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Fig. 4. Antiviral activity of cells stably transducted with hepatitis C virus (HCV) core proteins. The antiviral activity of PHSCH8 cells stably
transducted with the HCV core were evaluated by 2’5'oligoadenylate synthetase (OAS) mRNA levels (a). The cells (2.0 x 10%/well in six-well
plates) were cultured for 48 h, and treated with IFN-o (201U/ml) for 6 h before harvest. 2’5'0AS mRNA levels were measured with real-time
LightCycler PCR and normalized with B-actin mRNA levels. The sOR cells stably expressing the different types of HCV core (2.0 x 10* cells/well
in 24-well plates) were stimulated with IFN-o for 48 h, and the HCV RNA levels of the cells were calculated as the percent relative Renilla
luciferase activity [relative RL activity (%)] and compared by evaluating the ECsq of IFN-o (b). SOR cells stably transducted with the HCV core
(2.0 x 10°Awell in six-well plates) were cultured for 48 h, and prepared for Western blot analysis with anti-core, anti-NS3 or anti-B-actin
antibody (c). The PHSCHS cells (5.0 x 103 cells/well) or the sOR cells (2.5 x 10> cells/well) stably expressing HCV core proteins were plated onto
96-well plates, cultured for 24, 48 or 72 h and subjected to MTT assay. The results for PHSCHS cells are shown in the upper panel of Figure 4d

and those for sOR cells are shown in the lower panel.

proteins from that of the original cells. The OR6 cells
retained glutamine at aa70 and leucine at aa91, while the
AHI cells retained arginine at aa70 and leucine at aa9l.
These results suggest that the aa at positions 70 and 91
are stable during IFN-o treatment.

Discussion

Recent studies on HCV-infected patients have suggested
that HCV core proteins with substitutions at aa70 and/or

1328

aa91 may be significantly associated with NVR to IFN-o/
RBV therapy, and that patients with aa70 substitutions of
arginine to glutamine often have slow or no decrease in
HCV-RNA levels during the early phase of IFN-o treat-
ment (6-9). However, the associations between HCV
core aa70 and/or aa91 substitutions and the level of
antiviral activity have not been determined in vitro. We
hypothesized that the aa at the HCV core positions 70
and/or 91 would be associated with the intracellular
antiviral environment in HCV-infected cells, and
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Fig. 5. Antiviral activity with stimulation of interferon (IFN)-e in combination with ribavirin (RBV). The sOR cells (2.0 x 10 cells/well in 24-well
plates) stably expressing the different types of HCV core were stimulated with the indicated doses of IFN-o and 20 uM of RBV for 48 h, and the
hepatitis C virus (HCV) RNA levels of the cells were calculated as the percent relative Renilla luciferase activity [relative RL activity (%)]. The ECso
of IFN-o. was calculated as shown in (a). HuH-7 cells and Li23 cells were seeded (2.0 x 10* cells/well in 24-well plates), and the different types of
HCV core were transiently transfected into the cells with lipofection. The transfected cells were treated with 20 1U/ml of IFN-o and 20 uM of
RBV for 6 h before harvest. The levels of 2/5’oligoadenylate synthetase promoter activities were calculated as the luciferase activities after 48 h
of transfection. The figures show the results using HuH-7 cells (b) and Li23 cells (c).

evaluated the differences in IFN-o-induced antiviral
activities according to the aa at these positions. Our
results suggest that differences in the aa at HCV core
positions 70 and/or 91 are not associated with the
intracellular antiviral activity in HCV-infected cells.

The HCV core protein has been reported to exert an
effect on a variety of cellular functions, including apop-
tosis, RNA metabolic processes, inflammation, cholester-
ol metabolism and protein catabolism (1, 28-32), and is
currently considered to play important roles in persistent
infection. In terms of a direct interaction between the
HCV core protein and antiviral activity, Naganuma et al.
(15) reported that 2'5'OAS promoter activity was acti-
vated in PH5CHS cells when the cells were transiently
transfected with the HCV core protein, and their deletion
mutant analysis indicated that HCV core aa70 and/or

Liver International (2010)
© 2010 John Wiley & Sons A/S

aa91 substitutions were not associated with activated
2'5'0AS promoter activity, which is consistent with our
present results that the antiviral activities were not
associated with the aa at the core position 70 or 91 in
the transiently transfected cells. Furthermore, we evalu-
ated the antiviral activity in cells stably transducted with
the HCV core protein by precisely measuring the levels of
HCV replicon RNA based on luciferase activity. For this
purpose, we used sOR cells, which are subgenomic HCV-
RNA-replicating cells. The sOR cells facilitates the mon-
itoring of HCV replication, although it lacks the steps of
budding or HCV re-infection to other cells. Future
studies will be required to assess these steps according to
the different substitutions at HCV core aa70 and/or aa9l,
and infectious HCV production systems from the HCV
genotype 1b strain will be required for this purpose.
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It is not clear whether the aa at the core positions 70 or
91 can be changed through IFN-o therapy or disease
progression. Our results revealed that the aa at the core
positions 70 or 91 in the cells with monoclonal HCV
replication were not substituted after 3 weeks of IFN-a
treatment. The substitution of arginine to glutamine at
aa70, or of leucine to methionine at aa91 might not occur
in the infected cells, but rather through a change in the
dominant virus, such as through resistance to IFN-o
therapy or during disease progression.

In conclusion, the antiviral activities in response to
IFN-o. or IFN-o/RBV treatment were augmented by
HCV core transduction. However, the levels of these
activities were not associated with changes in the aa
at HCV core positions 70 or 91 by in vitro analysis
with immortalized hepatocytes or HCV-RNA replicating
cells.
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Abstract

We have previously reported that the NS3 helicase (N3H) and NS5B-to-3’X (N5BX) regions are important for the efficient
replication of hepatitis C virus (HCV) strain JFH-1 and viral production in HuH-7 cells. In the current study, we investigated
the relationships between HCV genome replication, virus production, and the structure of N5BX. We found that the Q377R,
A450S, S455N, R517K, and Y561F mutations in the NS5B region resulted in up-regulation of J6CF NS5B polymerase activity in
vitro. However, the activation effects of these mutations on viral RNA replication and virus production with JFH-1 N3H
appeared to differ. In the presence of the N3H region and 3’ untranslated region (UTR) of JFH-1, A450S, R517K, and Y561F
together were sufficient to confer HCV. genome replication activity and virus production ability to J6CF in cultured cells.
Y561F was also involved in the kissing-loop interaction between SL3.2 in the NS5B region and SL2 in the 3'X region. We next
analyzed the 3’ structure of HCV genome RNA. The shorter polyU/UC tracts of JFH-1 resulted in more efficient RNA
replication than J6CF. Furthermore, 9458G in the JFH-1 variable region (VR) was responsible for RNA replication activity
because of its RNA structures. In conclusion, N3H, high polymerase activity, enhanced kissing-loop interactions, and optimal
viral RNA structure in the 3'UTR were required for J6CF replication in cultured cells.
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structural protein-coding region and 3'UTR of JFH-1, replication
was initiated and virions were produced in HuH-7-derived cells
[10,11]. In order to analyze the mechanisms underlying the robust

Introduction

Hepatitis C virus (HCV) contains a positive-stranded RNA

genome and belongs to the Flaviviridae family [1]. Chronic HCV
infection affects more than 130 million people worldwide [2]. The
HCV RNA genome is approximately 9.6 kb in length and contains
a long open reading frame that encodes a polyprotein of
approximately 3,010 amino acids. This polyprotein is processed
into at least 10 polypeptides by host and viral proteases [3,4]. The
5'-untranslated region (UTR) contains a highly conserved internal
ribosome entry site (IRES) that is 341 nucleotides long [5]. The
3'UTR is known to contain a variable region (VR), a poly
pyrimidine “U/C” (polyU/UCQC) tract, and a 98-base X-region
(3'X tail) [6]. The second stem loop of the X region interacts with
the NS5BSL3 cis-acting replication element (CRE) and may
contribute to initiation of negative strand RINA synthesis [7].
JFH-1 belongs to genotype 2a and is the only strain that can
efficiently replicate and produce virions in HuH-7 and HuH-7-
derived cell lines [8,9,10]. When the structural protein-coding
regions of the non-replicating HCV strains were fused to the non-

@ PLoS Pathogens | www.plospathogens.org

replication of JFH-1, we compared JFH-1 with J6CF. J6CF shares
approximately 90% sequence homology with JFH-1 but does not
replicate in HuH-7 cells. Analysis of JFH-1/J6CF chimeras
demonstrated that the NS3 helicase-coding region (N3H) and
the NS5B-to-3'X (N5BX) region of JFH-1 conferred replication
activity to J6CF in HuH-7 cells [12]. Mutations in the N3H region
are expected to affect helicase activity, while mutations in the
NS5B-to-3'X region may affect polymerase and replication
activity through secondary or higher order structures of the
RNA. We have also previously reported that JFH-1-type
mutations in the NS5B region enhanced genotype 1b RdRP
activity i wiro [13]. Thus, JFH-1-type mutations in the NS5B
region of J6CF are hypothesized to enhance J6CF RdARP activity.
As mentioned above, the 3'UTR of the HCV genome consists of a
VR, polyU/UC tracts of various lengths and a highly conserved
3'X tail. Deletion of the VR was reported to allow replication in
both cultured cells [14] and in the chimpanzee [15]. The

April 2010 | Volume 6 | Issue 4 | 1000885
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Author Summary

Hepatitis C virus (HCV) is a major cause of chronic liver
disease. Chronic HCV infection affects more than 130
million people worldwide. An efficient cell culture system
is indispensable for HCV research and the development of
antiviral strategies, including antiviral drugs and vaccines.
Using one HCV strain, JFH-1, we have developed a novel
cell culture system that, for the first time, has allowed for
both the production of infectious HCV and the analysis of
the HCV life cycle. To date, JFH-1 is the only HCV strain that
replicates efficiently in cultured cells. Understanding the
mechanisms underlying replication of JFH-1 in cultured
cells is important and advantageous for the development
of antiviral strategies. In the present study, we demon-
strate that high polymerase activity, enhanced kissing-loop
interactions between the NS5B and 3’X regions, and
optimal viral RNA structure of the 3’ UTR are required for
the efficient replication of JFH-1 and viral production in
cultured cells. Our data provides information that will
prove essential for the establishment of replication-
competent variants of HCV strains that are currently
replication incompetent in cultured cells. This study also
contributes to a better understanding of the mechanisms
underlying persistent HCV infections.

minimum length of polyU/UC tract required for replication has
also been previously determined [14,16].

