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Abstract: Recent experimental and clinical studies have shown that chronic hepatitis C virus (HCV) infection causes in-
sulin resistance. Since insulin resistance decreases response to antiviral treatments, promotes inflammatory and fibrogenic
reactions and increases a risk of hepatocellular carcinoma (HCC), amelioration of insulin resistance may be a novel thera-
peutic target, which could improve the prognosis in patients with HCV-related chronic liver disease. Despite the increased
awareness of health risk of insulin resistance, there is no common therapeutic strategy for HC V-associated insulin resis-
tance. Indeed, treatments with exogenous insulin or sulfonylureas may be rather harmful because these treatments are as-
sociated with the development of HCC in patients with HCV infection. Meanwhile, we, along with others, have found dis-
tinctive treatments which improve HCV-associated insulin resistance. Administration of branched-chain amino acids
(BCAA), especially as a late evening snack, improves glucose metabolism by improving insulin-signal cascades in insulin
resistance patients with HCV infection. In this paper, we discuss the pathogenesis and complications for HC V-associated
insulin resistance and further review a recent clinical therapeutic strategy using these agents for the treatment of this dev-
astating disorder. We also discuss therapeutic potentialities of incretin-based therapies, new anti-diabetic agents for HCV-

associated insulin resistance and the significance of insulin resistance in the era of new anti-viral treatments.

Keywords: Hepatitis C virus, insulin resistance, hepatocellular carcinoma, branched-chain amino acids, incretin.

INTRODUCTION

Since hepatitis C virus (HCV) was identified in 1989 [1,
2], underlying pathophysiology of chronic hepatitis C has
been disclosed tremendously [3-7]. Individuals infected with
HCV frequently develop chronic infection, which is associ-
ated with the development of liver cirrhosis and hepatocellu-
lar carcinoma (HCC) [8-10]. In addition, epidemiological
data from East-West show an association between HCV in-
fection and insulin resistance [11-21]. Recent basic and
clinical researches have revealed the mechanisms of HCV-
associated insulin resistance and insulin resistance is now
recognized as a sequela of chronic HCV infection [14, 22-
30].

Generally, insulin resistance is associated with the devel-
opment of diabetes mellitus (DM), hypertension and cardio-
vascular diseases [31]. Besides these complications, insulin
resistance is also involved in many events in patients with
chronic hepatitis C, including antiviral treatment, fibrogenic
reaction and the development of HCC [25, 28, 32-35].

It is now clear that insulin resistance is a critical factor
for the progression of any stage of chronic hepatitis C [36].
Despite the accumulated evidences for the risk of insulin
resistance, therapeutic strategy for HCV-associated insulin
resistance has not been established yet [37]. In HCV-infected
patients with diabetes, cardio-vascular disease occupies only
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less than 5% of cause of death and is not a significant prog-
nostic factor [38]. Prognostic factors are HCC, liver failure,
and esophageal varices even in HCV-infected patients with
diabetes [38], and the therapeutic strategy should be consid-
ered based on mechanisms and life-threatening complica-
tions for HC V-associated insulin resistance.

Recently, we have found that an inactivation of incretin
is a causative factor for HCV-associated insulin resistance
[39]. Incretin mimetics and incretin enhancer are new anti-
diabetic agents. Theoretically, it seems that replenishment
and/or enhancement of incretin is proper therapeutic ap-
proach and these new anti-diabetic agents may ameliorate
insulin resistance, prevent the development of HCC and im-
prove the prognosis in patients with HCV infection.

In this review, we summarize the pathogenesis for HCV-
associated insulin resistance and propose the clinical thera-
peutic strategy for the treatment of HCV-associated insulin
resistance. In addition, therapeutic potentialities of incretin-
based therapies and the significance of insulin resistance in
the era of new anti-viral treatments are discussed.

MECHANISMS FOR HCV-ASSOCIATED INSULIN
RESISTANCE

Indirect Effects of HCV

Various factors are reported to be associated with the de-
velopment of HCV-associated insulin resistance (Table 1).
Similar to the life style-associated insulin resistance, obesity
with decreased serum adiponectin levels [40-42], inflamma-
tory cytokines [41, 43, 44], oxidative stress [45-47], hepatic
steatosis [48], pancreatic beta-cell function [49], and serum

© 2010 Bentham Science Publishers Ltd.
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Table 1. Factors Associated with Insulin Resistance in Patients with HCV Infection

Factor

Obesity and decreased serum adiponectin levels

Oxidative stress

Portal-systemic shunt

HCV core

pigment epithelium-derived factor (PEDF) levels are also
involved in the development of HCV-associated insulin re-
sistance. In addition to those common factors, liver specific
factors are underlying in the development of HCV-associated
insulin resistance.

Ferenci et al. reported that portal-systemic shunts caused
not only hepatic encephalopathy, but also insulin resistance
in patients with liver cirrhosis [50]. Reduced hepatic blood
flow may lead liver dysfunction and subsequent insulin resis-
tance. In fact, Tanabe et al. reported that occlusion of portal-
systemic shunt improved glucose metabolism in patients
with liver cirrhosis [51].

Hepatic iron accumulation is one of characters for HCV
infection. Hepcidin is a key negative regulator of iron me-
tabolism [52] and hepcidin levels are correlate with hepatic
iron accumulation in HCV transgenic mice [53] and patients
with chronic hepatitis C [54, 55]. Excessive iron induces
reactive oxygen species mediated oxidative stress [56]. In
patients with HCV infection, hepatic iron accumulation is
associated with insulin resistance [57, 58]. Furthermore, iron
depletion by phlebotomy reduces serum and hepatic levels of
thioredoxin, a marker of oxidative stress, and homeostasis
model assessment-insulin resistance, an index for insulin
resistance in patients with chronic hepatitis C [46]. Thus,
hepatic iron accumulation may cause insulin resistance
through induction of inflammatory cytokines and oxidative
stress.

Direct Effects of HCV on the Development of Insulin
Resistance

Direct effects of HCV on the development of insulin re-
sistance are still debatable. Tsochatzis E et al. reported that
insulin resistance is not associated with viremia [59]. On the
other hand, some previous studies reported that serum HCV
RNA levels is associated with insulin resistance in a dose-
dependent manner, independent of the visceral adipose tissue
area [60-62] and HCV suppression by anti-viral treatment
correlates with improvement in insulin resistance [63-65].
These findings suggest a possible role of HCV in the devel-
opment of insulin resistance. Recently, HCV is now known
to directly associate with insulin signaling molecules and
cause insulin resistance. HCV core protein causes nuclear
translocation of signal transducer and activation of transcrip-
tion 3 and subsequent up-regulation of suppressor of cyto-
kine signaling (SOCS) 3 proteins in various hepatoma cell

References

[4042)

(14, 26, 29]

.

lines [26]. SOCS3 is known to block insulin signaling cas-
cade by ubiquitin-mediated degradation of insulin receptor
substrate (IRS)1/2 [66]. Down-regulation of IRS1/2 are seen
in livers from HCV-core transgenic mice and in livers of
patients with HCV infection [26] and therefore, HCV core-
induced SOCS3 up-regulation may promote proteasomal
degradation of IRS1 and IRS2 through ubiquitination, lead-
ing to insulin resistance in patients with HCV infection [26,
67] (Fig. 1).

