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The efficient production of infectious HCV from the JFH-1 strain is restricted to the Huh7 cell line and its
derivatives. However, the factors involved in this restriction are unknown. In this study, we examined the pro-
duction of infectious HCV from other liver-derived cell lines, and characterized the produced viruses. Clones

of the Huh7, HepG2, and IMY-N9, harboring the JFH-1 full-genomic replicon, were obtained. The supernatant
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of each cell clone exhibited infectivity for naive Huh7. Each infectious supernatant was then characterized by
sucrose density gradient. For all of the cell lines, the main peak of the HCV-core protein and RNA exhibited at
approximately 1.15g/mL of buoyant density. However, the supernatant from the IMY-N9 differed from that of
Huh7 in the ratio of core:RNA at 1.15 g/mL and significant peaks were also observed at lower density. The virus
particles produced from the different cell lines may have different characteristics.

© 2008 Elsevier Inc. All rights reserved.

Hepatitis C virus (HCV) is an enveloped virus that belongs to
the Hepacivirus genus of the Flaviviridae family. HCV is a human
pathogen and HCV infection is a major cause of chronic hepatitis,
liver cirrhosis and hepatic carcinoma. The main therapy for HCV
is treatment with pegylated-interferon and rivabirin. However,
these agents show little effect for patients that have a high titer of
HCV-RNA, genotype 1. Thus, it is necessary to develop new, more
effective therapies and preventive treatments to counteract HCV
infection. It was discovered that a genotype 2a strain of HCV, JFH-1,
can efficiently replicate in the Huh7 cell line [1], and an in vitro cul-
ture model of infectious HCV has also been successfully developed
using the JFH-1 genome [2-4]. Recently, it has become possible to
produce various chimeric HCV by replacement of the JFH-1 struc-
tural protein region with that of other strains. The HCV particles
produced from such chimera are expected to lead to the develop-
ment of a HCV vaccine, and new anti-HCV pharmaceuticals.

The infectious HCV-derived JFH-1 genome was developed using
the human hepatoma Huh?7 cell line [5]. Although the sub-geno-
mic replicon RNA of JFH-1 can autonomously replicate, not only
in Huh7 cells, but in other human liver [6], non-hepatic [7], and
mouse [8] cells, infectious HCV production has been restricted
to Huh7-derived cells. In this study, we undertook a compara-
tive study of infectious HCV particles produced from different cell
lines including Huh?7. Infectious HCV particles were successfully
produced into the culture media and characterized.

* Corresponding author. Fax: +81 3 5285 1161.
E-mail address: wakita@nih.go.jp (T. Wakita).

0006-291X/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.bbrc.2008.10.063
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Materials and methods

Cell culture. Huh7, Huh7.5.1 ([3], a generous gift from Dr. Francis
V. Chisari), HepG2, and IMY-N9 cells were cultured at 37°C in 5%
CO,. The HepG2 cells were cultured in modified Eagle’s medium
containing 10% fetal bovine serum. All of the other cells were cul-
tured in Dulbecco’s modified Eagle’s medium containing 10% fetal
bovine serum, as described previously [6].

Plasmids. The pFGR-JFH1 and pFGR-JFH1/deltaE12 plasmids,
encoding the full-genomic replicon, and envelope-deleted repli-
cons, respectively, were generated as previously described [9].

RNA synthesis. RNA synthesis was performed as described pre-
viously [2]. Briefly, the pFGR-JFH1 plasmid was digested with Xbal
and then treated with Mung Bean nuclease (New England Biolabs,
Beverly, MA). The digested plasmid DNA fragment was then puri-
fied and used as a template for RNA synthesis. HCV-RNA was syn-
thesized in vitro using a MEGAscript™ T7 kit (Ambion, Austin, TX).
The synthesized RNA was treated with DNasel, followed by acid
phenol extraction to remove any remaining template DNA.