In the current study, we examined RNA polymerase activity
and the RNA structures of the NS5B and 3'UTR that contribute
to HCV replication, and determined the essential domains
required for robust HCV RNA replication in cultured cells.

Materials and Methods

Cell culture

HuH-7 cells [17] and Huh-7.5.1 cells [9] were cultured at 37°C
in Dulbecco’s modified Eagle’s medium containing 10% fetal
bovine serum under 5% CO, conditions.

Construction of plasmids encoding a C-terminal 12xHis
tagged HCV RdRP lacking 21 C-terminal amino acids

HCV JFH-1 and J6CF RdRP without the C-terminal 21 amino
acid hydrophobic sequence were PCR amplified from pJFH1 [8]
and pJ6CF (a kind gift from Jens Bukh) [15], respectively. Primer
sequences for mutagenesis are listed in Table SI. Following
digestion with Xbal and Xkol, DNA fragments were cloned into
the Nkel and Xhol sites of pE121b (Novagen, Madison, WI),
resulting in pET21bHCVJFH-1RdRpwt and pET2IbHCV]6-
CFRdRpwt. pET21bHCVJFH-1RdRpwt and pET21bHCV]6-
CFRdRpwt were then digested with Xbal and X/l and the RARP
fragments cloned into the same restriction sites of pET28a,
resulting in pET21(KM)JFH-1RdRpwt and pET21(KM)J6CFR-
dRpwt, respectively.

Mutation analysis of J6CF and JFH-1 RdRP

JFH-1-type substitutions (S377R, A450S, S455N, R517K, and
Y561F in the NS5B region; amino acid numbers are based on the
AA relative numbering [18]) were introduced into J6CF RdRP
and J6CF-like substitutions (S450A, N455S, K517R, F561Y, and
F5610) and D318A were introduced into JFH-1 RARP using the
QuickChange II Site-Directed Mutagenesis Kit (Stratagene, La
Jolla, CA). Primer sequences for mutagenesis are listed in Table
S1. Sequences were confirmed by nucleotide sequencing.

@ PLoS Pathogens | www.plospathogens.org

Mutations Important for JFH-1 Replication

Expression, purification, and in vitro transcription of HCV
RdRP

pET21(KM)JFH-1RdRPwt, pET21(KM)J6CFRdRPwt, and
their mutants were expressed with pGEX-HSP90a [13] in
Escherichia coli Rosetta/pLysS (Novagen). RARP was then purified
as previously described [13], with the exception that protein
induction was undertaken at 18°C for 4 h. In witro de novo
transcription was performed as described previously [13]. Briefly,
following 30 min pre-incubation without ATP, CTP, or UTP,
0.1 uM HCV RdRP was incubated in 50 mM Tris/HCI (pH 8.0),
200 mM monopotassium glutamate, 3.5 mM MnCl,, 1 mM
DTT, 05mM GTP, 50uM ATP, 50 uM CTP, 5uM
[0-2PJUTP, 0.02 uM RNA template (SL12-1S) and 100 U/ml
human placental RNase inhibitor at 29°C for 90 min. [*?P]-RNA
products were subjected to PAGE (6% gel, 8 M urea). The
resulting autoradiograph was analyzed with a Typhoon trio plus
image analyzer (GE Healthcare, Piscataway, NJ). The radio
isotope count of 184 nt RNA product of each mutant RARPs was
measured and compared to that of JFH-1 RdRP wt in the same
PAGE.

Subgenomic-replicon constructs

pSGR-J6/N3H+5BSLX-JFH1/Luc was constructed by re-
placement of the 5BSL-to-3'X fragment (9211 to 9678 of JFH-1)
generated by PCR with the corresponding fragment of pSGR-J6/
N3H+3'UTR-JFH1/Luc [12]. Constructs with substitutions in
NS5B region were generated as follows; mutations were
introduced by PCR-based mutagenesis and Xhol-Xbal-restricted
fragments were exchanged with the corresponding fragment of
pSGR-]J6/N3H+5BSLX-JFH1/Luc or pSGR-J6/N3H+3'UTR-
JFHI1/Luc [12]. To generate the constructs used for the analyses
of the 3'UTR, VR fragments (9415-9479 of JFH-1 and J6CF) or
polyU/UC fragments (9480-9579 of JFH-1 and 9480-9606 of
J6CF) were generated by PCR and replaced with the correspond-
ing fragment of pSGR-J6/N3H+5BSLX-JFH1/Luc. To generate
the constructs with substitutions in the VR or 3’SL2, mutations
were introduced by PCR-based mutagenesis and SgrAl-Xbal-
restricted fragments were exchanged with the corresponding
fragment of pSGR-J6/N3H+5BSLX-JFH1/Luc. Primer sequenc-
es for mutagenesis are listed in Table SI.

Full-length genomic HCV constructs

Plasmids used in the analysis of genomic RNA replication and
core production were constructed from pJ6/N3H+N5BX-JFHI
[12] and pJ6CF [15]. pJ6/N3H+5BSLX-JFHI was constructed by
replacement of the corresponding sequence with the 5BSL-to-3'X
fragment (9211 to 9678 of JFH-1) generated by PCR. pJ6/
N3H+3'UTR-JFHI1 was constructed by using the N3H region
[Clal (3929) - EcoT221 (5293)] and 3'UTR [Stul (9415) - Xbal
(9678)] of JFH-1 to replace the corresponding sequences of pJ6CF.
Mutagenesis was performed as described above.

RNA synthesis and transfection

RNA synthesis and transfection were performed as described
previously [8,12]. Briefly, plasmids were linearized with Xbal,
treated with Mung Bean Nuclease (New England Biolabs, Ipswich,
MA) and purified. Linearized, purified DNA was then used as a
template for in vitro RNA synthesis using the MEGAscript T7 kit
(Ambion, Austin, TX) in accordance with the manufacturer’s
instructions. Synthesized RNA was treated with DNase I (Ambion)
followed by purification using ISOGEN-LS (Nippon Gene,
Tokyo, Japan). The quality of the synthesized RNA was examined
via agarose gel electrophoresis. Ten micrograms of i witro-

April 2010 | Volume 6 | Issue 4 | e1000885

— 221 —



synthesized RNA was used for each electroporation. Trypsinized
HuH-7 cells or Huh-7.5.1 cells (3x10° cells) were washed with
Opti-MEM 1 (Invitrogen, Carlsbad, CA) and resuspended in
Cytomix buffer [19]. RNA was then combined with 400 pl of cell
suspension and the mixture was transferred to an electroporation
cuvette (Bio-Rad, Hercules, CA). The cells were then pulsed at 260
V and 950 uF using the Gene Pulser II apparatus (Bio-Rad).
Transfected cells were immediately transferred to 6-well plates
containing culture medium and incubated at 37°C under standard
5% CO, conditions.

Luciferase reporter assay

Luciferase activity of the JFH-1 subgenomic replicon and
chimeras in HuH-7 cells were measured as described previously
[12,20]. Briefly, 5 pg of transcribed RNA was transfected into
3x10° HuH-7 cells by electroporation. Transfected cells were
immediately resuspended in culture medium and seeded into 6-
well culture plates. Cells were then harvested at 4, 24, and 48 h
after transfection and lysed with 200 pl of Cell Culture Liysis
Reagent (Promega, Madison, WI). Debris was removed by
centrifugation. Luciferase activity was quantified using a Lumat
LB9507 luminometer (EG & G Berthold, Bad Wildbad, Germany)
and a Luciferase Assay System (Promega). Assays were performed
three times independently, with each value corrected for
transfection efficiency as determined by measuring luciferase
activity 4 h after transfection. Data are presented as relative light
units (RLU).

Quantification of HCV core protein

To estimate the concentration of HCV core protein in the
culture medium, we harvested supernatants at the indicated time
points. The supernatant was then passed through a filter with a
0.22- um pore size (Millipore, Bedford, MA) and subjected to the
chemiluminescence enzyme immunoassay (Lumipulse II HCV
core assay, Fujirebio, Tokyo, Japan) in accordance with the
manufacturer’s instructions.

Infection of cells with secreted HCV and determination of
infectivity

Culture medium from RNA transfected cells was collected at
72 hours post-transfection. Huh7.5.1 cells were seeded at a density
of 1x10* cells per well in poly-D-lysine coated 96-well plates
(CORNING, Corning, NY). On the following day, the collected
culture media were serially diluted and used for inoculation of the
seeded cells, and the plates were incubated for another 3 days at
37°C. The cells were fixed in methanol for 15 min at —20°C, and
the infected foci were visualized by immunofluorescence as
described below.