4 "
HCV core
L
4 ™
Up-regulation of SOCS3

rProteasomal degradation of IRS‘
through ubiquitination

Impairment of intracellular
insulin signaling

Insulin resistance

Fig. (1). Direct effects of HCV on the development of insulin
resistance.

HCV core protein up-regulates suppressor of cytokine signaling
(SOCS) 3 protein. SOCS3 ubiquitinates insulin receptor substrate
(IRS) and causes proteasomal degradation of IRS. Since IRS is a
central molecule of intarcellular insulin signaling, down-regulation
of IRS blocks insulin signaling cascade, leading to insulin
resistance in patients with HCV infection.
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In addition to down-regulation of IRS1/2, HCV core pro-
tein also up-regulates serine phosphorylation of IRS1 or
down-regulate tyrosine phosphorylation of IRSI and subse-
quently impairs Akt signaling pathway, a downstream sig-
naling of IRS1 in vitro [68] and in HCV-core transgenic
mice [29]. Possible mechanism for changes in serine or tyro-
sine phosphorylation of IRS1 is due to increased activation
of mammalian target of rapamycin [69] or Jun-N-terminal
kinase [68]. Although changes in serine phosphorylation of
IRS1 have not been validated in human liver tissue, down-
regulation in tyrosine phosphorylation of IRS1 and subse-
quent Akt signaling pathway has been reported in human
liver tissue [24].

HCV Genotype and Insulin Resistance

Although associations between HCV genotypes and the
development of insulin resistance are still controversial [26,
59, 70, 71], HCV genotype-specific interactions of insulin
resistance are reported in patients with HCV genotype 1b,
3a, and 4 [61, 69].

HCV genotype 1b significantly suppresses IRS1 expres-
sion compared to HCV genotype 2 in HepG2 cell [67]. The
suppression of IRS1 expression is due to two different path-
ways. HCV genotype 1b up-regulates SOCS3, which causes
proteasomal degradation of IRS1 [26]. Alternatively, HCV
genotype 1 activates mammalian target of rapamycin, which
suppress IRS1 expression [69]. Recently, Akuta ef al. found
that amino acid substitutions in the HCV core region of
genotype 1b were associated with severe insulin resistance in
patients without cirrhosis [22]. Although the precise mecha-
nisms for the development to insulin resistance by amino
acid substitutions in the HCV core region are unclear, HCV
core seems to impair intracellular insulin signaling through
several pathways.

In in vitro experiments, HCV genotype 3a modulates
SOCS7 expression and causes down-regulation of IRS1 [69,
72]. In fact, patients infected with HCV genotype 3 fre-
quently associated with insulin resistance [73]. In patients
infected with HCV genotype 3, a decrease in total and high
molecular weight adiponectin is another causative factor for
the development of insulin resistance [74].

High prevalence of insulin resistance is also seen in pa-
tients infected with HCV genotype 4 and insulin resistance is
a major determinant of both rapid virologic response and
sustained virologic response [61, 75]. Normal BMI and no
significant fibrosis are characters for patients HCV genotype
4 infected with insulin resistance [61, 76]. Although molecu-
lar mechanisms of HCV genotype 4 associated insulin resis-
tance is not unclear, these findings suggest the genotype spe-
cific interaction with intracellular insulin signaling.

COMPLICATIONS OF HCV-ASSOCIATED INSULIN
RESISTANCE

Insulin regulates not only glucose metabolism, but also
protein synthesis, lipid metabolism and cell proliferation
through activation of various intracellular signaling mole-
cules [77]. Therefore, insulin resistance is involved in not
only the development of DM, but also non-response to anti-
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viral treatment [25, 28] and hepatic fibrosis [32]. In addition,
insulin resistance causes esophageal varices [78] and HCC
[33-35], life-threatening complications. Recently, the devel-
opment of lichen planus [79], multiple primary carcinomas
[80], and other extrahepatic manifestations [81] are associ-
ated with insulin resistance. Thus, insulin resistance could
play crucial roles in the development to variety of complica-
tions in patients with HCV infection. In this review, we fo-
cused on an association between insulin resistance and HCC,
a major cause of death for patients with HCV infection.

DIABETES MELLITUS AND HCC

DM has been found as a potential risk factor for the de-
velopment of HCC. Three large population based cohort
studies, in Sweden [82], Denmark [83], and the United States
[84], reported that the development of HCC was increased 2
to 4 fold in patients with diabetes. Moreover, in some case-
control studies, the positive association between DM and
HCC has been suggested [85-88]. However, in patient HCV
infection, an association between DM and HCC remains
unclear, because most of these study populations had not
been routinely surveyed for serological marker of HCV or
contained only small number patients with HCV infection.

Table 2 shows a summary of recent seven cohort studies
that investigated an association between DM and the devel-
opment of HCC. Three of 7 studies reported by Tazawa et al.
[89], Chen ef al. [90] and Wang et al. [91] found that DM
was significantly associated with the development of HCC in
patients with HCV infection, with relative risk ranging from
3.1 to 9.4. On the other hand, three studies reported by Ohota
et al. [92], Lai ef al. [93] and Henderson et al. [94] found
that there was no significant association between DM and the
development of HCC in patients with HCV infection. Al-
though the reason for this discrepancy is unclear, one possi-
ble explanation is that DM is diagnosed based on fasting
plasma glucose and hemoglobin Alc levels. Both plasma
glucose and hemoglobin Alc levels are not adequate diag-
nostic markers for DM in patients with HCV infection be-
cause of depletion of hepatic glycogen content and increased
turnover of erythrocytes [95]. Thus, underdiagnosis of DM is
a possible reason for the discrepancy. Recently, measure-
ment of serum insulin levels is reported as a relevant clinical
marker for predicting the development of HCC [96].

INSULIN RESISTANCE/HYPERINSULINEMIA AND
HCC

Insulin is known as one of the most important factors not
only for a variety of metabolic pathways, but also for cell
growth. Insulin stimulates, via phosphorylation of IRS,
phosphatidylinositol 3-kinase and Akt cascade [97] as well
as Ras and mitogen-activated protein kinase cascade [98].
Since these cascades regulate hepatocyte proliferation and
apoptosis, hyperinsulinemia may stimulate growth of HCC.
Saito ef al. demonstrated that postprandial hyperinsulinemia
accelerated tumor doubling time of HCC in patient with cir-
thosis [99]. Moreover, several previous studies showed that
insulin resistance and subsequent hyperinsulinemia contrib-
uted to progression of liver fibrosis in patients with HCV
infection, regardless of the degree of steatosis [100, 101]. As
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Table 2. A Summary of Seven Cohort Studies for an Association Between Diabetes Mellitus and the Development of HCC in the

Population Based on HCV Infection

No. of Cohort
with HCV (%)

age, sex, alcohol, blood transfusion,
2002 Japan 13 279 279 (100%) 9.4 (ND)* a-fetoprotein, biopsy, IFN, HCV
genotype, viral road
. -

No. of No. of

Country ;
p es Cohort

United State 32806 (100%)

RR (95% CI)

1.17 (0.90-1.52)

Adjustment References

age, sex, race, duration on dialysis [94]

Abbreviation: RR; relative risk, Cl; confidence interval, ND; no description in the text, IFN; interferon, BMI; body mass index, ALT; alanine aminotransferase. * P value < 0.05

a pathogenesis of these positive associations, it has been
demonstrated that hyperinsulinemia promotes fibrogenesis
by stimulating the secretion of connective tissue growth fac-
tor from hepatic stellate cells [102]. Therefore, it is sug-
gested that the insulin resistance/hyperinsulimemia causes
progression of hepatic fibrosis, leading to development of
HCC in patients with HCV infection.

