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insulin signaling, phosphatase and tensin homologue™,
and SH2 domain-containing inositol phosphatase- 2l
occur in HCC. Thus, HCC may be sensitive to insulin stim-
ulation.

Extrahepatic manifestations

HCV causes extrahepatic manifestations including mixed
cryoglobulinemia, Sjogren’s syndrome, and non-Hodgkin
lymphoma, oral lichen planus, oral squamous cell carci-
noma, and malignancies other than HCCPP 1
patients with extrahepatic manifestations of HCV, fasting
insulin levels and homeostasis model assessment for
insulin resistance are significantly higher than for patients
without extrahepatic manifestations™. Among vatious
extrahepatic manifestations, insulin resistance is associated
with oral lichen planusm], oral squamous cell carcinoma™,
and multiple ptimary cancers including gastric cancer™.
Although reasons for this association remain unclear, a
high prevalence of precancerous lesions and cancers are
seen in patients with type 2 diabetes mellitus™", sugge-
sting that insulin resistance or hyperinsulinemia may enh-
ance carcinogenic activities.

DISTINCTIVE THERAPEUTIC STRATEGY
FOR HCV-ASSOCIATED INSULIN
RESISTANCE

Despite awareness of the increased risk of insulin resis-
tance, therapeutic guidelines to inhibit distinctive compli-
cations of HCV-associated insulin resistance have not yet
been established. HCV itself has a significant impact on
the development of insulin resistance, and eradication of
HCV improves insulin resistance™**’"l Thus, anti-viral
therapy is a fundamental therapeutic strategy for patients
with HCV infection. In addition, amelioration of insulin
resistance is considered to inhibit complications and im-
prove prognosis. Here, we summarize treatments which
could improve HCV-associated insulin resistance as thera-

peutic strategies (Figure 1).

Late evening snack

Proper diet and exercise are fundamental for patients with
lifestyle-associated insulin resistance as well as patients with
HCV-associated insulin resistance! *. As a nutritional
treatment for liver cirthosis, divided energy intake (4 to
6 meals/d) has been recommended”"™. As postprandial
hyperglycemia is characteristic of HCV-associated insulin
resistance’ ™, a decrease in energy intake per meal redu-
ces postprandial hyperglycemia and hyperinsulinemia.
In particular, a late evening snack is reported not only to
improve glucose intolerance® ™, but also to suppress hepa-
tocarcinogenesis in cirrhotic paﬁentslss].

Coffee consumption
Coffee consumption reduces the risk of elevated serum
alanine aminotransferase activit_vlgé], hepatic fibrosis®",

and disease progression in chronic hepatitis C*". Coffee

consumption also reduces the risk of HCC independent
of HCC etiologylsq]. Caffeine is metabolized by hepatic
cytochrome P450 1A2 into 3 metabolites, the dimethy-
Ixanthines paraxanthine, theobromine, and theophylline.
Of these metabolites, theophylline inhibits transforming
growth factor-B-stimulated CTGF expression through
PPARy and Smad 2/3-dependent pathways. Since CTGF
and transforming growth factor-B are important factors
associated with progression of hepatic fibrosis and hepato-
carcinogenesis, a metabolite of caffeine, theophylline,
may have an inhibitory effect on the development of
complications associated with HCV infection. In addition,
coffee has significant effects on glucose metabolism!™.
In an animal experiment, the insulin-sensitizing effects of
coffee have been demonstrated"”. Similatly, in a human
study, coffee consumption reduced fasting glucose and
insulin levels™". Although the mechanisms for the coffee-
induced insulin-sensitizing effect remain unclear, some
possibilities exist. Chlorogenic acids, a constituent of coffee,
inhibits hepatic glucose-6-phosphate translocation"”,
limits glucose absorption from the gut by inhibiting Na'-
dependent transportlm, and increases the secretion of
glucose regulating hormone, glucagon-like peptide (GLP)-1,
from the gutl%'%’%]. These findings suggest that a constituent
of coffee, chlorogenic acid, directly ameliorates HCV-asso-
ciated mnsulin resistance. Furthermore, coffee modulates
lipid metabolism®™* and lowers body weight™”, indicating
that coffee may suppress the lipid-induced increase in
oxidative stress and ameliorates HCV-associated insulin
resistance.

