known to store S1P abundantly and to
release S1P into the plasma upon activation [24], suggesting that
platelets may be another source of plasma S1P. S1P in those cells is
known to be produced by phosphorylation of sphingosine with
sphingosine kinase {24,40]. In addition, there might be more unknown
source(s) of plasma S1P. On the other hand, it is speculated that plasma
S1P may be cleared by dephosphorylation by lipid phosphate
phosphohydrolases [41,42].

In line with these previous findings, the plasma S1P concentration
was correlated with RBC-related parameters including hemoglobin
concentration also in chronic hepatitis C patients in the current study.
However, there was no gender difference in the plasma SiP
concentration. This may be explained by the finding that there was
no difference in hemoglobin concentration between male and female
chronic hepatitis C patients in this study.

Although the platelet count and prothrombin time, expressed as a
percentage of the value in a control group, are also known to be
reduced during liver fibrosis in chronic hepatitis C, neither of these
parameters were correlated with the plasma S1P concentration in the
current study. Regarding the platelets, they are often activated in
chronic liver diseases [43]. Thus, platelets may be activated more in
patients with a lower platelet count i.e. in those with more advanced
chronic liver diseases, which could lead to the increase in the S1P
release from activated platelets. This may be one possible explanation
why a significant correlation was not found between the plasma S1P
concentration and the platelet count.

Of note, the plasma SiP concentration in chronic hepatitis C
patients was significantly lower than that in healthy subjects with
the same hemoglobin concentration, suggesting that unknown
mechanism in the regulation of plasma S1P may be at work in
these patients. This unknown mechanism should involve the reduced
production and/or the enhanced clearance of plasma S1P, We
previously reported that the plasma concentration of lysopho-
sphatidic acid (LPA), another multi-potential lipid mediator, is
increased in chronic hepatitis C patients [44], which is strikingly
different from the trend for S1P. Importantly, both S1P and LPA in the
plasma are assumed to be dephosphorylated by the same enzyme of a
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family of lipid phosphate phosphohydrolases [41,42], suggesting that
the mechanism of inactivation and clearance from the plasma may be
the same for S1P and LPA. Accordingly, the distinct alteration in the
plasma concentrations of S1P and LPA in chronic hepatitis C patients
is likely caused by the change in their accumulation in the plasma but
not by the alteration in their inactivation and clearance from the
plasma. In fact, the increase in the plasma LPA concentration in liver
fibrosis was attributable to the enhanced activity of its synthetic
enzyme, lysophospholipase D, in the blood [44). Thus, the reduced
plasma S1P concentration in chronic hepatitis C patients may be
caused by the reduced accumulation of STP in the plasma but not by
the enhanced clearance of S1P from the plasma. When considering
this, it is possible that the release from RBCs may be reduced. Of
interest is the fact that the lipid content of the membranes of RBCs is
altered in liver fibrosis [45], which may affect the S1P release from
those cells. Another possibility is that the release from unknown
source(s) of plasma S1P might be reduced. This issue should be
further elucidated.

Our previous evidence suggests the involvement of S1P and
especially S1P, in the pathogenesis of liver fibrosis [27-30], raising the
possibility that a reduction in the plasma S1P concentration might
negatively contribute to the development of liver fibrosis. Whether a
reduction in the plasma S1P concentration in liver fibrosis might be a
simple result of the disease or might possibly contribute to the
pathogenesis should be further evaluated. It is also of interest to
determine whether the plasma $1P concentration would be useful as a
novel marker of liver fibrosis. To clarify this, the plasma S1P
concentration should be measured in a larger number of patients with
liver fibrosis caused by various agents. To do so, an easier method other
than a high-performance liquid chromatography system is better to be
employed.

In conclusion, the plasma S1P concentration was significantly
reduced in patients with chronic hepatitis C, and liver fibrosis might
possibly be invelved, at least in part, in the mechanism responsible for
this reduction. We suggest that the liver may be one of the key
regulators of plasma S1P concentration.
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Aim: Nucleoside analog (NA}interferon (IFN) sequential
therapy may enable the long-term control of chronic hepati-
tis B (CHB) and the withdrawal of the nucleoside analog. We
evaluated the efficacy of NA-IFN sequential therapy for acute
exacerbation of CHB.