THERAPEUTIC STRATEGY FOR HCV-ASSOCI-
ATED INSULIN RESISTANCE

In this review, we propose the clinical therapeutic strat-
egy for the treatment of HCV-associated insulin resistance,
which can be determined by life-style and stage of the liver
disease, but not by definition of metabolic syndrome (Fig. 2).

The International Diabetes Federation definition of meta-
bolic syndrome is central adiposity plus two or more of the
following factors; 1) raised concentration of triglycerides, 2)
reduced concentration of HDL cholesterol, 3) raised blood
pressure, and 4) raised fasting plasma glucose concentration
[103]. In general, overeating and less activity induce meta-
bolic syndrome through changes in adipocytokines. There-
fore, diet therapy and exercise are recommended to patients
with central adiposity [104]. However, none of the adipocy-
tokines is associated with insulin resistance in patients with
HCV infection, suggesting life-style may not be a major
cause of HCV-associated insulin resistance [105]. Excessive
life style modification such as fasting and over exercise
could worsen liver function in patients with chronic liver

disease [106-108], diet therapy and exercise are recom-
mended if patients are overeating or less active.

Nutritional Therapy

Treatment for the insulin resistance could be a therapeu-
tic strategy to prevent the development of HCC and to im-
prove the prognosis in patients with HCV infection. Nutri-
tional therapy and exercise are fundamental for patients with
metabolic syndrome, which is defined by as well as patients
with HCV-associated insulin resistance. However, in patients
with liver cirrhosis, glucose metabolism is characterized as
postprandial hyperglycemia induced by decreased glucose
uptake of the liver [109, 110] and as fasting hypoglycemia
induced by decreased glycogen storage in the liver, accom-
panied with increased ratio of lipid combustion in fasting
state [108, 111-114]. Therefore, in order to improve glucose
metabolism, divided energy intake into a larger number of
meals per day including a late evening snack has been rec-
ommended for cirrhotic patients [115].

Branched-chain Amino Acids (BCAA)

BCAA has been recently demonstrated to play a role in
glucose metabolism [116-119], while it improves the com-
plications and prognosis induced by liver cirrhosis, such as
hyperammonemia, encephalopathy, or HCC [120-122].
Therefore, nutritional therapy containing BCAA is most es-
sential when considering a nutritional therapy for liver cir-
rhosis as well as DM. The mechanism of BCAA action on
glucose metabolism is suggested as follows. In a rat model
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l

[ Anti-viral treatment for HCV ]

-/

Fig. (2). Flow chart for the therapeutic strategy for HCV-associated
insulin resistance. The therapeutic strategy for HCV-associated
insulin resistance can be determined not only by life-style, but also
by stage of the liver disease.

with liver cirrhosis, leucine and isolocine upregulate glucose
uptake on skeletal muscle [123]. Similarly, a dipeptide con-
stituted of leucine and isolocine also stimulates glucose up-
take in myotube and skeletal muscle cells [124]. BCAA has
potential to improve abnormal glucose metabolism such as
insulin resistance through anti-obese effect in mice [125,
126]. In human, BCAA-enriched supplementation is also
demonstrated to improve the insulin resistance or glucose
tolerance of patients with chronic liver disease or liver cir-
thosis [64, 127, 128]. Alternatively, intake of enteral nutri-
ents for liver failure that are conditioned with enriched
BCAA and high fisher’s ratio as late evening snack would
improve glucose metabolism [118].

It has been recently demonstrated that BCAA supplemen-
tation is potential to prevent the incidence of HCC [122].
Although the mechanism remains unclear, anti-diabetic and
anti-obese effects might reduce the HCC incidence because
both DM and obesity are shown to be risk factors for HCC.
In addition, BCAA is shown to inhibit in vitro vasculariza-
tion under the high concentration of glucose and/or insulin or
in vivo vascularization of the liver in a diabetic rat model
with liver injury [129]. Because HCC is a hypervascular tu-
mor, the inhibitive effect of vascularization through the im-
provement of glucose metabolism by BCAA might reduce
the incidence of HCC.

Reviews on Recent Clinical Trials, 2010, Vol. 5, No. 3 151

Anti-diabetic Agents

Anti-diabetic agents are generally used if nutritional and
exercise therapies are not sufficient to improve hyperglyce-
mia. When using anti-diabetic agents, the risk for adverse
effects should be considered carefully because most of them
are metabolized in liver. or a-glucocidase inhibitor [130]
have been reported to have an adverse effect of severe liver
injury that could be life-threatening complications for cir-
rhotic patients. In addition, use of biguanide in cirrhotic pa-
tients would be riskier for lactic acidosis than diabetic pa-
tients because lactic acid is also metabolized in liver. Thia-
zolidinedione is an insulin-sensitizing agent and improves
virological response to peginterferon alpha-2b/ribavirin
combination therapy in hepatitis C genotype 4 patients with
insulin resistance [131]. However, thiazolidinedione causes
overproduction of hydrogen peroxide, leading to severe he-
patotoxicity [132-134]. Thus, these risks for adverse effects
may limit the use of anti-diabetic agents and exogenous insu-
lin tends to be administrated in patients with HCV infection.

An Association Between Anti-Diabetic Agents and
Malignancies

Insulin therapy is generally selected for the treatment of
cirrhotic patients with DM, however, insulin therapy has
recently raised a question concerning to cancer incidence. In
fact, use of anti-diabetic agents has been recently demon-
strated to influence the tumor-free survival in diabetic pa-
tients. Currie CJ et al. demonstrated that overall tumor-free
survival in diabetic patients receiving insulin-based therapy
or sulfonylurea, but not metformin, was significantly worse
than receiving no diabetes medications [135]. Although insu-
lin or sulfonylurea does not seem to increase any tumor inci-
dence, these agents could influence the incidence of diges-
tive system cancers such as colorectal and pancreatic can-
cers. Similarly, Yang Y et al. demonstrated that the risk of
colorectal cancer was increased by insulin therapy [136]. Li
D et al. also demonstrated that the risk of pancreatic cancer
was increased by insulin or sulfonylurea and reduced by met-
formin [137].