Establishment of replicon cells. Cell lines harboring FGR-JFH1
replicons were produced as described previously [9]. Briefly, tryp-
sinized cells were washed with Opti-MEM I™ reduced-serum
medium (Invitrogen, Carlsbad, CA) and resuspended at 7.5 x 106
cells/mL with Cytomix buffer [1]. RNA (10 pg), synthesized from
PFGR-JFH1, was mixed with 400 uL of cell suspension and trans-
ferred to an electroporation cuvette (Precision Universal Cuvettes,
Thermo Hybrid, Middlesex, UK). The cells were then pulsed at
260V and 950 pF with the Gene Pulser II™ apparatus (Bio-Rad,
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Hercules, CA). Transfected cells were immediately transferred to
10-cm culture dishes, each containing 8 mL of culture medium.
G418 (0.8-1.0mg/mL) (Nacalai Tesque, Kyoto, Japan) was added to
the culture medium at 16-24 h after transfection. Culture medium,
supplemented with G418, was replaced twice per week. Three
weeks after transfection, sparsely grown G418-resistant colo-
nies were independently isolated using a cloning cylinder (Asahi
Techno Glass Co., Tokyo, Japan), and were expanded.

Preparation of supernatants from FGR-JFH1 replicon cells. Culture
media was collected from Huh7, IMY-N9, and HepG2 cell lines har-
boring the FGR-JFH1 replicon and was passed through a 0.45-pm
filter. Filtrated culture media was then pooled and concentrated
50-fold using Amicon Ultra-15 (100,000 Molecular weight cut off;
Millipore, Bedford, MA), and stored at —80 °C until use.

Assay of infection of naive Huh7 cells. Infection of naive Huh7 cells
were assayed by immunofluorescence and colony formation assays.
For the immunofluorescence assay naive Huh7.5.1 cells were seeded
at 1x 10* cells/well in an 8-well chamber slide (Becton Dickinson,
Franklin Lakes, NJ), cultured overnight and then inoculated with
diluted culture media containing infectious HCV particles (1 x 10°
HCV-RNA copies). At 72h after inoculation, the cells were fixed in
acetone/methanol (1:1) for 10min at —20°C, and the infected foci
were visualized by immunofluorescence as follows.

An anti-core HCV protein monoclonal antibody 2H9 [2] was
added to the cells at 50 pg/mL in BlockAce (Dainippon Sumitomo
Pharma, Osaka, Japan). After incubation for 1h at room tempera-
ture, the cells were washed and incubated with a 1:400 dilution
of AlexaFluor 488-conjugated anti-mouse IgG (Molecular Probes,
Eugene, OR) diluted in BlockAce. The cells were then washed,
treated with DAPI solution (Sigma, Saint Louis, MO) at 0.1pg/
mL and examined by Biozero fluorescence microscopy (Keyence,
Osaka, Japan).

Colony formation assays were performed as described previ-
ously [9]. Briefly, naive Huh7 cells were inoculated with culture
supernatants from replicon-expressing cell lines for 2h, and then
cultured with complete medium. Inoculated cells were cultured
for 3 weeks in medium supplemented with G418 (0.3 mg/mL). Cell
survival was assessed by staining with crystal violet.

Titration of infectivity. The infectivity titer of the culture super-
natants was determined on Huh7.5.1 cells by end point dilution
and immunofluorescence as described above. Briefly, each sam-
ple was serially diluted 10-fold in DMEM-10% FBS and 100 pL was
used to inoculate Huh7.5.1 cells. Infection was examined 72h
post-inoculation by immunofluorescence using a mouse mono-
clonal anti-core antibody and secondary anti-mouse IgG-Alexa
488 conjugated antibodies. Infectious foci were counted and the
titer was calculated and expressed as focus forming units per mL
(FFU/mL).

Sucrose density gradient analysis. Concentrated cell supernatants
were layered on top of a preformed continuous 10-60% sucrose
gradient in TNE buffer containing 10 mM Tris, pH7.5, 150 mM Nacl,
and 0.1 mM EDTA. Gradients were centrifuged in an SW41 rotor
(Beckman Coulter, Fullerton, CA) at 35,000 rpm for 16 h at 4°C, and
fractions (400 uL each) were collected from the bottom of the tube.
The density of each fraction was estimated by weighing a 100 uL
drop from each fraction following a gradient run.