Phlebotomy

Hepatic iron ovetload produces oxidative stress and is a
factor responsible for the development of HCV-associated
insulin resistance!™” """, Although the pathogenesis of
hepatic iron overload remains unclear, recent studies
showed that iron-regulating molecules are modulated by
HCV infection. Hepcidin is a negative regulator of duo-
denal iron absorption and macrophage iron release"™ and
decreased hepatic expression of hepcidin is seen in both
HCV polyprotein transgenic mice' " and patients with
HCV infection"”"". In addition, upregulation of hepatic
expression of transferrin receptor 2, a mediator of iron
uptake, is responsible for hepatic iron overload"™.

In order to reduce hepatic iron deposition, dietary
iron restriction and phlebotomy are effective. Dietary iron
restriction (less than 7 mg/d) decreases serum alanine
aminotransferase levels in patients with HCV infection™".
Phlebotomy reduces oxidative stress as well as insulin
resistance in patients with HCV infection™""™'”, A long-
term combination treatment with phlebotomy and dietary
iron restriction reduces the risk of development of HCC
in patients with HCV infection"".

Supplementation of zinc

Zinc plays a crucial role in the metabolism of protein,
carbohydrate, lipid, nucleic acid, and ammonia . In
fact, zinc supplementation improves glucose disposal
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in patients with cirrhosis!'". Zinc also inhibits hepatic
inflammation" and hepatic fibrosis™'?. More recently,
zinc supplementation was shown to lower the cumulative
incidence of HCC in patients with HCV infection""".
It is unclear whether these inhibitory effects of zinc on
progression of liver disease are mediated by amelioration
of insulin resistance. However, zinc participates in the
synthesis, storage and secretion of insulin' and regulates
the binding ability of insulin to bind to its receptor .
As the serum zinc level 1s decreased in patients with
HCV infection*""", supplementation of zinc could be a
therapeutic option.

Anti-diabetic agents

Exogenous insulin and sulfonylurea agents: Anti-
diabetic agents are effective for decreasing plasma glu-
cose and HbAlc levels, leading to prevention of diabetes
mellitus-associated complications including cardiovascu-
lar diseases'>'*. However, it has never been determined
whether anti-diabetic agents prevent complications ot
improve prognosis in patients with HCV infection. Use
of exogenous insulin or sulfonylurea agents may worsen
hyperinsulinemia. In fact, we, along with others, recently
reported an association between exogenous insulin or
sulphonylurea treatment and the development of HCC
in patients with HCV infection”*'*!. Use of exogenous
insulin 15 also reported to be associated with the devel-
opment of colon cancer™ and other malignancies*.
Although a causal relationship between exogenous in-
sulin and the development of HCC remains controver-
sial™, the reduction of serum insulin levels is a first line
therapeutic strategy for insulin resistance” ™ .

Insulin-sensitizing agents: Insulin resistance is associ-
ated with a poor response to anti-viral treatment in pa-
tients with HCV infection"***. Amelioration of insulin
resistance may improve the response to anti-viral treat-
ment. However, the impact of insulin-sensitizing agents,
biguanides and thiazolidinediones, on sustained virologic
response (SVR) rates has not yet been established. Re-
cently, metformin, a biguanide agent, has been reported
to ameliorate HCV-associated insulin resistance, and in-
crease the SVR rate in HCV genotype 1 infected patients
with normalization of homeostasis model assessment
for insulin resistance at week 24 of therapy™. Piogli-
tazone, a thiazolidinedione agent, has also been reported
to ameliorate insulin resistance and increase SVR rates
in patients with HCV genotype 4 infection™. Although
the insulin-sensitizing mechanisms of metformin and of
pioglitazone are different, both agents are known to up-
regulate IRS™™ which is the molecule responsible for
HCV-associated insulin resistance™*”, and to improve
HCV-associated insulin resistance. Because both agents
have severe adverse effects, neither is recommended for
patients with liver cirrhosis. Biguanides predispose cir-
rhotic patients to lactic acidosis"*. Thiazolidinediones
cause overproduction of hydrogen peroxide leading to
severe hepatotoxicity!™!. Thus, further validation for
safety is required.
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Dipeptidyl peptidase IV (DPPIV) inhibitor is a new
therapeutic agent™” and its clinical efficacy in type 2
diabetes has been shown". Although no study has
examined the effect of DPPIV inhibitor on HCV-asso-
ciated insulin resistance, we found that activation of
DPPIV is a factor responsible for HCV-associated insulin
resistance”. Thus, a DPPIV inhibitor may be suited for
ameliorating HCV-assodiated insulin resistance.