Concerning to HCC incidence, Donadon V et al. implied
an association between HCC incidence and use of insulin or
sulfonylurea [138]. Subsequently, they carried out a large-
scale survey, demonstrating a direct association of HCC with
use of insulin and sulfonylurea and an inverse relationship
with metformin [139]. We also demonstrated that insulin or
sulfonylurea was an independent risk factor for HCC inci-
dence and hepatocarcinogenic effects of these anti-diabetic
agents are evident in patients who were male or non-cirrhotic
[140]. In addition, Komura T et al. described that insulin
therapy was a significant factor contributing HCC recurrence
after surgical treatment [141]. Thus, these results strongly
suggest a potential risk factor of insulin for HCC incidence
because either insulin administration or sulfonylurea intake
increases insulin level in serum.

The mechanism between insulin and cancer incidence is
little known. Since insulin has biological activities of cell
proliferation, insulin may stimulate cancer cell proliferation
and develop the cancer [142, 143]. In addition, it has been
shown that the expression of phosphatase and tensin ho-
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molog or SH2 domain-containing inositol phosphatase 2,
suppressive molecules of insulin signaling in cells, is de-
creased in HCC tissues, indicating enhanced action of insulin
in HCC [35, 144-146]. Thus, insulin therapy might worsen
the prognosis of the patients with HCC because suppressors
of intracellular insulin signaling are inactivated in HCC and
therefore, insulin effects may be more evident in HCC than
in hepatocytes.

Anti-viral Treatment for HCV

Since HCV itself plays crucial role in the development of
insulin resistance, eradication of HCV by anti-viral treatment
has a significant impact when patients meet the criteria. We
along with others have shown that clearance of HCV im-
proves insulin resistance, beta-cell function, and hepatic
IRS1/2 expression [25, 28, 65]. Although clearance of HCV
is a fundamental therapeutic strategy for patients with HCV
infection, Tsochatzis et al. described that insulin resistance
develops early in the course of the disease, and negatively
affects treatment response and the development of liver cir-
thosis and HCC, irrespective of genotype [147]. Thus, ame-
lioration of insulin sensitivity may inhibit the progression of
HCV-associated liver disease.

GUT HORMONES AND GLUCOSE METABOLISM

The gut has currently been recognized as an endocrine
system that regulates glucose metabolism [148, 149]. Among
several gut hormones called “incretin”, glucagon-like pep-
tide-1 (GLP-1) is well known to be involved in the glucose
metabolism. GLP-1 is secreted from endocrine L-cells of the
distal intestine and colon in response to enteric nutrient in-
gestion, such as carbohydrates, fatty acids, essential amino-
acids and dietary fiber [150, 151]. GLP-1 exerts a direct in-
sulinotoropic effect on the pancreatic B-cell [151, 152]. In
addition, GLP-1 activates adenylate cyclase and subse-
quently enhances insulin secretion via GLP-1 receptor on the
cell-membrane of pancreatic B-cell [153], and glucose dis-
posal [154]. GLP-1 also inhibits glucagon secretion via GLP-
1 receptor on pancreatic alpha-cells [155]. Thus, GLP-1 ex-
erts carbohydrate assimilation and inhibits gluconeogenesis,
consequently, GLP-1 is considered as a therapeutic target for
DM as well as insulin resistance [150, 151, 155].

Active type of GLP-1 is rapidly inactivated by dipeptidyl
peptidase-IV (DPP-4, enzyme code number 3.4.14.5) [151,
152, 156, 157]. DPP-4 is a membrane-associated peptidase
and is widely distributed in numerous tissues, such as intes-
tinal brush-border, endothelial cell and hepatocytes. DPP-4
inactivates GLP-1 within a few minutes. Therefore, DPP-4
inhibitor (incretin enhancer) may be a suitable agent for the
treatment of insulin resistance.

GLP-1 AND GLUCOSE METABOLISM IN LIVER

GLP-1 reduces hepatic glucose production [158]. Al-
though direct effect of GLP-1 on hepatocytes remains un-
clear, GLP-1 increases glycogen synthesis in hepatocytes by
stimulating glycogen synthase alpha via GLP-1 receptor in
rat hepatocytes [159, 160]. In addition, GLP-1 receptor ago-
nist improve hepatic glucose homeostasis by promoting he-

Kawaguchi et al.

patic insulin signaling in diabetic rats [161]. In human study,
GLP-1 receptor antagonist promotes hepatocyte proliferation
via induced c-AMP [162] and GLP-1 inhibits glucose dis-
posal rather than increasing glucose disposal [163]. These
findings indicate that GLP-1 has a direct effect on hepato-
cytes in the regulation of glucose metabolism.

HCV-ASSOCIATED INSULIN RESISTANCE AND
GLP-1

We have previously demonstrated that the up-regulation
of DPP-4 causes a decrease in serum active GLP-1 levels,
resulting in a decrease in hepatic glycogen contents and the
development of insulin resistance in patients with HCV in-
fection [39]. The mechanism of increased DPP-4 expression
is unclear. However, a significant increase in DPP-4 expres-
sion is seen in a hepatoma cell line transfected with a HCV
non-structural genome region [164]. In addition, eradication
of HCV by treatment with interferon-alpha decreases serum
DPP-4 activity [165]. These findings may indicate that HCV
directly up-regulates DPP-4 expression. Although limited
information is available for the effects of DPP-4 inhibitor in
HCV-associated insulin resistance, this therapeutic agent
could improve the initial step of the development of insulin
resistance and is considered as a new therapeutic strategy for
HCV-associated insulin resistance.

THE SIGNIFICANCE OF INSULIN RESISTANCE IN
THE ERA OF NEW ANTI-VIRAL TREATMENTS

It is no doubt that these new anti-viral agents will mark-
edly change the treatment for HCV infection in the near fu-
ture. The most of new antiviral agents for HCV infection are
currently in phase I-III [166-172] and the most studied agent
is an inhibitor of the HCV non-structural 3 protease, telapre-
vir or boceprevir [173-183]. The addition of telaprevir or
boceprevir to pegylated interferon-o. and ribavirin combina-
tion therapy significantly enhance sustained virologic re-
sponse rates even in HCV genotype 1 patients [168, 175,
180, 181, 184, 185]. However, the rates of sustained vi-
rologic response of triple therapy with telaprevir, pegylated
interferon-o and ribavirin are still up to about 50% in pa-
tients who had previously treated by pegylated interferon-o
and ribavirin [181]. In addition, the resistance profile of the
HCV non-structural 3 protease inhibitor is elucidated. Thus,
the triple therapy is not promising to cure all of patients with
chronic HCV infection.

Recetnly, Akuta er al. examined the impact of substitu-
tion of amino acid in the core region of HCV genotype 1b in
triple therapy with telaprevir, pegylated interferon-o and
ribavirin and identified that substitutions of amino acid 70
and 91 as independent responsible factors associated with
early virologic response [186]. Although the significance of
insulin resistance in the triple therapy with telaprevir, pegy-
lated interferon-a and ribavirin has never been investigated,
insulin resistance may be a crucial factor even in the new era
of anti-viral treatments because substitutions of amino acid
70 and 91 in the core region of HCV genotype 1b are closely
associated with the development of insulin resistance [22].
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CONCLUSION

In this review, we summarize the pathogenesis for HCV-
associated insulin resistance. Similar to the life style-
associated insulin resistance, obesity, inflammatory cytoki-
nes, oxidative stress, and serum PEDF levels are involved in
the development of HCV-associated insulin resistance. Be-
sides these factors, HCV itself also causes insulin resistance
through down-regulation of hepatic IRS1/2. Insulin resis-
tance is responsible for the development of cirrhotic compli-
cations including HCC, however, there is no common thera-
peutic strategy for HC V-associated insulin resistance.