Quantification of HCV-core protein and RNA. The level of the
HCV-core protein in culture supernatants or sucrose density gra-
dient fractions, was assayed using an immunoassay as described
elsewhere [10]. Viral RNA was isolated from harvested culture
media, or sucrose density gradient fractions, using the QiaAmp
Viral RNA Extraction kit (Qiagen, Tokyo, Japan). The copy num-
ber of HCV RNA was determined by real-time detection reverse
transcription-polymerase chain reaction (RTD-PCR), using an ABI
Prism 7500fast sequence detector system (Applied Biosystems,
Tokyo, Japan) [11].

Results
Production of infectious HCV from human liver-derived cell lines

We first determined if it was possible to produce infectious
HCV from cell lines other than Huh7. We selected the HepG2 and
IMY-N9 cell lines to establish human liver-derived cell lines that
enable replication of the JFH-1 genome [6]. Since full-genomic
JFH-1 did not transiently replicate in these cells (data not shown),
we established FGR-JFH1 replicon cells that stably replicate the
JFH-1 genome. In the culture media obtained from these full-geno-
mic replicon cells, HCV-RNA titers were detected by RTD-PCR. The
titer of HCV-RNA was highest in the supernatant from an IMY-N9
cell clone and lowest from a HepG2 cell clone (Table 1). When
naive Huh7.5.1 cells were inoculated with culture supernatants
from the replicon cells, infected cells could be detected by immu-
nofluorescence using an anti-HCV-core protein antibody (Fig. 1A).
These data suggested that HepG2 and IMY-N9 cells are able to pro-
duce infectious HCV.

We then compared the specific infectivity of the replicon con-
taining culture supernatants from the different cells. Specific infec-
tivity was calculated by dividing the infectious titer, calculated by
immunofluorescence of infectious foci, of the culture media by the
titer obtained for HCV-RNA. Using these calculations the culture
media from Huh7 and HepG2 cells showed almost the same spe-
cific infectivity whereas that from IMY-N9 cell was relatively higher
(Table 1). Thus the infectious HCV in the culture media might differ
according to the cell line from which it was obtained.

To clarify the differences observed in specific infectivity, we
next examined the ability of the various cellular supernatants to
induce colony formation. For this assay naive Huh7 cells were inoc-
ulated with culture media of the same HCV-RNA titer as that of the
FGR-JFH1 virus and were cultured in G418-containing medium.
Cell survival was assayed by staining with crystal violet, and the
number of colonies formed was counted. Consistent with the spe-
cific infectivity results, the supernatant of the IMY-N9 replicon cell
showed higher colony formation compared with that of Huh7 and
HepG2 replicon cells (Fig. 1B and C). Thus IMY-N9 cells produce
infectious HCV with a relatively higher infectivity than the other
cell lines suggesting that the supernatant derived from the differ-
ent replicon producing cells may differ.

Characterization of the FGR-JFH1 virus from different liver-derived
cells

To further characterize potential differences between the
viruses produced by the different cell lines we next character-
ized the FGR-JFH1 virus in the media of the different cell lines
by sucrose density gradient analysis. Concentrated cell super-
natants were layered on top of a preformed continuous 10-60%
sucrose gradient and centrifuged. Twenty-four fractions were
collected and the HCV-core protein and RNA was assayed in each
fraction. The peak fraction of the HCV-core protein and that of
the RNA coincided at a density of 1.15g/mL in all supernatants.
However, the supernatant of the IMY-N9 cells showed differ-
ent profiles for both the HCV-core protein and RNA compared
to those of Huh7. Thus the IMY-N9 cells had a different ratio of

Table 1
Infectivity of the supernatant of replicon cell lines.

HCV-RNA (copies/mL)