Cells were blocked for 1 hour with BlockAce (Dainippon
Sumitomo Pharma, Osaka, Japan), then washed with PBS,
followed by incubation with anti-core antibody at 50 pg/ml in
BlockAce. After incubation for 1 hour at room temperature, the
cells were washed and incubated with a 1:400 dilution of
AlexaFluor 488-conjugated anti-mouse IgG (Molecular Probes,
Eugene, OR) in BlockAce. The cells were then washed and
examined using fluorescence microscopy (Olympus, Tokyo,
Japan). Infectivity was quantified by counting the infected foci
and expressed as focus forming units per milliliter (ffu/ml).

Chemicals and radio isotope

Nucleotides were purchased from GE, [a-**P]UTP from New
England Nuclear (Boston, MA), and human placental RNase
inhibitor and restriction enzymes from TaKaRa (Shiga, Japan).
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Statistical analysis
Significant differences were evaluated using the Student’s #-test.
p<0.05 was considered significant.

RNA secondary structure prediction
RNA secondary structure prediction was performed using
Mfold software [21].

Results

As we have reported previously, the NS3 helicase and the
NS5B-to-3'X regions of JFH-1 are important to confer replication
competence to J6CF, a replication-incompetent strain [12]. Of
these two regions, NS5B-to-3'X of JFH-1 is the most important to
replication-competence. The NS5B region encodes RdRP, and
the JFH-1-version of this polymerase may have high activity and
be crucial to replication-competence. The requirement of 3'UTR
of JFH-1 suggested that the RINA structure in this region is
important for efficient genome replication. To understand the
mechanisms of efficient replication of JFH-1 in HuH-7 cells, we
focused on the NS5B-to-3'X region because the NS3 helicase
region of JFH-1 had relatively minor effects on replication of J6CF
derivatives [12]. In order to identify the important protein
domains within RARP required for efficient virus replication, we
compared the RNA polymerase activity of HCV J6CF RdRP to
that of JFH-1 RdRP using three assays, i vitro transcription with
purified RdRP, in vivo virus RNA replication, and i zivo virus
production. To identify the important sequences or structures in
the NS5B-to-3'X region involved in efficient replication, we
analyzed the effect of sequence differences in this region on
replication of the viral genome.

Comparison of RNA polymerase activity in vitro

By comparing the sequence of RARP of JFH-1 (GenBank
Accession No. AB047639), J6CF (AF177036), other 2a strains
(AB047640 — 5, AY746460, AF238481 - 5, AF169002 -5), a la
strain (H77: AF009606), and four 1b strains (Conl: AJ238799,
AB080299, AY045702, M58335), we found 14 amino acids
variants unique to JFH-1 RdRP (57T, 130P, 131Q), 1504, 377R,
4051, 435V, 4508, 455N, 474M, 479H, 517K, 561F and 5718).
We focused on five JFH-1-type amino acid substitutions (Q377R,
A450S, S455N, R517K, and Y561F) that have been shown to
increase the polymerase activity of 1b RdRP [13]. We introduced
these JFH-1-type amino acid substitutions into J6CF RdRP,
individually and in combination, to test their effects on polymerase
activity. We also tested a J6CF RdRP variant with a R517K
substitution because it was included in the J6/N3H+5BSLX-JFHI
replicon (see below), although it did not enhance the polymerase
activity of 1b RdRP un vitro [13].

The RdRPs of HCV JFH-1 and J6CF and mutant variants were
purified as indicated in the Materials and Methods and Fig. S1A.
The polymerase activity of wild-type (wt) and mutant RdRPs was
measured using a de novo transcription system (Fig. 1 and Fig. S1B).
The activity of J6CF RdRP was 7.0£0.6% of that of JFH-I.
Similar to results seen with 1b RdRP substitution variants, the
single amino acid substitutions Q377R, A450S, S455N, R517K,
and Y561F resulted in increased polymerase activity of J6CF
RdRP (25.5*1.5,27.7+1.0, 53.120.9, 16.9%3.5 and 16.7£2.5%
of JFH-1 RdRP wt, respectively). However, combining double and
triple amino acid substitutions did not demonstrate any additive or
synergistic effects on the i vitro polymerase activity (Fig. 1).

JFH-1 RdARP variants with individual J6CF-type amino acid
substitutions, including R377Q, S450A, N455S, K517R, and
F561Y, were also examined w vitro. With the exception of N455S,
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Figure 1. Relative HCV RNA polymerase activity of JFH-1 and
J6CF wild-type and mutant RARP. HCV RdRP activity was measured
using the purified HCV RdRP (Fig. S1A) and the average RdRP activity
and the standard deviation (error bar) relative to that of JFH-1 RdRP wt
were calculated from three independent experiments (Representative
gel images are shown in Fig. S1B). The relative activity values are
presented above the graph. SNF, A450S+S455N+Y561F; SKF,
A450S+R517K+Y561F; NKF, S455N+R517K+Y561F.
doi:10.1371/journal.ppat.1000885.g001

all other J6CF-type amino acid substitutions reduced the activity of
JFH-1 RdRP, with levels ranging from 37.3 to 52.9% of the
activity from wt JFH-1 RdRP (Fig. 1). The N455S variant
maintained polymerase activity similar to that of JFH-1 wt. The
JFH-1 D318A variant has a mutation in the active site of RARP
and showed no polymerase activity, confirming our i witro
transcription system.

JFH-1-type amino acid residues in the NS5B region
restored the replication activity of the J6CF-based
replicon

In order to test whether the JFH-1-type amino acids
substitutions into the NS5B region of J6CF that enhanced
polymerase activity i vitro enabled the replication of J6CF in
cultured cells, we used the subgenomic J6CF replicon harboring
the NS3 helicase region and 3'UTR of JFH-1 (J6/N3H+3'UTR-
JFHI1-Luc; Fig. 2A) as a reference construct. This replicon could
replicate in cultured cells but exhibited less than 1% of the JFH-1
replication activity [12]. In order to test the effect of JFH-1 type
amino acids on replication, we introduced the five substitutions
that increased polymerase activity of J6CF RdRP i vitro (Q377R,
A450S, S455N, R517K, and Y561F, see Fig. 2B) into the
subgenomic replicon J6/N3H+3"UTR-JFHI-Luc and analyzed
their effects on RNA replication. Among these JFH-1-type amino
acids substitutions, Y561F was the most effective (23.2+3.5% of
J6/N3H+N5BX-JFH1-Luc; Fig. 2C), while A450S, S455N, and
R517K exhibited only a small effect on the replication activity
(7.120.6%, 3.0£0.5%, and 5.5+1.0% of J6/N3H+N5BX-JFHI1-
Luc, respectively; Fig. 2C). The Q377R mutation demonstrated
no effect on replication (Fig. 2C). We next tested the cffects of
Y561F in combination with each of the other substitutions. We
found that A450S, S455N, and R517K mutations enhanced the
replication activity of Y561F (59.1%6.1%, 43.9%6.6%, and
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57.9%4.6% of J6/N3H+N5BX-JFH1-Luc, respectively; Fig. 2C).
We also tested the effects of triple mutations and found that the
replication activity of the SNF (A4505+S455N+Y561F) and SKF
(A450S+R517K+Y561F) mutants demonstrated 86.8£6.0% and
112.2£7.9% replication activity of J6/N3H+N5BX-JFH]I-Luc,
respectively (Fig. 2C). In addition, we did not observe any
significant differences between replicon activity of these mutants
and that of J6/N3H+N5BX-JFHI-Luc. A combination of four
mutations (SNKF; A450S+S455N+R517K+Y561F) resulted in
similar activity as SKF (115.2+11.7% of J6/N3H+N5BX-JFH1-
Luc; Fig. 2C). These results indicated that Y561F represented the
most effective JFH-1-type mutation required for efficient replica-
tion, and that SKF and SNKF were sufficient to support
replication activity equivalent to that of the replicon with the
entire NS5B and 3’ UTR of JFH-1 (J6/N3H+N5BX-JFH1-Luc).
The additive effects of the JFH-1-type NS5B substitutions on the
replicon differed from results obtained with the i vitro polymerase
activity assay.

Next, we examined whether these substitutions were sufficient
for full-genome RNA replication and virus production. We used
Huh-7.5.1 cells to assess virus production because Huh-7.5.1 is
highly permissive for HCV propagation [9]. We found that J6/
N3H+3'UTR-JFHI-Luc showed weak replication activity
(Fig. 2C), and the core protein was not detectable in the culture
medium of J6/N3H+3'UTR-JFH I-transfected cells (Fig. 3B). The
constructs expressing A450S, S455N, or R517K substitution
variants demonstrated only very low core levels in the supernatant,
while the construct expressing the Y561F mutation underwent
RNA replication and produced the core protein (Y561F;
15.5%3.0% of J6/N3H+N5BX-JFH1; Fig. 3B). Double mutants
containing the Y561F mutation were found to produce greater
amounts of core protein than the Y561F single mutant
(A450S+Y561F, 57.4+3.3%; S455N+Y561F, 45.94.0%; and
R517K+Y561F, 61.9£5.8% of J6/N3H+N5BX-JFHI; Fig. 3B).
The triple mutant SNF (A4505+S455N+Y561F) produced more
core protein than the double mutants (75.7+12.0% of J6/
N3H+N5BX-JFHI; Fig. 3B). In addition, we observed that the
core production from the SKF and SNKF mutant RNA-
transfected cells was similar to the levels produced by J6/
N3H+N5BX-JFH! (111.5%£8.8% and 119.0%5.1% of J6/
N3H+N5BX-JFHI, respectively; Fig. 3B). We also measured
infectivity of the supernatants from the mutant RNA-transfected
cells at 72h after transfection (Fig. 3B). The levels of infectious
titers correlated with the core levels among the tested constructs in
this experiment. These results indicated that the SKF substitutions
in the C-terminal region of NS5B were sufficient to clevate viral
RNA replication and viral production.