Clearance of HCV by anti-viral treatment is a fundamen-
tal therapeutic strategy for patients with HCV infection. In
addition, amelioration of insulin sensitivity may inhibit the
progression of HCV-associated liver disease, and could im-
prove the survival of these patients. Late evening snack and
BCAA are nutritional therapies which could improve insulin
resistance. However, use of anti-diabetic agents and exoge-
nous insulin are not always recommended because of ad-
verse effects and possible link to the development of HCC.

HCYV also affects insulin resistance through activation of
DPP-4 and subsequent inactivation of GLP-1, a key regulator
of insulin secretion and hepatic glucose metabolism. Al-
though availability of DPP-4 inhibitor in HCV-associated
insulin resistance is yet unclear, this therapeutic agent could
improve the early step of the development of insulin resis-
tance and is expected to be a new therapeutic strategy for
HCV-associated insulin resistance.
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LIST OF ABBREVIATIONS

BCAA = branched-chain amino acids
DM = diabetes mellitus

DPP-4 = dipeptidyl peptidase-IV

GLP-1 = glucagon-like peptide-1

HCC = hepatocellular carcinoma

HCV = hepatitis C virus

IRS = insulin receptor substrate

PEDF = serum pigment epithelium-derived factor
SOCS = suppressor of cytokine signaling
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Structure-Function Relationships of PEDF
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Abstract: Pigment epithelial-derived factor (PEDF) is a 50-kDa secreted glycoprotein that belongs to the non-
inhibitory serpin. It has an a/p core serine-protease inhibitor domain, 3 major B-sheets, and 10 a-helices.
Although PEDF does not inhibit either serine or cysteine proteinases, PEDF exerts diverse physiological
activities including anti-angiogenesis, anti-vasopermeability, anti-tumor, and neurotrophic activities. Recent
studies have shown that a variety of peptides derived from PEDF possess activities similar to those of the
parent molecule through interactions with the extracellular matrix, binding to PEDF receptors, nuclear
localization and phosphorylation. Thus, peptides derived from PEDF have therapeutic potential for various
diseases and therefore, it is important to clarify the structure-function relationship of PEDF. In this review, we
summarize structural features of PEDF that could affect various target organs such as blood vessels, tumors,
and the central nervous system. In addition, since PEDF is recently identified as a regulator for glucose and
lipid metabolism, we also discuss PEDF structures specially related to insulin-sensitizing and triglyceride-

reducing properties.

Keywords: Pigment epithelial-derived factor, functional domain, anti-angiogenic activity, anti-vasopermeability
activity, anti-tumor activity, neurotrophic activity, glucose metabolism, lipid metabolism.

Pigment epithelial-derived factor (PEDF) is widely
expressed throughout the human body and has
multiple biological activities. A variety of peptides
derived from PEDF exerts diverse physiological
activities including anti-angiogenesis, anti-
vasopermeability,  anti-tumor, and neurotrophic
activities as shown in Table 1. In this review, we
summarize structure-function relationships of PEDF.

REGULATION OF SECRETION OF PEDF

C-terminal amino-acid residues play an important
role in the secretion of various proteins [1-5]. The
insertion of a reactive center loop (RCL) into the B-
sheet, which is called “loop-sheet polymerization” is
involved in impaired secretion of various types of
proteins [6, 7]. PEDF is a secretory protein, and the C-
terminal of PEDF contains highly exposed typical RCL
[8-10]. Truncation of the C-terminal tail of PEDF
(Pro415-Pro418) inhibits the secretion of PEDF by
Chinese hamster ovary cells [11]. Since Pro415 is
mostly buried and interacts with Phe231 and Lue223,
truncation of PEDF at Pro415 causes disruption of the
hydrophobic interactions imposed by Pro415 and
exposure of Asp414 to the negatively charged C-
terminus, resulting in inefficient secretion of PEDF [11].
In addition, not only deletion of Pro373-Ala380, but also
alanine substitution at Gly376 and Leu377 inhibits the
secretion of PEDF. Gly376 and Leu377 are located
within the highly exposed segment of the RCL.
Therefore, these two residues are indispensable for (i)
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interactions of PEDF with components of the quality
control system in the endoplasmic reticulum and (ii)
subsequent efficient secretion of PEDF [11].

INTERACTIONS OF PEDF WITH THE EXTRA-
CELLULAR MATRIX

PEDF accumulates in the extracellular matrix [12].
The extracellular matrix is a complex of proteins,
proteoglycans, and glycosaminoglycans, and plays a
crucial role in the mechanical strength of cells and the
regulation of cell proliferation and differentiation [13,
14]. It has been speculated, therefore, that PEDF
exerts its diverse biological activities by interacting with
different components of the extracellular matrix [15].

The crystal structure of human PEDF shows an
asymmetrical charge distribution, which is one of the
structural characters of PEDF [8]. A high density of
basic residues exists at the center of B sheet A-strand
2 and 3, and helix F. This region is densely populated
with lysines exposed to the surface (aa134, aa137,
aa189, aa191, aa212, and aa124), which interact with
various glycosaminoglycans [16-18].

The heparin-binding motif is XBBXBX (where B
represents basic amino acids: X represents residues
excluding acidic amino acids) [19] and is localized at
the basic surface of PEDF (aa145-148), which is in the
loop region between sheet 2A and helix E [8, 16].
Studies using site-directed mutagenesis showed that
three clustered basic amino acid residues, Arg145,
Lys146, and Arg148, are necessary for heparin binding
[18]. Binding with heparin increases the proteolytic
susceptibility of PEDF by trypsin and induces a
conformational change in the vicinity of Lys178 of
PEDF [20]. Heparin mediates the binding of PEDF to a
receptor on the cell surface of Y-79 retinoblastoma

© 2010 Bentham Science Publishers Ltd.
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Table 1. Functional Sites of PEDF