Methods: A total of 12 patients with acute exacerbation of
CHB, nine of whom were positive for hepatitis B e antigen
(HBeAg), were enrolled in this study. All the patients were
treated with lamivudine 100 mg/day alone for 20 weeks, then
with both IFN-a 6 megaunits three times per week and lami-
vudine for 4 weeks, and lastly, with IFN-o alone for 20 weeks.
Patients whose serum alanine aminotransferase (ALT) level
was normalized, whose serum hepatitis B virus (HBV) DNA
level decreased to less than 5 log copies/mL, and HBeAg level
was absent 24 weeks after the end of treatment were defined
as having sustained virological response (SVR). The other
patients were defined as having no response (NR).

Results: Four out of nine (44.4%) HBeAg-positive and all
three HBeAg-negative patients achieved SVR. The levels of
serum alanine aminotransferase (ALT), HBV DNA and HBV
core-related antigen were similar between SVR and NR
patients at baseline. Three of four patients (75.0%) whose
serum HBeAg became negative at the end of treatment
achieved SVR, while one of five {20.0%) whose serum HBeAg
remained positive achieved SVR.

Conclusion: NA-IFN seguential therapy for patients with
acute exacerbation of CHB enables the withdrawal of treat-
ment and is particularly effective for patients whose serum
HBeAg has become undetectable by the end of the IFN
treatment.

Key words: chronic hepatitis B, lamivudine, interferon,
sequential therapy.

INTRODUCTION

HRONIC INFECTION WITH hepatitis B virus

(HBV) is a major global health problem, affecting
more than 400 million people worldwide.! Approxi-
mately 15-40% of infected patients develop cirrhosis,
liver failure or hepatocellular carcinoma (HCC).? An
appropriate antiviral treatment to prevent advanced
liver disease and reduce the number of HBV-related
deaths is thus crucial.**
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Among the few currently approved agents for the
treatment of chronic HBV infection, the most com-
monly used are interferon (IFN)-o and nucleoside
analogs (NA), such as lamivudine, adefovir dipivoxil
and entecavir.>

Interferon-o exerts an antiviral effect by degrading
viral mRNA and proteins.” Additionally, IFN-a upregu-
lates the immunological response to HBV by enhancing
human leukocyte antigen class I expression on hepato-
cytes.® Long-term remission of hepatitis after treatment
completion may be expected because the immunologi-
cal effect of IFN-o continues even after discontinuing
the treatment. However, infrequent sustained virologi-
cal response,” several adverse effects™ and high cost are
the problems associated with IFN-o treatment.

Nucleoside analogs cause a rapid and strong antiviral
effect."’"!" Their adverse effects are generally mild."
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However, treatment withdrawal is difficult because post-
treatment flare with viral proliferation often occurs fol-
lowing the withdrawal.'* The other problem associated
with NA is drug resistance. Prolonged treatment gener-
ates a drug-resistant HBV mutant, which often causes
breakthrough hepatitis.'*-'* Thus, treatment options that
enable long-term remission are necessary.

Nucleotide analog-interferon combination therapy
for chronic hepatitis B (CHB) may be more effective
than IFN monotherapy because synergistic or additional
antiviral effects may be expected. To date, various
studies on the combination of IFN and lamivudine have
been reported.’*-*

Sequential therapy switching from lamivudine to IFN
may also be effective for the treatment of acute exacer-
bation of CHB. NA withdrawal is difficult in this situa-
tion. IFN treatment overlapping with NA treatment may
enable NA withdrawal without generating drug-resistant
HBV.2*%> This treatment is expected to be highly effective
because the remission of hepatitis with hepatitis B e
(HBe) seroconversion sometimes occurs following the
exacerbation of HBV,*** but this needs to be confirmed.
We conducted this study to elucidate the efficacy of
lamivudine-IFN sequential therapy for those who expe-
rienced acute exacerbation of CHB.

METHODS

Patients

TOTAL OF 12 patients over 20 years old with acute

exacerbation of CHB between August 2003 and
August 2007, who started a daily dose of 100 mg of
lamivudine at St Marianna University School of Medi-
cine, were enrolled in this retrospective cohort study.
The diagnosis of acute exacerbation of CHB was made as
follows: (i) patients were already diagnosed as having
CHB; (ii) patients were positive for hepatitis B surface
antigen (HBsAg) and HBV DNA; (iii) other causes of
liver damage were excluded; and (iv) serum alanine
aminotransferase (ALT) levels in all the patients
increased above 300 IU/L within 4 weeks before treat-
ment. As for the serum ALT levels, acute exacerbation of
CHB is usually defined as “elevation of ALT over 10
times as upper normal limit”.* In Japan, 30 IU/L is now
regarded as upper normal in many institutions. There-
fore, we defined an ALT level above 300 IU/L as exacer-
bated. The exclusion criteria were as follows: (i)
presence of serum antibodies against hepatitis C virus or
HIV; (ii) development of liver cirrhosis and/or HCC;
(iii} coexistence of other acquired or inherited liver dis-