Extra complementary sequence at the 5BSL3.2 kissing-
loop interaction site of JFH-1 was essential for efficient
replication

We observed a discrepancy between the in vitro RNA polymerase
activity assay and the genome replication assay in the effects of the
amino acid substitutions (Figs. 1 and 2C). Y561F was the most
effective JFH-1-type amino acid substitution in the replication assay,
while S455N was the most effective in the i vitro polymerase activity
assay. As the kissing-loop interaction between 5BSL3.2 and 3'X are
important for RNA replication and amino acid (aa) 561 encoding
nucleotides are involved in the stem-loop 3.2 in the NS5B region
(5BSL3.2) [7,16,22], we hypothesized that the cis-factor (genome
structure) may also affect RNA replication in the cells. Thus, we
constructed the subgenomic replicon J6/N3H+5BSLX-JFHI-Luc
and the full genome construct J6/N3H+5BSLX-JFHI that
contained the NS3 helicase region and the 5BSL3-to-3'X region
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into J6/N3H+3'UTR-JFH1-Luc and J6/N3H+3'UTR-JFH1. (C) Replication activity of J6CF-based replicons. Subgenomic RNA was synthesized in vitro
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performed three times independently and the results expressed as luciferase activities (RLU). Each value was corrected for transfection efficiency as
determined by measuring the luciferase activity 4 h after transfection. Data are presented as the mean * standard deviation for luciferase activity at
24 h (white bars) and 48 h (gray bars) after transfection. Asterisks indicate significant differences relative to the replication activity of J6/N3H+N5BX-
JFH1 (p<0.05) at 48 h and the values represent the relative values against J6/N3H+N5BX-JFH1 at 48 h after transfection. SNF, A4505+5455N+Y561F;
SKF, A4505+R517K+Y561F; SNKF, A4505+ S455N+R517K+Y561F.

doi:10.1371/journal.ppat.1000885.g002

(nucleotide (nt) 9211 to 9678) of JFH-1 (Figs. 2A and 3A), and
determined their replication activity and virus production level. As
presented in Figure 4B, the J6/N3H+5BSLX-JFHI1-Luc construct
demonstrated similar replication activity to that of J6/N3H+N5BX-
JFHI-Luc 48h post-transfection (92.9%7.5% of J6/N3H+N5BX-
JFHI; Fig. 4B). Moreover, both J6/N3H+N5BX-JFH! and J6/
N3H+5BSLX-JFH] released similar levels of core protein into the
supernatant (Fig. 3B).

We next analyzed the effects of mutations in the J6/
N3H+5BSLX-JFHI construct. The 5BSL region of this construct
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contains three amino acid differences from J6CF (R517K, Y561F,
and L5718). R517K and Y561F were important in the i witro
polymerase activity assay (Fig. 1). We did not assess aa 571 in witro
because it was deleted to purify HCV RdRP. The replication
activities of J6/N3H+5BSLX-JFHI-Luc with K517R or F561Y
were found to be 28%£2.7% and 14%+2.0% of J6/N3H+5BSLX-
JFHI1-Luc, respectively, confirming the importance of these JFH-
l-type amino acids for replication (Fig. 4B). J6/N3H+5BSLX-
JFHI-Luc with S571L revealed similar replicon activity as the J6/
N3H+5BSLX-JFHI1-Luc (108%£7.8% of J6/N3H+5BSLX-JFH1
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wt; Fig. 4B). These results indicated the importance of 517K and
561F but not 571F in the 5BSL region of JFH-1 in efficient RNA
replication. The codon encoding aa 561 possibly affects RNA
structure, as it is located in the loop of stem-loop 3.2 in NS5B
(5BSL3.2) and overlaps sequences important to the kissing-loop
interaction with the stem loop 2 of the 3'X region (3'X SL2) [22].
Although we demonstrated that aa 561F was more effective than
561Y in RARP activity i vitro (Fig. 1), it remains possible that the
nucleotide mutation located at the codon of aa 561 affected the
RNA structure and genome replication, as the replication activity
of J6/N3H+3'UTR-JFHI1-Luc with Y561F was the highest of all
the clones with JFH-1 type single amino acids in the NS5B region
(Fig. 2C). To investigate the effects of these mutations on RINA
structure, we made mutants with nucleotide substitutions at the
codon of aa 561 (Fig. 4F). The codon encoding aa 561 was UUU
(Phe) for JFH-1 and UAU (Tyr) for J6CF. The third base of the
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codon overlaps with the kissing sequence [22]. In order to
maintain the 5BSL3.2 stem loop structure and the kissing
interaction between 5BSL3.2 and 3'X SL2, the third base should
be U (nt 9349 of JFH-1). JFH-1 may exhibit additional interactions
between 9348U of 5BSL3.2 and 9619A of 3'X SL2 to enhance
kissing-loop interaction. To assess this hypothesis, we fixed the
second base (9348) as U, and the first base (9347) was altered from
U to A, G or C. The G and C substitutions were predicted to
disrupt the important loop structure of 5BSL3.2 using Mfold and
considered to affect replication activity. We next investigated the
effects of U to A substitution (AUU, F561I) in an w wiro assay.
F5611 was introduced into JFH-1 RdRP and its RARP activity was
99.4+4.8% of the wt, demonstrating that an F to I mutation did
not affect polymerase activity (Fig. 1). We also examined the effects
of the F561I mutation on RNA replication in the cells, and it
revealed that it had similar replication activity as the wt,
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Figure 4. Replication activity of J6CF-based replicons containing variants or substitutions. (A) Comparison of the nucleotide sequence of
5BSL3.2 to 3'X of JFH-1 and J6CF. Boxes indicate nucleotide differences in VR and stop codon. Shaded boxes indicate non-synonymous variants in
this region. 5B5L3.2, 5B5L3.3, Variable Region (VR), Poly U/UC tract, and 3'X tail are indicated by double-headed arrows in the figure. Stem-loop
structures of VR (VRSL1 and VRSL2) are underlined. Asterisk; conserved nucleotides between JFH-1 and J6CF. (B, C, D) Replication activity of J6CF-
based replicons. Five micrograms of in vitro synthesized RNA was electroporated into HuH-7 cells and the cells were harvested at 4, 24, and 48 h after
transfection. The harvested cells were then lysed, and the luciferase activity in the cell lysates was measured. The assays were performed three times
independently, and the results were expressed as luciferase activities (RLU). Data are presented as the mean = standard deviation for luciferase
activity at 24 h (white bars) and 48 h (gray bars) after transfection. (E) The predicted secondary structure of the VR. The RNA secondary structures of
JFH-1, JFH-1 m3, J6CF, and J6CF m3 were predicated by Mfold. The stem-loop structure 1 (VRSL1) and 2 (VRSL2) are indicated. Nucleotide 9458 is
circled and the mutated nucleotides are indicated by arrowheads. (F) Schematic structures of the 5BSL3.2 and X tail. The predicted stem loop
structure of 5BSL3.2 and SL2 of 3'X of JFH-1 and J6CF strains are indicated. The sequences forming kissing interaction with 3'X SL2 [22] are shaded.
Codons encoding aa 561 and 571 are circled and the mutated sequences are indicated. The reported kissing-loop interactions are indicated by the
connecting lines. The predicted interaction of the JFH-1 strain is indicated by the dotted connecting line.

doi:10.1371/journal.ppat.1000885.g004

confirming that this mutation exhibited no effect on RNA
replication in cultured cells (Fig. 4B). These results demonstrated
that both Phe and Ile could be substituted at aa 561 and revealed
the importance of the precise RNA structure of this region. Finally,
we introduced an A to U mutation at nt 9619 in the 3'X SL2 that
was complementary to the second base of the codon encoding
561F (9348) to alter the kissing-loop interaction (Fig. 4F;
3'XSL2m). We observed a significant reduction in 3'XSL2m
replication activity (Fig. 4B; 3'XSL2m). However, when 3'XSL2m
was combined with the F561Y mutation that was expected to
recover the kissing-loop interaction, replicon activity was restored
(Fig. 4B; F561Y+3'XSL2m). These results indicated that the extra
complementary sequence at the kissing-loop interaction site of
5BSL3.2 was important for the efficient RNA replication of JFH-1.
The extra complementary sequence may enhance the kissing loop
interactions. We also tested the effect of the Y56 1F substitution on
replicons of other genotypes, H77S (GTla) and HCV-N (GT1b).
While the Y561F substitution increased replication activity in both
genotype 1 strains (Text S1 and Fig. S3), the Y561F effect on the
genotype | strains was much smaller than its corresponding effect
on J6CF.

A shorter poly U/UC sequence in the JFH-1 strain favored
replication

We next compared the sequences of the poly U/UC tracts of
the 3'UTRs of JFH-1 and J6CF. The poly U/UC tract of JFH-1
was 27 nucleotides shorter than that of J6CF (Figs. 4A and F). The
polyU stretch of the pJ6CF plasmid that we used was six
nucleotides shorter than that of the original J6CF sequence
reported ([15], GenBank: AF177036). In order to analyze the
effects of poly U/UC length on HCV replication, the poly U/UC
region of J6/N3H+5BSLX-JFHI-Luc was replaced with that of
J6CF and was designated as polyU-J6. The replicon activity of J6/
N3H+5BSLX-JFHI1-Luc with polyU-J6 was approximately four
times lower than that of the J6/N3H+5BSLX-]JFH1-Luc (Fig. 4C).
This result showed that longer polyU/UC region lengths of J6CF
were not favorable for efficient replication.