Current Molecular Medicine,

2010, Vol. 10, No. 3

303

Amino Acids Function References
16-26 Anti-angiogenic activity [28]
24 Protein kinase CK2 phosphorylation site [59, 137]
Neutrophic activity
Anti-angiogenic activity
24-57 PEDF receptor binding site [28]
Anti-angiogenic activity
Apoptotic activity in endothelial cells
32-380 Neurotrophic activity [43]
39-57 Chemotaxis activity [51]
Apoptotic activity in endothelial cells
40-64 Anti-tumor activity [55]
Osteogenic differentiation activity
Collagen I-binding site
41-44 Collagen I-binding site [22]
44-77 PEDF receptor (Laminin receptor) binding site [31]
44-121 Neurotrophic activity [43]
46-70 PEDF receptor (Laminin receptor) binding site [31]
Apoptotic activity in endothelial cells
Anti-migration activity in endothelial cells
Anti-tube-like formation activity in endothelial cells
Anti-angiogenic activity
58-101 Neuroendocrine differentiation activity [28]
64 Collagen I-binding site [22]
78-94 PEDF receptor binding site [28]
Neuroendocrine differentiation activity
Neurotrophic activity
78-102 Anti-proliferation activity [65]
Collagen I-binding site
78-121 PEDF receptor (PNPLA2) binding site [24, 29, 73, 91]
Neuroendocrine differentiation activity
Lipase activity
Anti-vasopermeability activity
82-121 Neutrophic activity [93]
90-114 Collagen I-binding site [55]
Anti-VEGF expression activity
101, 103, 112 Anti-vasopermeability activity [73]
114 Protein kinase CK2 phosphorylation site [59, 137]
Neutrophic activity
Anti-angiogenic activity
115 Anti-vasopermeability activity [73]
127, 128, 130 Heparin binding site [20]
134, 137 Glycosaminoglycans binding site [16]
139-147 Cytotoxic T-lymphocyte activity [138]

= 268 ~
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(Table 1). Contd.....

Amino Acids Function References
141-149 HA-binding site [23]
145-148 Heparin binding site [18]
146-149 Nuclear localization signal motif [35]
149, 166, 167 Heparin binding site [139]
189, 191 Glycosaminoglycans/polyamions [16]
189-194 HA-binding site [23]
212, 214 Glycosaminoglycans binding site [16]
227 Protein kinase A phosphorylation site [59, 137]
Anti-angiogenic activity
Neutrophic activity
265-258, 290, 291, 296, 299, | Collagen-| binding site [17, 18, 22]
300
285 Secretion activity [140]
272-279 Cytotoxic T-lymphocyte activity [138]
354-359 Cell differentiation activity [94, 141, 142)
Neuroprotective activity
373-380, 376, 377 Secretion activity [11]
387-411 Anti-invation activity [65]
Anti-VEGF expression activity
389-397 Cytotoxic T-lymphocyte activity [138]
415-418 Secretion activity 11

cells, and a structural change in PEDF is thought to be
a mechanism for enhanced receptor binding [12].

PEDF binds to collagen type | and type lll, but not
collagen type Il and type IV [21]. An increase in ionic
strength, lower pH, or modifications of carboxylic
groups of PEDF decrease the affinity of PEDF for
collagen |, suggesting that acidic and /or negatively
charged sites of PEDF (Glu41, Glu42, Glu43, Asp44,
Aspb4, Asp256, Asp258, Glu290, Glu291, Glu296,
Asp300, and Glu304) are possible collagen I-binding
sites [22]. Collagen I-binding sites are also localized to
the side opposite the heparin-binding site. At this site,
the acidic amino acid residues Asp255, Asp257, and
Asp299 are critical to collagen I-binding [18]. Mutation
of the collagen I-binding site (aa299) of PEDF
abolishes anti-tumor activity through anti-angiogenic
activity [17].

PEDF is found within hyaluronan (HA) rich tissues
and contains amino acids sequence for putative HA-
binding motifs, BXBX2BX2B and BX3AB2XB motifs (B
represents basic amino acids: X represents residues
excluding acidic amino acids: A represents negatively
charged amino acids). Becerra et al. examined the HA-
binding site of PEDF by site-directed mutagenesis and
identified two HA-binding motifs (aa141-149 and
aa189-194) in PEDF [23]. The BXBX2BX2B motif
(2a189-194) was located between a-helix F and B-
strand s3A and the BX3AB2XB motif (aa141-149) was
localized between B-strand s2A and a-helix F. Although
PEDF is a member of the serine-protease inhibitor

(serpin) superfamily, none of the other serpins have
these HA-binding sites [23].

PEDF RECEPTOR-BINDING SITES

PEDF is a secreted protein with various biological
effects and deposits in the cell membrane. In addition,
effects of PEDF are blocked by antibodies which are
cell surface-binding antagonists [24-27]. These findings
suggest an interaction between PEDF and its
receptor(s) [12]. Radioligand-binding assays and
crystallization analysis demonstrated that cleaved
PEDF (aa24-57, aa32-380, aa78-94, and aa44-121)
and N-terminal regions of PEDF are possible regions
that bind to PEDF receptors [8, 24, 28].

The 44-mer peptide (aa78-121) binds to the cell
surface 80-kDa protein in retinoblastoma cells and
some neuronal cells, and the 44-mer peptide competes
with 121I-PEDF binding in retinoblastoma Y-79 cells
[24]. Notari et al. identified an 80-kDa phospholipase
A2/nutrin/patarin-like phospholipase domain-containing
2 (PNPLA2) as a putative receptor for PEDF in retinal
epithelial cells and, using a cell-free system, and
showed that the interaction was involved in lipase
activity of PEDF [29].

We found that a protein of molecular mass of ca.
60-kDa could be one of the candidates for PEDF
receptor on endothelial cells [30]; later, 67-kDa laminin
receptor (67LR) was shown to be a putative receptor
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for PEDF in endothelial cells [31]. The 67LR consists of
two 37-kDa laminin receptor precursor (37LRP)
polypeptide chains, and both yeast two hybrid and
immunoprecipitation methods revealed the interaction
between PEDF and 37LPR/67LR. Further, the 25-mer
peptide (aa46-70) derived from a helix-loop-helix
structure of PEDF co-localized with the LR on plasma
membranes and caused apoptosis of endothelial cells,
inhibition of endothelial cell migration, and
angiogenesis in vitro and ex vivo [31].

NUCLEAR LOCALIZATION OF PEDF

Although PEDF is a secreted protein, it is localized
in the nucleus of mammalian cells [32-34]. The nuclear
localization signal motif, KKRK, is located in aa146-149
domain of PEDF [35]. PEDF regulates cell cycle [36]
and interacts with p53 [37-40]. Moreover, a response
element specific for nuclear molecules (p63 and p73) is
found in the PEDF promoter region, suggesting that
PEDF is a direct target of nuclear molecules [41]. Thus,
PEDF may play a crucial role in cell cycle in the
nucleus.

NON-INHIBITORY SERINE PROTEASE ACTIVI-
TY OF PEDF

PEDF is a member of the serpin superfamily.
Serpins are a group of proteins with the same overall
tertiary structure [42]. The C-terminal region of all
serpins has an RCL that is susceptible to proteolysis
[43]. The serpin active site (P1) binds to the primary
specificity pocket of the target protease, leading to a
change in serpin conformation from the stressed form
to the relaxed form by incorporation of the serpin-
exposed loop into the B-sheet. This conformational
change increases stability and protects against
denaturation, and the protease-serpin complex inhibits
proteolytic activity [43].