Producing cell Infectious titer Specific infectivity

(FFU/mL) (FFUJRNA copy)
Huh7 1.36+0.02 x 10° 1304032 x10*  9.56x 1073
IMY-N9 2.80+0.04 x 108 3.754£0.38x 10  134x 1074
HepG2 8.80+0.75 x 107 770+1.41x10°  7.96x 1075
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Fig. 1. Naive Huh7 cell infection assay of JFH-1 full-genomic replicon cell culture supernatants. (A) JFH-1 full-genomic replicon (FGR-JFH1) cells were established in Huh7,
HepG2, and IMY-N9 cell lines. Supernatants derived from Huh7 (left), HepG2 (middle), and IMY-N9 (right) cells (1 x 108 HCV-RNA copies) were inoculated into naive Huh7.5.1
cells (1 x 10%) for 48h, and infected cells were then detected by immunofluorescence using an anti-core antibody (clone 2H9) (green). (B) Naive Huh7 cells (5 x 10°) were
inoculated with mock, Huh7, HepG2, and IMY-N9-derived supernatants (10 HCV-RNA copies per 10-cm dish) of FGR-JFH1 cells for 2 h. Inoculated cells were cultured for
3 weeks in complete medium supplemented with G418 (0.3 mg/mL), and G418-resistant cells were stained using crystal violet. (C) The number of G418-resistant colonies
obtained in (B) was calculated when 10° or 10° copies of HCV-RNA were tested. Mean values of colony number were indicated in duplicate experiment. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

HCV-core protein and RNA at a density of 1.15 g/mL (RNA/Core
ratio; Huh7: 511, IMY-N9: 133 copies/fmol) and also showed a
secondary peak at lower density (approximately 1.05 g/mL). For
all supernatants the peak of infectivity exhibited at a density of
1.10 g/mL that was slightly lower than that of the HCV-core pro-
tein and RNA peaks. Furthermore infectivity was barely detect-
able in the lower density fractions (Fig. 2) suggesting that the
HCV-core protein and RNA that was detected at lower density
was irrelevant for infectivity of the different supernatants.

We considered the possibility that the core protein and RNA
in the lighter fractions may be due to cellular debris containing
a replication complex. To determine if this might be the case we
therefore analyzed the supernatants from Huh7 and IMY-N9 enve-
lope-deleted replicon cells (FGR-JFH1/deltaE12). The HCV-core
protein and RNA were detected in the supernatants of these cells
although the titers were very low. These supernatants were not
infective for naive Huh7 cells (data not shown). Furthermore, anal-
ysis of the concentrated supernatants of these cell lines by sucrose
density gradient analysis detected both the HCV-core protein and
RNA, and the major peaks of HCV-RNA were detected in the lower
density (approximately 1.10 g/mL) fractions (Fig. 3). However, the
profiles of HCV-core protein and RNA did not coincide for either
cell line.

Discussion

Infectious HCV can be produced in cell culture by using the
JFH-1 genome. This system permits investigation of various aspects
of the HCV life cycle such as the steps of entry into cells, replica-
tion, and secretion. Infectious HCV derived from JFH-1 is robustly
produced in Huh7 cell lines [2,3], and the infectious particles have
been characterized. However the difficulty in robustly producing
infectious HCV from other cell lines prevents a comparative study

of HCV production among different cell lines. In this study, we
compared infectious HCV production in Huh7 with that of other
cell lines, and characterized the viruses produced.

First, we established Huh7, IMY-N9, and HepG2 FGR-JFH1 rep-
licon cells. These cell lines were able to replicate the JFH-1 sub-
genomic replicon [6]. The HCV-core protein and RNA were detected
in all of the supernatants and all of these supernatants showed
infectivity for naive Huh7. Infectivity was evaluated by transient
infection and colony formation assays. These assays indicated that
the infectious supernatant from IMY-N9 cell had higher infectivity
than the other cell lines for naive Huh7 cells.

Next, we characterized each supernatant by sucrose density
gradient analysis, which revealed both similarities and differences
among the infectious supernatants. All samples showed typical
peaks at 1.15g/mL buoyant density for HCV-core protein and RNA,
and infectious fractions showed an almost identical buoyant density
of 110g/mL. However, the supernatant from the IMY-N9 cells
showed a difference in the core/RNA ratio at a density of 1.15g/mL
and higher secondary peak of HCV-core protein and RNA at a lower
density (approximately 1.05g/mL). Since the fractions at lower den-
sity did not correlate with infectivity, it is believed that the compo-
nent at lower density does not contain infectious HCV particles but
rather cellular debris that contains HCV proteins, RNA, and lipids
[12]. HCV can associate with lipoprotein [13,14], and is secreted with
VLDL [15]. Thus, the observed differences in the HCV-producing cells
may derive from differences in lipoprotein synthesis. However, it is
also possible that the components migrating at lower density con-
tain virus particles. The deletion mutant of FGR-JFH1 (FGR-JFH1/del-
taE12) did replicate in Huh7 and IMY-N9 cells, and these replicon
cells secreted the HCV-core protein into the culture media, although
at low levels. HCV-RNA was also detected in the same culture
medium, and the profile of this HCV-RNA differed from that of the
HCV-core protein in sucrose density gradient analysis. Thus, the