JFH-1 type structure of the variable region was
advantageous for efficient replication

When we compared the VR sequences of the 3'UTRs of JFH-1
and J6CF, we found that four nucleotides are different between the
VRs of JFH-1 and J6CF and that substitution of the VR from
JFH-1 with that of J6CF of J6/N3H+5BSLX-JFHI1 resulted in a
1000-fold decrease in replication activity (Fig. 4C, VR-J6). Mfold
analysis of predicted RNA secondary structure of the VR in JFH-1
and J6CF suggests that there are two stem-loop structures in the
VR. The first stem loop (VRSLI) structure is identical in JFH-1
and J6CF, but the loop of the second stem-loop (VRSL2) is larger
in JFH-1 than in J6CF (Fig. 4E). Analysis of the effects of these
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nucleotide mutations on RNA structure revealed that only the
third mutation (m3 at 9458 in Fig. 4A) is predicted to alter the
structure of VRSL2 (Fig. 4E). The m3 G substitution into J6CF
VR generated a predicted structure identical to that of JFH-1
VRSL2 resulting in identical VR structures (Fig. 4E). The m3 C
substitution altered the structure of JFH-1 VR to the J6CF type
(Fig. 4E). Substitutions of other nucleotides did not change the
predicted structures (Data not shown). We then analyzed the
effects of the mutations on replication activity. The m3 C
substitution in JFH-1 VR was found to reduce replication activity
100-fold of the J6/N3H+5BSLX-JFHI-Luc (Fig. 4D; VRm3),
whereas other substitutions (Fig. 4A; ml, m2 and m4) did not
reduce replication activity at all (Fig. 4D; VRml, VRm2 and
VRm4). In contrast, the construct containing the J6CF VR with
m3 G substitution completely restored replication activity (Fig. 4D;
VR-J6m3). Other JFH-1 type nucleotide did not restore
replication activity (Fig. 4D; VR-J6ml, VR-J6m2 and VR-
J6m4). These results were in agrecement with the stem-loop
structure prediction of VR (Fig. 4E), demonstrating that the JFH-1
VR increased RNA replication. These results suggested the
importance of VR sccondary structure. Next, we tested if the
effect of VR of JFH-1 was restricted to NS5B of JFH-1 or not. We
constructed replicons with NS5B of J6CF and tested the effect on
replication. The replication activities of the replicon with entire
NS5B of J6CF (J6/N3H+3'UTR-JFH1), J6/N3H+3"UTR-JFHI
with A450S or Y561F (J6/N3H+3'UTR-JFHI+A450S, J6/
N3H+3'UTR-JFH1+Y561F, respectively) were enhanced by the
VR of JFH-1 (see polyU-J6 of each constructs in Fig. 4C) and not
enhanced by the VR of J6CF (see VR-J6 of each constructs in
Fig. 4C). These results indicated that the VR structure of JFH-1
was preferable for both JFH-1- and J6CF-derived NS5B and this
effect was independent of the enhanced kissing-loop interaction
(compare J6/N3H+3'UTR-JFHI wt and A450S vs. Y561F in
Fig. 4C).

Discussion

It has been demonstrated previously that HCV JFH-1, the only
strain that replicates and produces virions efficiently in cell culture
systems, expresses high replication activity without adaptive
mutations [8]. We have previously reported that the N3H and
N5BX regions of JFH-1 were able to rescue replication of the
genotype 2a replicons [12]. The NS3 helicase and N5BX regions
have been shown to be important to the virus production in HuH-
7 cells. We have continued this line of experiment in the current
study by focusing on RdARP activity and the genome structure in
the 5BSL3.2 (CRE) to 3'X region. Following these aims, we were
able to define the amino acids, nucleotides, and structural elements
of JFH-1 required to confer replication competence and
replication efficiency to the closely related J6CF.
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In the present study, we identified five JFH-1-type amino acid
residues in NS5B (Q377R, A450S, S455N, R517K, and Y561F)
important for HCV replication by the in viro polymerase activity
assay and in vivo assays using replicons and full length HCV RNA.
These amino acid residues are all in the thumb domain of HCV
RdRP. All of these JFH-l-type substitutions increased the
polymerase activity of J6CF RdRP. J6CF-type amino acids
substitution into JFH-1 RdRP, including R377Q, S450A,
K517R, and F561Y, reduced polymerase activity, while the
N4558 substitution demonstrated similar activity to the JFH-1 wt.
The A450S and S455N substitutions resulted in the most
significant enhancement of 1b [13] and J6CF RdRP (Fig. 1),
respectively. aa 450 is located at the tip of the B-hairpin, while aa
455 is located close to the lower portions of the B-hairpin that may
control the entry of the RNA template [13]. Both the B-hairpin (aa
450 to 455) and the B-strand (aa 560 to 565) of the thumb domain
play an important role in RNA binding due to their extensive
hydrogen-bonding network [23]. The B-hairpin has been shown to
prevent the recruitment of the primer-template complex into the
RNA-binding site to ensure accurate initiation from the 3’ end of
the template [24,25]. A450S and S455N are thought to possibly
affect J6CF RdARP structure by changing the spacing of the nucleic
acid binding pocket occluded by the P-hairpin. As JFH-1 N455S
did not decrease the polymerase activity of JFH-1, the thumb
domain of JFH-1 may be optimized to control the position or
movement of the B-hairpin. Simister et al. have recently reported
that the higher in vitro polymerase activity of JFH-1 was due to a
higher de novo initiation efficiency that may be due to a closed
conformation of the JFH-1 polymerase [26]. Eight amino acid
mutations in NS5B of JFH-1 are hypothesized to be responsible for
the conformational differences in the NS5B sequences JFH-1 and
the 2a consensus [26]. However, these amino acids did not overlap
with the mutations that we identified to be important for
replication. Taken together, these two studies suggested that the
thumb structure surrounding the B-hairpin is important to RARP
activity [26]. We only tested six of 29 amino acid differences and
other mutations are possibly important to RdRP activity.
However, SKF and SNKF slightly increased replication activity
compared to the replicon with entire NS5B of JFH-1 (Fig. 2C).
These results suggest that there may be some JFH-1-type variants
in NS5B region that inhibit the replication activity of JFH-1. The
JFH-1 and J6CF 5BSL regions (Fig. S2) differ in three amino
acids. The JFH-1-type substitution R517K and Y561F increased
replication, while the variation at aa 571 did not affect replication.
This means that there are no JFH-1 variants in 5BSL region that
inhibit replication activity. However, some other mutations which
were not tested outside of 5BSL region may inhibit replication.
Taken together, we considered that is why the replicon with
5BSLX of JFH-1 had almost the same replication activity as the
replicon with entire NS5B region of JFH-1.

After comparing the activating effects of A450S and S455N vs.
R517K and Y561F in the i wiro polymerase, i vivo RNA
replication and virus production assays, we hypothesized that
amino acids 517 and 561 likely control HCV genome replication
via interactions with additional host and viral factors, including the
NS3 helicase and 3'UTR. A450S enhances polymerase activity
alone, while R517K and Y561F enhance genome transcription
and replication activity via additional factors. The aa 455 and 517
are known to be located at the surface of the polymerase, and these
mutations may affect interactions with the proteins that play
important roles in RNA replication.

The combination of A450S, R517K, and Y561F substitutions
conferred replication activity to the replicon with J6CF RdRP.
The results of the core production were in agreement with the
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results from the replicon assay and suggested that these amino acid
mutations affected only RNA replication and did not affect the
additional steps in the virus life cycle within the cells, such as virus
particle assembly and virus secretion.

We did, however, observe a discrepancy between the effects of
the mutations on i vitro RNA polymerase activity and in vivo RNA
replication and virus production activities. The S455N mutation
conferred the highest levels of activity on J6CF RdRP in vitro, while
Y561F conferred the highest replication and virus production
activities on J6/N3H+3'UTR-JFH! in the cells. We did not
observe any combination effects of the substitutions in the i vitro
polymerase assays, while strong combination effects of the
substitutions were observed on replication and core production
in vivo. In addition, the combination of only three substitutions
(SKF; A450S, R517K, and Y561F) was enough to increase HCV
replication to levels similar to that of the construct harboring both
the entire NS5B region and the 3'"UTR of JFH-1. We did not
observe any combination effects of the substitutions in the n vitro
polymerase assays using 1b RdRP [13]. However, a discrepancy
between polymerase activity i vitro and replication activity was
also reported for GTP binding site mutants [27].

Discrepancies between the results from @ wifro polymerase
activity assays and i vivo replication assays may arise because of
differences in the assay systems. In an i vitro polymerase assay,
only enzymatic activity can be determined, while an i vivo assay of
replication activity does not necessarily represent the only
polymerase activity. Many viral and host factors may be involved
in the RNA replication step in the cells. If a HCV replication assay
using entirely reconstituted components were possible, we could
compare the isolated effect of different polymerase variants on
polymerase activity.

In addition to RdRP activity, host and viral factors, including
cis-acting RNA structures in the 3’-genome must be considered in
HCV replication in cells. In fact, we found a JFH-1-type
nucleotide variant in NS5B region important to maintain the
genome structure in the in vivo assay; this ¢is-acting factor could not
have been identified using the i wifro polymerase assay. The SKF
triple substitution contains the 561F variant that is important for
enhanced kissing-loop interaction and high polymerase activity,
suggesting that the effects of the SKF combination iz vivo are rather
due to the enhanced kissing-loop interaction.