Inhibitory activity against serpin proteases is not
found for all serpins [44]. Although PEDF has a Leu
residue at P1, which is known to be specific for
inhibiton of chymotrypsin and chymotrypsin-like

d ¢ 1 <

e Inhitibion of Induiction of
f "
c‘:;!;‘iil?a“r‘;rt]uge endothelial endothelial
formation cell migration cell apoptosis

Anti-angiogenic activity
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activities, PEDF does not have typical inhibitory
activities of a serpins [45]. A possible explanation for
this discrepancy is that the N-terminal residues of the
P1 of PEDF are unfavorable for the insertion of the
serpins loop into the B-sheet of the folded serpin
protein. Alternatively, alanine residues between P12
and P9 of the RCL are also known to be linked to the
inhibitory property of serpins [46]. Although PEDF has
an RCL like other serpins, its RCL lacks the tetrad of
alanine residues between P12 and P9 [47]. In addition,
the three proline residues are found in the RCL of
PEDF, which could block the interaction of PEDF with
target proteases [48]. Thus, changes in the RCL are
likely to be responsible for non-inhibitory property of
serine protease in PEDF.

ANTI-ANGIOGENIC ACTIVITY OF PEDF

PEDF exerts anti-angiogenic effects through several
different mechanisms; induction of apoptosis in
endothelial cells [39, 49-51], inhibition of capillary tube
formation [17, 18], migration of endothelial cells [52-
54], reduction of vascular endothelial growth factor
(VEGF) expression [25, 55, 56] and translocation or
phosphorylation of VEGF receptor 1 [567]. Although the
precise underlying mechanisms for its anti-angiogenic
activity are unknown, several structures in PEDF are
reported to be involved in its anti-angiogenic activity. A
summary of our current understanding of the structure
and anti-angiogenic activity of PEDF is shown in Fig.
(1.

Collagen type | is an angiogenic scaffold and
promotes capillary tube formation through endothelial
integrin engagement of collagen type 1 [68]. Collagen
type 1-binding sites of PEDF, that is, the interaction of
collagen type | and PEDF, play an important role in
anti-angiogenic property of PEDF [17, 18, 22, 23]. In
fact, mutation of the collagen type I-binding site of
PEDF causes tumor progression with
neovascularization in tumor xenograft study, while wild
type PEDF and mutation of the heparin binding site
suppresses both tumor progression and
neovascularization [17].

Reduciton of
?

Translocation or
phosphorylation of
VEGFR1

VEGF
expression

J l I

Fig. (1). Relationship between structure and anti-angiogenic activity of PEDF. VEGF, endothelial growth factor; VEGFR1,

vascular endothelial growth factor receptor-1.
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A ligand-receptor interaction is also important for
elicitation of divergent PEDF signals. We found that
PEDF exerted anti-inflammatory properties in
endothelial cells via the interaction with a putative
PEDF receptor at a molecular mass of about 60-kDa
[30]. Bernard et al. identified a 67LR as a PEDF
receptor [31], and the 25-mer peptide (aa46-70) of
PEDF bound to the LR on plasma membranes and
subsequently caused anti-angiogenic reactions both in
vitro and ex vivo [31].

The 34-mer peptide (aa24-57) of PEDF is also
reported to act on endothelial cells and cause c-jun-
NH2 kinase (JNK)-dependent endothelial cell
apoptosis. This effect appears to be mediated by the
inhibition of nuclear factor of activated T cells c2
(NFAT), which is regulated by JNK. A NFAT target,
caspase-8 inhibitor cellular Fas-associated death
domain-like interleukin  1beta-converting enzyme
inhibitory protein (c-FLIP) is blocked by PEDF, which
was involved in the anti-angiogenic properties of PEDF
[28]. Recently, Mirochnik et al. analyzed the function of
the 34-mer of PEDF and designed 3 peptides that
covered its COOH terminus: P14 (aa43-57), P18
(aa39-57), and P23 (aa34-57) [51]. Only P18, but not
P14 or P23, was found to induce apoptosis in basic
fibroblast growth factor-treated or VEGF-treated
endothelial cells, similar to that of the parental 34-mer
peptide [51].

PEDF could exert anti-angiogenic activity by
reducing VEGF levels [25, 55, 56]. Ek et al. generated
25-mer peptides (2a90-114 and aa387-411) and found
that the peptides reduced VEGF expression in human
osteosarcoma cells [55]. Although the underlying
mechanisms are unclear, the protein kinase A (PKA)
phosphorylation site of PEDF, Ser227 [59] and
peptides aa16-26 and aa78-94 could also have anti-
angiogenic activity [28].

ANTI-VASOPERMEABILITY OF PEDF

Increased vascular  permeability has a
pathophysiologic impact on non-proliferative diabetic
retinopathy [60-63], nephritic syndrome [64-66], and
hypotension [67]. Moreover, increased vascular
permeability accelerates cancer invasion [68, 69].
VEGF disrupts the vascular barrier by uncoupling
endothelial cell-cell junctions [70].

PEDF behaves as a functional antagonist of VEGF
[71, 72]. Liu et al. found that the 44-mer peptide of
PEDF (aa78-121) counteracted the VEGF-induced
increases in vascular permeability in mouse eyes [73].
The 44-mer peptide contains the exposed elements of
hC, one turn of hD, and the connecting loops [8] and a
study using chimeric peptides showed that Glu101,
Iso103, Leu112, and Ser115 were the amino acids
responsible for the anti-vasopermeability effect of
PEDF [73]. Thus, the 44-mer peptide or chimeric
peptides have therapeutic potential for diseases
resulting from excessive vascular permeability.

Kawaguchi et al.

ANTI-TUMOR ACTIVITY OF PEDF

Besides its anti-angiogenic effects, PEDF also has
direct anti-tumor activity by inducing tumor apoptosis
and by inhibiting tumor growth and invasion [47, 74-78].
A summary of our current understanding of the
structure and anti-tumor activity of PEDF is shown in
Fig. (2A and 2B).

Members of the family of HA-binding proteins are
known to be associated with apoptosis [79-81]. PEDF
contains HA-binding sites that activate caspase-8,
caspase-3, and poly (ADP-ribose) polymerase, leading
to apoptosis of cancer cells [2].

PEDF also acts as a tumor differentiator [9, 28, 55,
76-78, 82-87]. Alberdi et al. found that the 44-mer
peptide (aa78-121) bound to a cell surface 80-kDa
protein and induced neuronal differentiation in
retinoblastoma Y-79 cells [24]. Filleur et al. also
discovered that the 44-mer peptide (aa58-101) and its
fragment (aa78-94) caused a decrease in cytokeratin
K8 expression and an increase in mRNA levels of
gastrin-releasing peptide/bombesin, thus suggesting
the neuroendocrine differentiation of prostate
adenocarcinoma cells by PEDF peptides [28]. In
addition, the 25-mer peptide (aa78-102) of PEDF was
also shown to suppress proliferation of osteosarcoma
cells [65]. The 25-mer peptide of PEDF had similar
differentiation-promoting activity in neuroblastoma [82,
86] and osteosarcoma cells [55, 83].