BCAA supplementation, a possible insulin-sensitizing
agent

BCAA are constituents of proteins and are required
for protein synthesis"*"***"*! In addition, BCAA are
reported to modulate glucose metabolism. Leucine and
1soleucine induce glucose transporter 1 and 4 transloca-
tion to the plasma membrane of muscle cells and improve
glucose metabolism in a carbon tetrachloride-induced
cirrhotic rat model™. In addition, leucine enhances the
insulin-induced activation of the Akt/mammalian tar-
get of the rapamycin pathway in adipocytes of db/db
mice!"*”. Moreover, isoleucine increases hepatic phos-
phatidylinositol 3-kinase activity and improves insulin
resistance in Zucker fa/fa rats, a model of severe mnsulin
resistance™". Recently, knockout of the mitochondrial
BCAA aminotransferase gene in mice, in which results
in elevated plasma BCAA levels, was found to ameliorate
insulin resistance”*. Thus, BCAA improve insulin signal-
ing in various animal models »z several pathways. In good
agreement with these results in animals, in human studies,
we have recently shown that BCAA-enriched supplemen-
tation reduces insulin resistance in patients with HCV
infection"™>"™. In a multicenter, randomized, controlled
trial, BCAA supplementation led to a reduction in the risk
of HCC in cirthotic patients"”. This suppressive effect
on hepatocarcinogenesis was more evident in obese pa-
tients with HCV infection™. Both obesity and HCV in-
duce the development of msulin resistance. Thus, BCAA
may improve insulin resistance and subsequently inhibit
msulin resistance-induced hepatocarcinogenesis[m’”s].

CONCLUSION

In this review, we summarize the distinctive complica-
tions of, and therapeutic strategies for, HCV-associated
insulin resistance. Although cardiovascular diseases, renal
failure, and infections are well-known complications of
lifestyle-associated insulin resistance, these complica-
tions are not major causes of death in cirrhotic patients
with insulin resistance. HCV-associated insulin resistance
rather causes (1) hepatic steatosis, (2) tesistance to anti-
viral treatment, (3) hepatic fibrosis and esophageal vari-
ces, (4) hepatocarcinogenesis and proliferation of HCC,
and (5) extrahepatic manifestations. These complications
are life-threatening, and therapeutic strategies for HCV-
associated insulin resistance have to be considered on
the basis of its pathogenic mechanisms.