-103-



750 D. Akazawa et al. / Biochemical and Biophysical Research Communications 377 (2008) 747-751

A Led L 3 ® &
HCV-RNA HCV-core density infectivity
(10¢ copies/mL) {pM) {g/mL) (10°FFU/mL
8 %0 11314
200 |l 3
1.2
150
2
o 1.4
50 1
' 0 1.0 0
5 10 15 20
Fraction
B
< * L L
HCV-RNA HCV-core density infectivity
{10% copies/mL) {pM) {g/mL) (104FFU/mL)]
8 g 250 11318
200 18
1 1.2
150
4
1100
1.4
150 2
0 1.0 0

5 10 45 20
Fraction

Fig. 2. Density gradient analysis of infectious HCV derived from Huh7 and IMY-N9
cells. Concentrated supernatants of Huh7 cells (A) and IMY-N9 cells (B) were lay-
ered on top of a preformed continuous 10-60% sucrose gradient in TNE buffer. The
gradients were centrifuged in a SW41 rotor at 35,000 rpm for 16 h at 4°C, and frac-
tions (400 pL each) were collected from the bottom of the tube. The buoyant density
(closed circles), HCV-core protein (closed diamonds), HCV-RNA (open diamonds)
and infectivity for naive Huh7.5.1 cells (shown in gray) was detected in each fraction
as described in Materials and methods.

peak fractions containing the HCV-core protein and RNA from the
supernatant of FGR-JFH1/deltaE12 cells were different from the peak
fractions from that of FGR-JFH1 cells. Therefore it is possible that all
of the peaks of HCV-core protein and RNA observed in the superna-
tant of FGR-JFH1 replicon cells may correlate to virus particles with
different densities. However, the reason why they centrifuge at dif-
ferent densities is unclear. Interestingly, the supernatants from cells
transfected with envelope-deleted replicon RNA exhibit non-identi-
cal HCV-core protein and RNA profiles on a sucrose density gradient.
Envelope-deleted replicon RNA may have a decreased ability to form
nucleocapsids although a detailed examination is necessary to estab-
lish this point.

We previously developed a method for infectious HCV pro-
duction using the FGR-JFH1 [9], and have now succeeded in
producing infectious HCV in the supernatant of cultured liver-
derived cell lines harboring FGR-JFH1 RNA. Infectious HCV
particles are useful for vaccine production and are considered good
antigens for the generation of useful antibodies. Selection of an
appropriate cell line is important for the production of HCV particles
for vaccine development. The technique used in this study seemed to
be appropriate for producing infectious HCV in various cell lines [8].

A second advantage of using HepG2 and IMY-N9 cells for the
production of virus particles is that these parental cell lines,
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Fig. 3. Density gradient analysis of supernatants derived from Huh7 and IMY-N9 cells
transfected with FGR-JFH1/deltaE12 RNA. Concentrated supernatants from Huh7 (A)
and IMY-N9 (B) cells were analyzed by sucrose density gradient as described in the
legend to Fig. 2. The buoyant density (closed circles), HCV-core protein (closed dia-
monds) and HCV-RNA (open diamonds) was analyzed in each fraction.

unlike the Huh7 cell line, do not express the CD81 molecule on
the cell surface, however, the expression on cell clones used in
this study was not confirmed. This means that the FGR-JFH1 rep-
licon of these cell lines may have a single cycle of HCV production,
encompassing replication, assembly, budding and secretion, and
do not show HCV permissiveness. These cells should therefore be
useful for the discovery of drugs targeted against HCV assembly
and secretion.
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Hepatitis C Virus JFH-1 Strain Infection in
Chimpanzees Is Associated With Low Pathogenicity
and Emergence of an Adaptive Mutation

Takanobu Kato,-? Youkyung Choi,* Gamal Elmowalid,! Ronda K. Sapp,! Heidi Barth,! Akihiro Furusaka,’
Shunji Mishiro,? Takaji Wakita,? Krzysztof Krawczynski,* and T. Jake Liang!'