We also analyzed the 5BSL3.2 and 3'XSL2 structures required
for kissing-loop interactions, as aa 561 is in the loop domain of
5BSL3.2 and the activation effect of Y561F in the i vivo replicon
assay was larger than in the i vitro polymerase assay. In order to
test the effects of JFH-1-type variants of 5BSL3.2 on replication,
we substituted the amino acids located downstream of the 5BSL3-
to-3'X region (nt 9211 to 9678) from JFH-1 into the J6CF
construct carrying the JFH-l-type NS3 helicase (J6/
N3H+5BSLX-JFHI1). The J6/N3H+5BSLX-JFHI exhibited sim-
ilar replication and virus production levels to J6/N3H+N5BX-
JFHI1. We initially focused on the amino acid differences between
JFH-1 and J6CF in the region spanning between JFH-1 5BSL-to-
3'X because this region was able to complement the entire JFH-1
NS5B-to-3" X region. We identified three amino acid differences
(517, 561, and 571) in the 5BSLX regions of JFH-1 and J6CF. We
then introduced J6CF-type substitutions into the 5BSL3.2 region
of JFH-1 RdRP. The J6CF-type substitution in JFH-1 5BSL3.2
region at positions 517 and 561, but not 571, resulted in a
reduction in replication. These findings were consistent with the
results of the i vitro polymerase assay. RNA polymerase activity in
vitro was analyzed using the AC21-molecule (1-570) and JFH-1
RdRP that did not contain 5718 demonstrated high levels of
polymerase activity, indicating that 571S may not be important for
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its high polymerase activity. The codon encoding aa 517 is located
outside of the 5BSL3.2 region, suggesting that this mutation only
affected polymerase activity. The codon encoding aa 561 and aa
571 are within the 5BSL3.2 region. The codon encoding aa 561 is
located within the loop of the 5BSL3.2, while the codon encoding
aa 571 is in the spacer region located between 5BSL3.2 and
5BSL3.3. The nucleotide mutations resulting the K517R and
S571L aa substitutions were predicted to maintain 5BSL3.2 RNA
secondary structures similar to that of JFH-1 using Mfold analysis
[21].

Since there was the possibility that Y561F mutation affected
both RdARP protein activity and genomic RNA structures, we
tested the effect of nucleotide substitutions in the aa 561 codon on
replication. The third nucleotide (9349U) contained within the
codon encoding aa 561 is conserved among the different genotypes
and essential for the kissing-loop interaction [16,22]. The second
nucleotide (nt 9348) of JFH-1 is a U, while that of J6CF an A. The
first nucleotide (nt 9347) of the codon should be either an A or a
U, because these nucleotides are required to maintain the loop
structure. Thus, a Phe (JFH-1), Tyr (J6CF and 1b), or Ile (9347A)
may reside at position 561. As JFH-1 RdARP F561I retained
identical activity levels to the wt (561F), hydrophobic amino acids
appeared to be required in this position to maintain the high
polymerase activity. Since the predicted secondary structures of
5BSL3.2 were identical for JFH-1 and J6CF, both Phe located at
position 561 and the nucleotide sequence UUU in JFH-1 were
essential for the high replication activity in cultured cells.

The conserved sequences of the kissing-loop interaction were
UCACAGC (nt 9349-9355) in 5BSL3.2 and GCUGUGA (nt
9612-9618) in 3'X SL2. In the case of JFH-1, the nucleotide
located at position 9348 was U and the nucleotide located at
position 9619 was A, resulting in extended kissing-loop interaction
sequence in JFH-1. When we introduced a mutation into the 3'X
SL2 region (nt 9619) that was expected to abolish the extra base
pair next to the interaction site, replication activity was
significantly decreased. In addition, a combination of the F561Y
and 3'X SL2m substitutions, expected to restore the extra base
pair between nt 9348 and nt 9619, restored replication.
Replication level of this double substitution was slightly lower
than that of the wt constructs, possibly due to the preference for
Phe at 561 over Tyr for genome replication. Mfold analysis also
revealed that RNA secondary structure was not affected following
the introduction of these substitutions. U at nucleotide position
9348 was previously identified in various HCV strains registered in
GenBank [7]. Taken together, these findings suggested that the
strong kissing-loop interaction of the JFH-1 genome supports
efficient genome replication in HuH-7 cells. We also tested the
effect of Y561F substitution in two other genotypes, H77S (GTla)
and HCV-N (GT1b). While the Y561F substitution increased
replication activity in both genotype 1 strains, the Y561F effect on
the genotype 1 strains was much smaller than its corresponding
effect on J6CF. These results may indicate that the levels of Y561F
effect for viral RNA replication are different among the genotypes.
These results may also indicate that the Y561F substitution
enhanced replication of strains with a substantial replication
capacity. In case of J6CF, the Y561F effect was only observed with
N3H region and VR of JFH-1 (Fig. 4C, compare VR-J6 and
polyU-J6 of J6/N3H+3"UTR-JFHI+Y561F). This result suggest-
ed that the Y561F effect was difficult to detect with replication-
incompetent clones or clones with weak replication, and also
suggested that other mutations or regions are important to
replicate genotype | replicon efficiently. Therefore, we need more
efficient replicating clone of genotype 1 to determine the effect and
importance of this mutation on genotype 1 strains.
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We next analyzed the effects of 3"UTR structure on replication
and demonstrated that the polyU/UC of JFH-1 was 27
nucleotides shorter than that of J6CF. The shorter polyU/UC
and the RNA structure of the VR of JFH-1 appeared enhance
efficient replication. When using the activated RdRP (SKF) and
the optimal RNA structure of the 3’ genome together with the
JFH-1 NS3 helicase, we found that J6CF, which did not replicate
in cells, was successfully converted to a replicating virus. The VR
sequence is generally not conserved, even among strains within the
same genotype, and the effects of VR on HCV replication remain
controversial [14,15,28]. Our data revealed that the VR of JFH-1
was more favorable than that of J6CF for replication. Substitution
of the VR from JFH-1 to J6CF significantly reduced replication
levels 1000-fold. This dramatic change in replication activity was
likely due to alterations in the RNA structure with a mutation at nt
9458. The predicted RNA structure of the VR and replication
activity of the constructs containing substitutions or mutations to
the VR were completely correlated. It is therefore very likely that
cellular and viral factors interact with the HCV genome in this
region, and that the specific nucleotide sequence and higher
structure of the VR may be essential for these interactions. There
is a possibility of genetic interaction between the VR and NS5B
region. These kinds of interaction may also affect on polymerase
activity.

The length of the polyU/UC tract appeared to be flexible and
even differed within the same genotype. Even though JFH-1 and
J6CF shared an identical 3'X, the JFH-1 poly U/UC tract (nt
9483-nt 9579) was 27 U shorter than that of J6CF (nt 9483-nt
9606). Thus, we examined whether the polyU/UC tract could be
exchanged between JFH-1 and J6CF. The J6/N3H+5BSLX-JFH]1
variant that contained the J6CF polyU/UC exhibited a four-fold
reduction in replication, demonstrating that the polyU/UC did
indeed affect replication. Several published papers have investi-
gated the affects of length on the polyU/UC region [14,15,16].
Several viral and cellular proteins have also been reported to
interact with the polyU sequence [29,30,31,32,33,34,35,36]. The
preferential length and nucleotide sequence of the polyU/UC may
be determined by interaction with these factors.

In conclusion, we found that high RdRP activity, enhanced
kissing-loop interaction between 5BSL3.2 and 3'X SL2, optimal
VR structure and a shorter polyU/UC tract in JFH-1 contributed
to the high levels of HCV RNA replication and virus production in
cultured cells. As NS3 helicase region of JFH-1 is also important
for replication and viral production of J6CF, the replication
enhancing mechanism of NS3 helicase region should be analyzed.

Supporting Information

Figure S1 (A). Purified HCV J6CF and JFH-1 mutant RNA
polymerases. HCV RdRp variants were purified as indicated in
the Materials and Methods section. Five pmol of RdRp were
applied on 10% SDS-PAGE and stained with Coomassie brilliant
blue. The designations of HCV J6CF and JFH-1 wt and mutants
are indicated above the PAGE. M; molecular weight marker
(Takara), and the position is indicated on the left. (B).
Representative PAGE of in vitro transcription of HCV J6CF and
JFH-1 mutant RNA polymerases. In vitro de novo transcription was
performed as indicated in the Materials and Method section.
[**P]-RNA products were applied on 6% PAGE containing 8 M
urea. The autoradiography was analyzed by Typhoon trio plus
image analyzer. The radio isotope count of 184 nt RNA product
was measured and compared to that of JFH-1 RdRp wt in the
same PAGE. The designations of HCV J6CF and JFH-1 wt and
mutants are indicated above the PAGE. M; [*2P]-25 base DNA
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ladder (Takara), and the position is indicated on the left. The
position of 184 nt RNA product is indicated on the right.
Found at: doi:10.1371/journal.ppat.1000885.s001 (0.45 MB TIF)

Figure $2 Comparisons of the amino acid sequence of NS5B of
JFH-1 and J6CF. The 5BSL region is indicated with a box.
Found at: doi:10.1371/journal.ppat.1000885.s002 (0.13 MB TIF)

Figure 83 Effect of Y561F substitution on replication activity of
genotype 1 replicons. Replication activity of genotype la (H77S:
(A) and 1b (HCV-N:B)) replicons. Subgenomic RNA was
synthesized i vitro from wild-type or chimeric replicon constructs.
Transcribed subgenomic RNA (5 pg) was then electroporated into
HuH-7 cells and the cells serially harvested 4, 24, and 48 h after
transfection. The harvested cells were lysed and the luciferase
activity of the cell lysates was measured. The assays were
performed three times independently, and the results expressed
as luciferase activities (RLU). Luciferase activity is expressed as the
change in RLU (n-fold) relative to the luciferase activity 4 h after
transfection. Each value was corrected for transfection efficiency as
determined by measuring the luciferase activity 4 h after
transfection. Data are presented as the mean * standard deviation
for luciferase activity.
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To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we
designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the
E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation
atthe potential N-glycosylation site (E2N151K)leads to efficient production of the chimeric virus. This finding
suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis.