© 2010 The Japan Society of Hepatology
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Figure 1 Treatment protocol. All the patients were treated
with a daily dose of 100 mg of lamivudine for an initial
20 weeks. Subsequently, 6 megaunits of IFN-o were adminis-
trated thrice weekly in combination with lamivudine for
4 weeks, followed by IFN-o. monotherapy for an additional
20 weeks. IFN, interferon; Lam, lamivudine; MU, megaunits.

eases; (iv) coexisting of serious medical or psychiatric
illnesses; (v) history of antiviral or immunosuppressive
therapy within the preceding 6 months; and (vi)
pregnancy. :
Written informed consent was obtained from all the
patients. Our study was approved by the institutional
ethics review board of St Marianna University School of
Medicine Hospital (no. 1163). ‘

Protocol

All the patients were treated with a daily dose of 100 mg
of lamivudine for an initial 20 weeks. Subsequently, 6
megaunits of natural IFN-o (Sumiferon; Dainippon
Sumitomo Pharma, Osaka, Japan) were administrated
thrice weekly in combination with lamivudine for
4 weeks, followed by IFN-o. monotherapy for an addi-
tional 20 weeks (Fig. 1). As for the definition of thera-
peutic effect, antiviral treatment is recommended for the
patients whose serum HBV DNA level exceeds 5 log
copies/mL because HBV DNA over this level usually
accompanies ALT elevation, especially in hepatitis B
e-antigen (HBeAg)-positive patients. In addition, one
clinical study from Japan adopted this level as a defini-
tion of sustained virological response (SVR).** There-
fore, patients whose serum ALT level was normalized,
whose serum HBV DNA level decreased to less than 5
log copies/mL, and whose HBeAg was seroconverted to
anti-HBe (in HBeAg-positive cases) 24 weeks after the
end of treatment were defined as having SVR. The other
patients were defined as having no response {NR).

HBV-related markers

Serum blood samples were frozen at —80°C until use.
The HBsAg level was determined using a commercially
available chemiluminescence enzyme immunoassay kit
(LUMIPULSE 11 HBsAg; Fujirebio, Tokyo, Japan). The

—178—



Hepatology Research 2010; 40: 461-469

levels of immunoglobulin (Ig)M anti-hepatitis B core
(HBc), HBeAg, and anti-HBe (HBe antibody; HBeAb)
were determined using other commercial chemilumi-
nescence immunoassay kits (LUMIPULSE II IgM-
HBcAb, LUMIPULSE I HBeAg, LUMIPULSE I1 HBeAb;
Fujirebio). The serum HBV DNA levels were determined
using a commercial transcription-mediated amplifica-
tion kit or commercial polymerase chain reaction kits
(DNA probe FR-HBV from Fujirebio; Amplicor HBV
monitor or TagMan PCR from Roche Diagnostics,
Tokyo, Japan). The lowest detection limits of those
assays were 3.7, 2.6 and 1.8 log copies/mL, respectively.
The HBV genotype was determined using a commercial
enzyme-linked immunosorbent assay kit (SMITEST
HBV genotype detection kit; Genome Science Laborato-
ries, Fukushima, Japan). The serum HBV core-related
antigen (HBcrAg) levels were determined using a com-
mercial chemiluminescence enzyme immunoassay
(LUMIPULSE HBcrAg Fujirebio).””** The lowest detec-
tion limit of this assay was 3.0 log U/mL. As for the
detection of the HBV lamivudine-resistant gene, gene
mutation in the YMDD motif was- analyzed using a
commercial polymerase chain reaction enzyme-linked
minisequence assay kit (SMITEST HBV YMDD motif
mutation detection kit; Medical & Biological Laborato-
ries, Nagoya, Japan).** HBV-related markers (HBeAg,
anti-HBe, HBcrAg and HBV DNA) and biochemical tests
were examined just before treatment, every 4 weeks
during the treatment, and every 4 weeks thereafter for
24 weeks after the end of the treatment. The normal
serum ALT level was defined as less than 30 IU/L.