The identification of the hepatitis C virus (HCV) strain JFH-1 enabled the successful devel-
opment of infectious cell culture systems. Although this strain replicates efficiently and
produces infectious virus in cell culture, the replication capacity and pathogenesis in vivo are
still undefined. To assess the in vivo phenotype of the JFH-1 virus, cell culture-generated
JFH-1 virus (JFH-1cc) and patient serum from which JFH-1 was isolated were inoculated
into chimpanzees. Both animals became HCV RNA-positive 3 days after inoculation but
showed low-level viremia and no evidence of hepatitis. HCV viremia persisted 8 and 34
wecks in JFH-1cc and patient serum—infected chimpanzees, respectively. Immunological
analysis revealed that HCV-specific inmune responses were similarly induced in both ani-
mals. Sequencing of HCV at various times of infection indicated more substitutions in the
patient serum—inoculated chimpanzee, and the higher level of sequence variations seemed to
be associated with a prolonged infection in this animal. A common mutation G838R in the
NS2 region emerged early in both chimpanzees. This mutation enhances viral assembly,
leading to an increase in viral production in transfected or infected cells. Conclusion: Our
study shows that the HCV JFH-1 strain causes attenuated infection and low pathogenicity in
chimpanzees and is capable of adapting in vivo with a unique mutation conferring an
enhanced replicative phenotype. (HEPATOLOGY 2008;48:732-740.)

epatitis C virus (HCV) infects approximately
170 million people worldwide and is a major
causative agent of chronic liver diseases in-

currently available.? Therapy for HCV-related chronic
hepatitis remains problematic, with limited efficacy,
high cost, and substantial adverse effects.!4> Under-

cluding cirthosis and hepatocellular carcinoma.  standing the biology of this virus and the development

However, the underlying biological mechanisms of of new therapies has been hampered by a lack of appro-
pathogenesis and persistence are still not well under-

stood. No vaccine protecting against HCV infection is

priate model systems for replication and infection of
this virus.

Abbreviations: ALT, alanine aminotransferase; ELISpot, enzyme-linked immunosorbent spot; FFU, focus-forming unit; HCV, hepatitis C virus; HVR, bypervariable
region; IEN-y interferon gamma; JFH-1cc, cell culture generated JEH-1 virus; PBMC, peripheral blood mononuclear cell: RT-PCR, reverse transcription polymerase chain
reaction; SFU, spot-forming unit; WT, wild-type.
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Recent progress with a unique HCV genotype 2a
strain, JFH-1, isolated from a case of fulminant hepatitis
in Japan, has led to the development of a robust HCV
infectious cell culture system.5? This JFH-1 strain can
replicate efficiently, produce the infectious viral particles,
and show robust infection in vitro. However, in our pre-
vious report, the inoculation of cell culture-generated
JFH-1 virus (JFH-1cc) induced only transient and atten-
uated infection in a chimpanzee.® The observed low vir-
ulence of this strain 7 vivo was unexpected but consistent,
with an inverse relationship between in vive and in vitro
properties of cell culture adaptive mutations in the HCV
replicon system.10

In this study, we performed an extensive analysis of the
in vivo replication and pathogenicity of the JFH-1 strain
by inoculating chimpanzees with JFH-1cc and patient
serum from which the JFH-1 strain was isolated. Further-
more, we analyzed viral sequences during the infection to
identify mutations that might represent in vivo adaptive
mutations with unique phenotypes.

Materials and Methods

Cell Culture. Huh7 derivative cell lines Huh7.5 and
Huh7.5.1 were provided by Charles Rice (Rockefeller
University, New York, NY) and Francis Chisari (Scripps
Research Institute, La Jolla, CA), respectively.”® The
Huh?7 derivative clone Huh7-25 that lacks CD81 expres-
sion was reported previously.!!