To further analyze the biological properties of the purified recombinant HCV particles, we developed a
strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious parti-

Keywords:
Hepatitis C virus
Envelope protein

g:;?ccl:m" cles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG
Viccine affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles

using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like pro-
jections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in
immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to
HCV vaccine development.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The hepatitis C virus (HCV) causes chronic hepatitis, liver cir-
rhosis and hepatocellular carcinoma [1]. HCV is a positive strand
RNA virus belonging to the Hepacivirus genus in the Flaviviridae
family. The HCV genome consists of about 9600 nucleotides and
contains three regions: a 5 non-coding region of 341 nucleotides
containing the sequence for the IRES structure, a coding region of
about 9000 nucleotides, which encodes about 10 viral proteins,
and a 3’ non-coding region of about 200 nucleotides depending
on the size of the poly-uridylate track within this region [2,3].

The main therapy for HCV is treatment with pegylated-inter-
feron and rivabirin. However, these agents show little effect in pa-
tients that have a high titer of HCV RNA, genotype 1. Thus, it is
necessary to develop new, more effective therapies and preventive
treatments to counteract HCV infection. As yet, no preventive

* Corresponding author. Address: Department of Virology II, National Institute of
Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan. Fax: +81 3
5285 1161.

E-mail address: wakita@nih.go.jp (T. Wakita).

0006-291X/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.bbrc.2010.04.081

vaccine is available for HCV. A recombinant HCV vaccine based
on the viral envelope protein E1/E2 has been reported that gener-
ated neutralizing antibodies (nAb) in animals [4]. These nAbs were
capable of limiting HCV pseudoparticles (HCVpp) and HCV cell cul-
ture (HCVcc) infection.

Recently, a genotype 2a strain of HCV named JFH-1 was discov-
ered. This strain can efficiently replicate in the Huh-7 cell line [5],
and an in vitro culture system of infectious HCV has also been suc-
cessfully developed using the JFH-1 genome [6-8]. The JFH-1 viral
production system is expected to become a powerful tool for HCV
vaccine development. In this study, we developed a simple strategy
for purification of recombinant HCV particles from the media of in-
fected Huh-7 cells for structural analysis and for vaccine develop-
ment using the JFH-1 genome.

2. Materials and methods
2.1. Plasmids

Plasmid p]6/JFH-1 was generated from pJFH-1 by replacement
of the 5 untranslated region with the p7 region of J6 [9]. The
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plasmids pJ6/JFH-1/1FL and pJ6/JFH-1/3FL were constructed by
introduction of a single (DYKDDDDKGGG) or triple (DYKDHDG-
DYKDHDIDYKDDDDKGGG) FLAG-tag sequence, respectively, into
pJ6/JFH-1, which replaced part of the E2 HVR1 (amino acids 394-
400) region. These two plasmids were then modified by introduc-
tion of a Lys residue to replace the Asn at amino acid position 151
of the E2 sequence, creating pJ6/JFH-1/1FL/E2N151K and p]6/]JFH-
1/3FL/E2N151K, respectively.

The J6E2 gene (codons 1490-2500) was generated by PCR ampli-
fication from pJ6CF. The sense and antisense primers used were: 5'-
CACAAGCTTCGCACCCATACTGTTGGGG-3" and 5'-ACAGGATCCCAT-
CGGACGATGTATTTTGTG-3', respectively. For cloning purposes,
HindIll or BamHI sites (underlined) were added to the primers.
The amplified DNA was digested and inserted into p3XFLAG-CMV-
13 (SIGMA, Saint Louis, MO).

The plasmid CDM-J6E2Fc encodes the J6E2 sequence down-
stream of the preprotrypsin leader sequence. pCDM-J6E2Fc was di-
gested with Sacl and BamH]I, and the DNA fragment containing the
preprotrypsin leader and J6E2 sequence was inserted into pCD4Rg
(a kind gift from Dr. Brian Seed, Harvard Medical School) from
which the Sacl-BamHI fragment containing the CD4 gene was re-
moved. This ligation resulted in the creation of a plasmid encoding
a fusion gene of E2 and human IgG1-Fc.

2.2. Cell culture

The human hepatoma cell line, Huh-7, was maintained in
DMEM supplemented with 10% FBS at 37 °C in a 5% CO; incubator.

2.3. In vitro synthesis of HCV RNA and RNA transfection of Huh cells

HCV RNA was synthesized from the plasmids described above
in vitro using a MEGAscript T7 kit (Ambion, Austin, TX). Synthe-
sized HCV RNA was then electroporated into cells as previously de-
scribed [10]. The transfected cells were transferred onto 100-mm
culture dishes containing culture medium.

2.4. Quantification of HCV core protein and RNA

The HCV core protein in cell culture supernatants or in purified
HCV samples was quantified by enzyme immunoassay using a HCV
core ELISA kit (Ortho Clinical Diagnostics). HCV RNA in purified HCV
samples was quantified by RTD-PCR as previously described [11].

2.5. Deglycosylation with PNGase F

For deglycosylation reactions, the Enzymatic -In-Solution
N-Deglycosylation kit (Sigma) was used according to the manufac-
turer’s instructions. Briefly, lysates of passaged cells were incu-
bated for 10 min at 100 °C in denaturation buffer and then in the
presence of PNGase F enzyme for 1 h at 37 °C. These samples were
analyzed by Western blotting as described below using anti-FLAG
(SIGMA) and anti-GAPDH (CHEMICON, Temecula, CA) antibodies.

2.6. Sequence analysis

The cDNAs of the HCV genome were synthesized from total RNA
isolated from HCV RNA-transfected cells [5]. These cDNA were
subsequently amplified using DNA polymerase (TaKaRa LA Tagq,
Takara, Shiga, Japan). The sequence of the amplified DNA was
determined by the 3130 Genetic Analyzer (Applied Biosystems,
Foster city, CA).

2.7. Purification of recombinant HCV particles

Culture supernatants from Huh-7 cells transfected with FLAG-
tagged HCV RNA were harvested. The medium was concentrated

by ultrafiltration using the pellicon-2 300 system (Millipore, Bed-
ford, MA) and was subjected to affinity chromatography using an
Anti-FLAG M2 affinity gel (Sigma). Virus particles were eluted
using the 3 xFLAG Peptide (Sigma) and were concentrated by ultra-
centrifugation for 2 h at 50,000 rpm at 4 °C.

2.8. Determination of the viral infectious titer

The infectious titer was determined by the method as previ-
ously described and was expressed as the number of focus-forming
units per milliliter (FFU/mL) [6].

2.9. Western blotting

The purified HCV sample was lysed using a buffer containing
0.1 M Tris-HCl (pH 6.8), 4% SDS, 1.2% 2-mercaptoethanol, 20% glyc-
erol, and Bromophenol blue. SDS-PAGE and immunoblotting were
performed as previously described [6]. Antibodies used for immu-
noblotting were: anti-HCV core (clone 2H9) [6], anti-E1 (B7567)
[6], and anti-E2 (clone 8D10-3, unpublished).

2.10. Electron microscopy

Concentrated, purified HCV particles were allowed to settle on
carbon-coated copper grids and were stained with 4% uranylace-
tate. The grids were examined in a transmission electron micro-
scope (H-7650, Hitachi, Tokyo, Japan) and were photographed at
an instrumental magnification of 50,000x.

2.11. Sucrose density gradient analysis

The purified HCV sample containing 266 fmol of the HCV core
was layered on a stepwise sucrose gradient (10-60%, wt/vol) and
was centrifuged for 16 h in an SW41 rotor (Beckman Coulter, Ful-
lerton, CA) at 35,000 rpm at 4 °C. After centrifugation, 12 fractions
were harvested from the bottoms of the tubes. For each fraction,
the core protein concentration was determined using an immuno-
assay. The HCV RNA titer was determined using RTD-PCR. The
infectious titer was determined using an immunofluorescence as-
say as described above.

2.12. HCV particle-immunization

The purified HCV particles described above were inactivated by
UV-irradiation, and 2 pmol of the HCV core protein of the particles
were intraperitoneally injected into 4 week old BALB/c female mice
(n=3). Immunization was repeated four times at 2-week intervals
(0, 2, 4 and 6 weeks). The Sigma Adjuvant System (Sigma), com-
posed of monophosphoryl lipid A and trehalose dicorynomycolate,
was used as an adjuvant. Saline alone was injected into control
mice. Sera were collected at 1, 3, 5 and 7 weeks after
immunization.