Histological evaluation

Nine of the 12 patients underwent liver biopsies within
1 month before the start of the treatment. Two experi-
enced liver pathologists who had no clinical informa-
tion except for knowledge of the HBV infection
histopathologically evaluated the specimens. The histo-
logical appearance of the liver specimens was evaluated
using the METAVIR histological score.*

Statistical analyses

Quantitative variables were expressed as meant
standard deviation. The collected data were analyzed
using SPSS ver. 15.0]. The distribution of continuous
variables was analyzed using Mann-Whitney U-test.
Differences in categorical data were determined using
Fisher's exact test. A two-tailed P-value of less than 0.05
was considered to indicate statistical significance.
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RESULTS

Baseline characteristics of patients treated
with lamivudine and IFN-a.

HE BASELINE CHARACTERISTICS of the enrolled

patients are shown in Table 1. The mean age of the
patients was 32.0 + 7.8 years, and the patients were 10
men and two women, Of the 12 patients, nine were
positive for HBeAg. All the patients were infected with
HBV genotype C. The mean platelet count and pro-
thrombin time (activity) were 19.3 + 4.0 x 10%/uL and
81.0 + 13.3%, respectively. The mean serum ALT, total
bilirubin and albumin levels were 850.8 + 664.3 IU/L,
1.2+0.5 mg/dL. and 3.8 +0.3 g/dL, respectively. The
mean levels of serum HBV DNA and HBcrAg were
7.4 + 1.2 log copies/ml and 6.7 £ 0.4 log U/mL, respec-
tively. Histopathologically, seven patients were diag-
nosed as having activity stage 2 inflammation and two
patients were diagnosed as having activity stage 3
inflammation. As for fibrosis, three patients were diag-
nosed as having stage 2 fibrosis and six patients were
diagnosed as having stage 3 fibrosis.

Response to antiviral treatment

Seven of the 12 (58.3%) patients achieved SVR. The SVR
rates among the HBeAg-positive and -negative groups

Table 1 Baseline characteristics of the patients treated with
lamivudine-interferon sequential therapy

All cases
Number of patients 12
Age 32.0+7.8
Sex (male/female) 10/2
Platelet (x10*/uL) 19.3+4.0
Prothrombin time (%) 81.0£13.3
Albumin (g/dL) 3.8+0.3
Total bilirubin (mg/dL) 1.2+0.5
ALT (1U/L) 850.8 + 664.3
HBV DNA (log copies/mL) 74%12
HBcrAg (log U/mlL) 67104

HBeAg positive/negative ' 9/3
Activity stage 0/1/2/3 (n=9) 0/0/7/2
Fibrosis stage 0/1/2/3/4 (n=9) 0/0/3/6/0

Data are shown as mean t standard deviation.

Fibrosis and activity stage are evaluated on a scale from 0-4 and
0-3. .

ALT, alanine aminotransferase; 11BcrAg, hepatitis B virus
core-related antigen; [1BeAg, hepatitis B virus e antigen; HBV
DNA, hepatitis B virus [DNA.
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Table 2 Comparison of the baseline clinical characteristics between SVR and NR

SVR NR P-value
Number of patients 7 5 0.6843
Age 29.7x7.0 35.0+9.2 0.2821
Sex (male/female) 5/2 /5 0.4697
Platelet (x10*/uL) 20.1+£23 184157 0.1775
Prothrombin time (%) 75.6+14.1 87.6+9.8 0.1775
Albumin (g/dL) 3.7+0.2 40103 0.0519
Total bilirubin (mg/dL) 14105 09104 0.1190
ALT {IU/L) 931.6+724.9 737.8£570.8 0.8075
HBV DNA (log copies/mL) 7414 73+1.1 1.0000
HBcrAg (log U/mL) 6.7£05 6.8+0.4 0.6905
HBeAg positive/negative 4/3 5/0 0.2045
Activity stage 0/1/2/3 (n=9) 0/0/3/2 0/0/4/0 0.4444
Fibrosis stage 0/1/2/3/4 (n=9) 0/0/2/3/0 0/0/1/3/0 1.0000

Data are shown as mean + standard deviation.

ALT, alanine aminotransferase; 11BcrAg, hepatitis B virus core-related antigen; HBeAg, hepatitis B virus e antigen; [1BV DNA, hepatitis B

virus [INA; NR, no response; SVR, sustained virological response.

 were 44.4% (4/9) and 100% (3/3), respectively. On the
other hand, all the NR patients were positive for HBeAg.