Inocula. The production of JFH-lcc has been re-
ported previously.!? Briefly, the full-length JFH-1 RNA
was synthesized by in vitro transcription with linearized
pJFH-1 plasmid and MEGAscript kit (Ambion, Austin,
TX).2 Ten micrograms full-length JFH-1 RNA was trans-
fected into 3.0 X 10° Huh7 cells by electroporation, and
the culture medium with JFH-1cc was harvested 5 days
after transfection. The culture medium was passed
through a 0.45-um filter unit. The case of fulminant hep-
atitis C from which the JFH-1 strain was isolated has been
reported previously.® An aliquot of acute-phase serum
(point A as indicated by Kato et al.) was used in this
study. To determine the HCV RNA titers in these inoc-
ula, total RNA was extracted from 140 pL of these sam-
ples by QIAamp Viral RNA Kit (QIAGEN, Valencia,
CA), and copy numbers of HCV RNA were determined
by real-time quantitative reverse transcription polymerase
chain reaction (RT-PCR), as described previously.!3

Infection Study in Chimpanzees. Housing, mainte-
nance, and care of the chimpanzees used in this study
conformed to the requirement for the humane use of
animals in scientific research as defined by the Institu-
tional Animal Care and Use Committee of the Centers for
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Disease Control and Prevention. Chimpanzee 10273
(CH10273, female, age 5, 20 kg) was inoculated intrave-
nously with 100 uL serum (9.6 X 106 copies) from the
fulminant hepatitis patient mixed with 400 uL Dulbec-
co’s modified Eagle’s medium culture medium. Chim-
panzee 10274 (CH10274, female, age 5, 22 kg) was
inoculated intravenously with 500 wL Dulbecco’s modi-
fied Eagle’s medium culture medium containing JFH-1cc
(L4 X 107 copies). Serum and liver biopsy samples of
these animals were obtained at baseline and weekly after
inoculation.

Measurement of HCV RNA, anti-HCV, and Ala-
nine Aminotransferase. HCV RNA in chimpanzees was
quantitatively measured by nested RT-PCR with a sensi-
tivity of detection of approximately 50 TU/mL (COBAS
Amplicor; Roche Molecular Systems, Pleasanton, CA)
and was quantified using Amplicor Monitor (Roche
Molecular Systems). Serum samples were tested for anti-
HCV (ORTHO version 3.0 enzyme-linked immunosor-
bent assay test system, Ortho-Clinical Diagnostics,
Raritan, NJ). Serum alanine aminotransferase (ALT) val-
ues in chimpanzee’s sera were established using a com-
mercially available assay kit in accordance with the
manufacturer’s instructions (Drew Scientific, Dallas,
TX). Cutoff values representing 95% confidence limit for
the upper level of normal ALT activity were calculated
individually for each chimpanzee using 10 pre-inocula-
tion enzyme values obtained over a period of 4 to 6 weeks,
and were 73 U/L in CH10274 and 76 U/L in CH10273.

HCV Sequencing. The total RNA was extracted from
280 wL chimpanzee sera collected at appropriate time
points by the use of QIAamp viral RNA kit, and comple-
mentary DNA was synthesized by use of Superscript 111
(Invitrogen, Carlsbad, CA). The complementary DNAs
were subsequently amplified with TaKaRa LA 729 DNA
polymerase (Takara Mirus Bio, Madison, W1). Five sep-
arate fragments were amplified by nested PCR covering
the entire open reading frame and a part of the 5'UTR of
the JFH-1 strain as follows; nt 128-1829, nt 1763-4381,
nt 4278-6316, nt 6172-7904, and nt 7670-9222. The
sequence of each amplified fragment was determined di-
rectly. The fragment encompassing hypervariable region
1 (HVR-1) (nt 128-1829) was cloned into the pPGEM-T
easy vector (Promega, Madison, WI) and 10 clones from
each time point were sequenced.

T-Cell Proliferation and Interferon-y Enzyme-
Linked Immunosorbent Spot Assays. The cryopre-
served peripheral blood mononuclear cells (PBMCs) were
used for immunological analysis. Standard T-cell prolif-
eration assay was performed as described previously.!4
Cells were stimulated with recombinant HCV genotype
2a core or NS5a protein (Fitzgerald Industries Interna-
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