2.13. EIA for measurement of anti-E2 and anti-FLAG antibody
responses

Recombinant J6E2/Fc or the FLAG peptide antigen (Sigma) was
bound to microtiter plates (Nunc, Rochester, NY, USA) overnight
at 4 °C, at a concentration of 50 ng per well. Recombinant J6E2/Fc
was produced from COS-1 cells transfected with the CDM-]J6E2Fc
plasmid, which encodes the J6CF-E2 region (aa 384-720) fused
with the Fc region of human IgG. The plates were blocked with
Blocking One solution (Nacalai Tesque, Kyoto, Japan) and were
washed with PBS containing 0.05% Tween 20 (washing buffer). Ser-
um samples were diluted in washing buffer and were transferred
to the blocked, antigen coated plates. After a 1.5-h incubation,
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the plates were washed and bound antibody was detected using an
HRP-conjugated anti-mouse antibody (GE healthcare, Bucking-
hamshire, England) and 3,3',5,5-tetramethylbenzidine (TMBZ) as
a substrate (Sumitomo Bakelite, Tokyo, Japan).

3. Results
3.1. Production of recombinant HCV with an epitope-tagged envelope

To facilitate purification of recombinant HCV particles secreted
into the culture medium of transfected cells, we constructed
recombinant HCV with a FLAG-epitope-tagged envelope, which
could then be purified by affinity chromatography using an
anti-FLAG-agarose column. The FLAG-tagged HCV genome ]6/JFH-
1/3FL with the J6CF structural region was constructed by introduc-
ing a triple FLAG-tag sequence into the HVR1 of E2 (Fig. 1A). This
region was selected for epitope-tag insertion because we predicted
that this region would lie on the outside of the virus particles and
would be tolerant to amino acid changes. Recombinant HCV parti-
cles were produced following transfection of Huh-7 cells with viral
RNA, and were secreted into the culture medium.

567

RNA-transfected cells were passaged every 4 or 5 days. The le-
vel of the HCV core protein in the culture supernatant was mea-
sured over a period of 70days (Fig. 1B). In contrast to the
gradually increasing level of the core protein in J6/JFH-1 cells over
time, the level of the core protein in the supernatants of the J6/JFH-
1/3FL RNA-transfected cells decreased over the first 3 weeks post-
transfection. Subsequently, the level began to increase and this le-
vel became equal to that of the wild-type J6/JFH-1 RNA-transfected
cells 35 days post-transfection. This result suggested that after the
first 35 days of culture, some mutations were introduced into the
HCV genome that conferred efficient virus production during gen-
ome replication and/or that the transfected cells were altered in
some way that was more favorable for viral production.

3.2. An N151K mutation facilitates the production of FLAG-tagged HCV

To determine if any adaptive mutations had arisen in the viral
genome, we sequenced the full length of the HCV genome on days
8 and 35 post-J6/JFH-1/3FL RNA transfection. On day 8 post-trans-
fection, no non-synonymous mutations were detected. However,
on day 35, we found a single amino acid mutation at a potential
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Fig. 1. Time course of HCV core protein secretion in recombinant HCV RNA-transfected cells. (A) Organization of the recombinant HCV construct pJ6/JFH-1/3FL. Open reading
frames (thick boxes) are flanked by 5'- and 3'-UTRs (thin boxes). Gray, J6CF; white, JFH-1; HVR, hyper variable region; TMD, transmembrane domain. N-Glycosylation sites are
indicated by pointers and are numbered N1-N11. The region of p]6/JFH-1 that is replaced by the 3xFLAG sequence to generate pJ6/JFH-1/3FL is indicated at bottom. (B) HCV
core protein secretion into the culture medium after HCV RNA transfection of Huh-7 cells. The HCV core protein was analyzed using an ELISA. Arrows indicate the times at
which the J6/JFH-1/3FL HCV genome transfected into HCV RNA-transfected cells was sequenced.
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N-glycosylation site of the E2 protein (Fig. 2A) in which asparagine at
amino acid position 151 in the E2 protein was changed to lysine
(E2N151K). Interestingly, this mutation was identical to that de-
scribed by Delgrange et al. [12] as a mutation that was important
for efficient production of HCV JFH-1. We performed Western blot
analysis of cell lysates of transfected cells of different passages, using
the anti-FLAG antibody as a probe for E2, to confirm that the N151K
mutation abolishes one specific N-glycosylation. Indeed, the size of
the FLAG-E2 protein was smaller on days 30 and 43 compared to that
on day 4 (Fig. 2B). In contrast, the size of FLAG-E2 proteins that were
deglycosylated using PNGase F was similar for all of the tested sam-
ples(Fig. 2B). This result suggested that the E2ZN151K mutation abol-
ished N-glycosylation at this residue.

To investigate if the E2ZN151K mutation enhances production of
FLAG-tagged HCV, we introduced the E2N151K mutation into the
J6/JFH-1/3FL genome (J6/JFH-1/3FL/E2N151K). ]6/JFH-1/3FL/
E2N151K RNA-transfected cells were then passaged every 4 or
5 days and the level of the HCV core protein in the culture super-
natant was measured over a period of 16 days (Fig. 2C). The result
clearly showed that the E2N151K mutation contributes to efficient
production of FLAG-tagged HCV particles.

H. Takahashi et al./Biochemical and Biophysical Research Communications 395 (2010) 565-571

We further analyzed the effect of the E2N151K mutation on
specific viral infectivity (Table 1). The culture supernatant on day
3 post-transfection of recombinant viral RNA was therefore con-
centrated by ultrafiltration and tested in an infectious assay. The
recombinant virus with the E2N151K mutation exhibited higher
specific infectivity than the virus without this mutation. These data
suggest that efficient production of infectious particles is impaired
by the introduction of a FLAG-tag into the E2 protein but that this
deficiency could be compensated for by the introduction of the
E2N151K mutation which modifies an N-glycosylation site.

3.3. Purification of FLAG-tagged HCV

To purify FLAG-tagged HCV particles, we used a viral construct
with a single FLAG-tag, J6/JFH-1/1FL/E2N151K (Fig. 1A), which as
efficient in virus production as J6/JFH-1/3FL/E2N151K (data not
shown). A total of 10 L of the culture supernatant of Huh-7 cells in-
fected with J6/JFH-1/1FL/JE2N151K was collected. This culture
medium was concentrated to 300 mL by ultrafiltration and was
then subjected to affinity chromatography using an anti-FLAG-aga-
rose column. Bound virus particles were eluted using 10 mL of a
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Fig. 2. Characterization of the recombinant HCV genome with an introduced N151K mutation. (A) Schematic diagram of the sequence of the E2 in the J6/JFH-1/3FL HCV RNA-
transfected cells on day 8 and day 35 post-transfection. N151K replaces an Asn residue with a Lys residue at the N6 glycosylation site of E2. (B) Western blot analysis of the
FLAG-E2 protein in lysates of cells transfected with J6/JFH-1/3FL RNA. Arrowheads indicate intact, and deglycosylated (PNGase F (+)), FLAG-E2 protein (upper panel) and
control GAPDH protein (lower panel). (C) HCV core protein secretion into the culture medium following transfection of Huh-7 cells with HCV RNA with or without an

introduced N151K mutation.
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Table 1
Infectivity of recombinant viruses with or without N151K mutation.

Recombinant virus Infectious titer HCV core protein Specific infectivity

(x10% FFU/mL) (x10?fmol/mL) (FFU/HCV core)
J6/JFH-1/3FL <1.7 16 <1.1
J6/JFH-1/3FL/E2N151K 8.3 20 42

FLAG peptide solution. Finally, the purified HCV particles were con-
centrated by ultracentrifugation.

The HCV yield and the amount of total protein after each puri-
fication step are summarized in Table 2. This purification process
resulted in a 5000-fold concentration of the culture supernatant.
The recovery of the HCV core protein in the final purified virus

Table 2
HCV yield and properties of purified recombinant HCV after each purification step.
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preparation was approximately 5%, and the virus purity was in-
creased about 9000-fold compared to its purity in the initial cul-
ture medium. Specific infectivity was increased about 4-fold after
the final step.

HCV structural proteins in the purified virus sample were exam-
ined by Western blotting (Fig. 3A). Core, E1 and E2 proteins were
all detected in the purified virus preparation. Interestingly, incor-
poration of the E2 protein into the purified virus appeared to in-
crease compared to incorporation of the core and E1 proteins.
However, this higher apparent incorporation of FLAG-E2, may
reflect the presence of free, non-virus incorporated FLAG-E2 pro-
teins that co-purified with the FLAG-tagged virus. We further ana-
lyzed the virus particles in the purified preparation by electron
microscopy (Fig. 3B-D). Substantial debris was found in the culture

Purification step Volume  HCV core protein HCV RNA Total protein ~ Recovery® Purity® Infectivity Specific infectivity
(mL) (x10? fmol/mL) (%107 copies/mL)  (pug/mL) (%) (x10?FFU/mL)  (FFU/HCV core)
Culture supernatant 10,000 14 3.5 877 100 1 25 18
Concentrate (after 300 45 57 19,597 96 0.73 743 17
Ultrafiltration)
Affinity purification 10 98 324 171 7 469 4240 43
(after Elution)
Concentrate (after 0.2 1440 3220 84 5 9546 94,600 66

Ultracentrifugation)

* Recovery of HCV core protein.

® The degree of virus purity was calculated by HCV RNA contents per pg total proteins.
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Fig. 3. Analysis of purified HCV particles. (A) Western blot analysis of viral proteins in lysates of, and in HCV particles purified from, whole-cell extracts of Huh-7 cells
transfected with J6/JFH-1/1FL N151K RNA. Lysates of non-transfected cells were also analyzed. The arrowheads indicate the positions of the HCV core, E1 and E2 proteins.
Marker proteins are shown at left. (B-D) Electron micrographs using negative staining of: (B) An HCV particle from culture media (indicated by an arrow.), (C) A purified HCV
particle and (D) Purified HCV particles aggregated by an anti-FLAG antibody. Scale bar, 50 nm.
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