Comparison of baseline clinical features
between SVR and NR patients

As shown in Table 2, there was no difference in the age,
platelet count, prothrombin time, ALT level, albumin
level and bilirubin level between SVR and NR patients.

As for the serum HBV DNA and HBcrAg levels, there
was little difference between SVR and NR patients (HBV
DNA 741214 vs 7.311.1 log copies/mL; HBcrAg
6.7 £0.5 vs 6.8 £0.4 log U/mL). HBeAg was detected
more often in NR than in SVR patients (100% [5/5] vs
57.1% [4/7}).

Histopathological examination showed that the
patients with activity grade 3 are more likely to achieve
SVR than those with grade 2 {100% [2/2} in grade 3 and
43.0% [3/7] in grade 2). With regard to the fibrosis
stage, no significant difference in SVR was observed
between patients with stage 2 and stage 3 (66.7% [2/3]
for stage 2 and 50.0% [3/6] for stage 3) (Table 2).

Comparison of SVR rate according to

age group

In the Japanese national guidelines, IFN is not recom-
mended as a first line of treatment for patients over
35 years old because it is ineffective. On the basis of
the guideline, we evaluated SVR rates according to age
group. The SVR rate for all the patients aged under
35 years tended to be higher (66.7% [6/9] of patients
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achieved SVR) than that for the patients aged 35 years or
over (33.3% [1/3]), although the difference was not
statistically significant.

Time-dependent change in serum ALT, HBV
DNA and HBcrAg levels

The serum ALT levels in all the patients normalized
shortly after the treatment and remained within the
normal range during the treatment (Fig. 2a). The serum
HBV DNA levels decreased below the detection limit
shortly after the treatment in most patients. The fluctua-
tion of HBV DNA levels was observed in one SVR and
two NR patients (Fig. 2b). As for the serum HBcrAg
levels, a continuous decrease during and after the treat-
ment was observed in SVR patients. In contrast, the
HBcrAg levels in NR patients did not show a continuous
decrease during or after the treatment (Fig. 2c).

HBV-related markers before, during and
after treatment

In the HBeAg-positive patients, HBeAg was serocon-
verted to anti-HBe by the end of the treatment in 75.0%
(3/4) of SVR and 40.0% (2/5) of NR patients. One SVR
patient achieved HBe seroconversion 24 weeks after
treatment. Therefore, HBe seroconversion was observed
in all the patients who achieved SVR. On the other hand,
one of two NR patients, who once achieved HBe sero-
conversion during treatment, became HBeAg-positive
during IFN-o monotherapy and the other patient
became HBeAg-positive after the end of the treatment.
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Figure 2 Temporal change in the level of serum ALT and viral markers. The serum ALT levels in all the patients normalized quickly
after the start of treatment and remained within the normal range during treatment (a). The serum HBV DNA levels decreased below
the detection limit shortly after treatment in most patients. Fluctuation of HBV DNA levels was observed in one SVR and two NR
patients (b). The HBcrAg levels decreased continuously during and after treatment in SVR patients. The HBcrAg levels did not
decrease continuously in NR patients {c). ALT, alanine aminotransferase; HBV DNA, hepatitis B virus DNA; HBcrAg, HBV
core-related antigen; IFN, interferon; Lam, lamivudine; NR, no response; SVR, sustained virological response.

However, all the patients who showed NR remained
HBeAg-positive 24 weeks after treatment.

The SVR rate for patients who achieved HBe serocon-
version at the end of the treatment was 75.0% (3/4)
whereas that for the patients who remained HBeAg-
positive was 20.0% (1/5). Hence, HBe seroconversion at
the end of the treatment may be predictive of the treat-
ment response. In contrast, the HBV DNA and HBcrAg
levels before or at the end of the treatment were not
predictive of the outcome (Table 3).

Amino acid sequences of the YMDD motif were deter-
mined over time in nine patients. One of the nine
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patients showed substitution to YIDD during the lami-
vudine administration period. The substitution was
corrected after starting the IFN treatment. The patient
showed NR.

Reactivation of CHB was observed in one SVR patient
during the observation period of 36 weeks after the end
of the treatment, and lamivudine administration was
restarted. All the NR patients required retreatment with
lamivudine or entecavir for the control of hepatitis. No
patient experienced serious side-effects including
post-treatment flare after discontinuing the interferon
administration.
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