The extracellular matrix is deeply involved in tumor
migration and invasion [88, 89]. PEDF contains an HA-
binding motif and formation of PEDF-HA complexes
exerts indirect anti-tumor effects by the blocking
biological effects of HA, including loosening the matrix
for migration and invasion [23]. Twenty five-mer
peptides (aa40-64, aa78-102, and aa90-114) increased
cellular adhesion to collagen type-1 [55]. Moreover, the
25-mer peptide (aa387-411) inhibits Matrigel invasion
of osteosarcoma [55].

Although the precise structure has not been
identified, PEDF exerts anti-tumor effects through
activation of a Fas/Fas ligand pathway [25, 49] and
induction of cell cycle arrest at G1 phase [87].

NEUROTROPHIC ACTIVITY OF PEDF

PEDF has neurotrophic and neuroprotective
activities in the central nervous system [26, 47, 90].
The crystal structure of PEDF indicates that its
neurotrophic activity is located at the exposed parts of
helices C and D and at loop 90 [8]. Becerra et al.
examined neurotrophic activity of PEDF using cleaved
PEDF. Cleaved PEDF peptides (aa32-380 and aa44-
121) can induce morphological differentiation and
neurite outgrowth in human Y-79 retinoblastoma cells
[43]. These findings suggest that the N-terminal region
of PEDF is a neurotrophically active site [43]. In fact,
Alberdi et al. generated synthetic peptides and found
that the 44-mer peptide (2a78-121) derived from the N-
terminal edge of PEDF had neurotrophic activity in
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Activation of caspase-8.
caspase-3, and poly (ADP-
ribose) polymerase.

Activation of Fas/Fas
ligand pathway

aa78-102 | | 10

? Neuroendocrine differentiation  Cell cycle arrest
in G1 phase

of MMPs

Anti-tumor activity

Fig. (2). Relationship between structure and anti-tumor activity of PEDF. (A) Apoptosis and growth suppression. (B) Inhibition of
migration and invasion. HA, hyaluronan; MMP, matrix metalloproteinase.

retinoblastoma cells and cerebellar granuleneurons
[24]. The 44-mer peptide also has a neurotrophic
function in motor neurons [91] and a fragment (aa78-
94) within the 44-mer can induce neuroendocrine
differentiation in prostate cancer cells [28].

PEDF prevents damage to retinal ganglion cells
after transient ischemia reperfusion in an ischemic rat
model [92]. Li et al. demonstrated that the 40-mer
peptide (aa82-121) protectd the retina from ischemic
injury [93]. The thinning of the inner plexiform layer was
also protected by the 40-mer peptide (aa82-121) of
PEDF [93].

The crystal structure revealed the existence of
protein kinase CK2 and PKA phosphorylation sites
(Ser24 and Ser114, and Ser227) in PEDF [8].
Mutagenesis studies disclosed that protein kinase CK2
phosphorylated mutants (Ser24Glu and Ser114Glu)
reduced the neurotrophic effect of PEDF, but enhanced
its  anti-angiogenic  activity, while the PKA
phosphorylation site mutant (Ser227Glu) reduced anti-
angiogenic activity of PEDF [59]. These observations
suggest that extracellular phosphorylation could
completely change the nature of PEDF from a
neutrophic to an anti-angiogenic factor.

Besides the N-terminal region of PEDF, the C-
terminal site also has neuroprotective properties. A
fragment from the C-terminal region (aa354-359)
induces both cell differentiation and neuroprotective
properties in human promyelocytic leukemia cells
through inhibition of phosphatidylinositol-specific
phospholipase C [94]. In addition, a fragment from the
C-terminal region (aa354-359) was shown to possess
neuroprotective activity and counteracts the toxic
effects of beta-amyloid peptides in a rat model of
Alzheimer’s disease [95].

EFFECTS OF PEDF ON GLUCOSE META-
BOLISM

PEDF is highly expressed in the liver [96], a major
organ for glucose metabolism [97-104], and PEDF has
a significant role in the development of insulin
resistance and the pathogenesis of diabetic
complications [105-120]. Although the protein structure
of PEDF that is responsible for glucose metabolism has
never been determined, analysis of the genomic
structure of PEDF indicates an association between
PEDF and glucose metabolism.

Hepatocyte nuclear factor-4 (HNF-4),
CCAAT/enhancer-binding protein homologous protein
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(CHOP), and upstream stimulatory factor (USF) bind to
the DNA-binding sites of the PEDF gene, which are
located 200 bp upstream of the transcription start site
[121]. HNF-4 enhances insulin sensitivity through
activation of a phosphatidylinositol 3-kinase/Akt
pathway in hepatocytes [122, 123]. CHOP induces
insulin  stimulation and up-regulates mammalian
tribbles homologs, which is associated with insulin
resistance and metabolic syndromes [124]. USF also
enhances hepatic insulin signaling through up-
regulation of glucokinase [125]. Moreover, HNF-4,
CHOP, and USF genes are responsible for the
development of diabetes mellitus [126-128]. Thus, the
genomic structure of PEDF suggests an association
between PEDF and glucose metabolism.

EFFECTS OF PEDF ON LIPID METABOLISM

Studies have shown the existence of high affinity
PEDF-binding sites and about 80-kDa proteins in
plasma membranes of various cells [24, 27, 28, 91,
129, 130]. Alberdi et al. found that a 44-mer peptide
(2a78-121) bound to a cell surface 80-kDa protein in
retinoblastoma cells and some neuronal cells [24].
Using a yeast two-hybrid screening method, Notari et
al. found that the PEDF fragments (aa35-418, aa35-
266, aa35-229, and aa35-119 of the human PEDF)
bound to an 80 kDa lipase-linked membrane protein,
adipose ftriglyceride lipase (ATGL) [29]. ATGL is a
member of the newly identified calcium-independent
PNPLA2 family, which possesses friglyceride lipase
and acylglycerol transacylase activities [131]. In fact,
PEDF is highly expressed in the liver [96], a major
organ for lipid metabolism [100, 101, 132-134] and
reduces hepatocyte triglyceride contents in vitro [135].
In a mouse model of ethanol-induced hepatic steatosis,
absence of PEDF is associated with triglyceride
accumulation in hepatocytes, which can be reversed by
administration of exogenous PEDF [136]. Thus, PEDF
modulates hepatic lipid metabolism through ATGL
activation and the 44-mer peptide (aa78-121) of PEDF
is a potential drug target for fatty liver diseases.

CONCLUSION

PEDF is widely expressed throughout the human
body and has multiple Dbiological activities.
Administration of recombinant PEDF causes anti-tumor
activity, neurotrophic activity, and ameliorates glucose
and lipid metabolism, thus suggesting that PEDF is a
potential therapeutic target for patients with various
disorders, including cancer, neurological disorders, and
the metabolic syndrome. Shorter peptides have more
advantages in terms of side effects and drug delivery
than full-length PEDF. PEDF consists of 418 amino
acids, and it has been demonstrated that peptides
derived from PEDF also possess biological activities. In
this review, we summarized the known structure-
function relationship of PEDF. Further study of
structure-function relationship of PEDF may help us to
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develop peptides that can serve as new therapeutics
for a broad spectrum of diseases.
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