Pathogenic mechanisms for HCV-associated insulin
resistance differ from those for lifestyle-associated insulin
resistance. Postprandial hyperglycemia, lipid-induced oxi-
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dative stress, hepatic iron overload, and depletion of zinc
ate responsible for the development of HCV-associated
insulin resistance. Therefore, a late evening snack, coffee
consumption, dietary iron restriction, phlebotomy, and
supplementation of zinc are recommended therapeutic
strategies. No clinical guidelines for the use of anti-diabetic
agents are available for patients with HCV-associated
insulin resistance. However, use of exogenous insulin or
sulphonylurea may increase the risk for HCC. On the other
hand, insulin-sensitizing agents may improve the SVR rate
of anti-viral treatment. In addition, BCAA supplementation
has an insulin-sensitizing effect as well as a suppressive
effect on hepatocarcinogenesis. Thus, in order to ameliorate
HCV-associated insulin resistance, various therapeutic
approaches are required.
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Abstract: Recent experimental and clinical studies have shown that chronic hepatitis C virus (HCV) infection causes in-
sulin resistance. Since insulin resistance decreases response to antiviral treatments, promotes inflammatory and fibrogenic
reactions and increases a risk of hepatocellular carcinoma (HCC), amelioration of insulin resistance may be a novel thera-
peutic target, which could improve the prognosis in patients with HCV-related chronic liver disease. Despite the increased
awareness of health risk of insulin resistance, there is no common therapeutic strategy for HC V-associated insulin resis-
tance. Indeed, treatments with exogenous insulin or sulfonylureas may be rather harmful because these treatments are as-
sociated with the development of HCC in patients with HCV infection. Meanwhile, we, along with others, have found dis-
tinctive treatments which improve HC V-associated insulin resistance. Administration of branched-chain amino acids
(BCAA), especially as a late evening snack, improves glucose metabolism by improving insulin-signal cascades in insulin
resistance patients with HCV infection. In this paper, we discuss the pathogenesis and complications for HC V-associated
insulin resistance and further review a recent clinical therapeutic strategy using these agents for the treatment of this dev-
astating disorder. We also discuss therapeutic potentialities of incretin-based therapies, new anti-diabetic agents for HC V-

associated insulin resistance and the significance of insulin resistance in the era of new anti-viral treatments.

Keywords: Hepatitis C virus, insulin resistance, hepatocellular carcinoma, branched-chain amino acids, incretin.

INTRODUCTION

Since hepatitis C virus (HCV) was identified in 1989 [1,
2], underlying pathophysiology of chronic hepatitis C has
been disclosed tremendously [3-7]. Individuals infected with
HCYV frequently develop chronic infection, which is associ-
ated with the development of liver cirrhosis and hepatocellu-
lar carcinoma (HCC) [8-10]. In addition, epidemiological
data from East-West show an association between HCV in-
fection and insulin resistance [11-21]. Recent basic and
clinical researches have revealed the mechanisms of HCV-
associated insulin resistance and insulin resistance is now
recognized as a sequela of chronic HCV infection [14, 22-
30].

Generally, insulin resistance is associated with the devel-
opment of diabetes mellitus (DM), hypertension and cardio-
vascular diseases [31]. Besides these complications, insulin
resistance is also involved in many events in patients with
chronic hepatitis C, including antiviral treatment, fibrogenic
reaction and the development of HCC [25, 28, 32-35].

It is now clear that insulin resistance is a critical factor
for the progression of any stage of chronic hepatitis C [36].
Despite the accumulated evidences for the risk of insulin
resistance, therapeutic strategy for HCV-associated insulin
resistance has not been established yet [37]. In HC V-infected
patients with diabetes, cardio-vascular disease occupies only
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less than 5% of cause of death and is not a significant prog-
nostic factor [38]. Prognostic factors are HCC, liver failure,
and esophageal varices even in HCV-infected patients with
diabetes [38], and the therapeutic strategy should be consid-
ered based on mechanisms and life-threatening complica-
tions for HCV-associated insulin resistance.

Recently, we have found that an inactivation of incretin
is a causative factor for HCV-associated insulin resistance
[39]. Incretin mimetics and incretin enhancer are new anti-
diabetic agents. Theoretically, it seems that replenishment
and/or enhancement of incretin is proper therapeutic ap-
proach and these new anti-diabetic agents may ameliorate
insulin resistance, prevent the development of HCC and im-
prove the prognosis in patients with HCV infection.

In this review, we summarize the pathogenesis for HC V-
associated insulin resistance and propose the clinical thera-
peutic strategy for the treatment of HCV-associated insulin
resistance. In addition, therapeutic potentialities of incretin-
based therapies and the significance of insulin resistance in
the era of new anti-viral treatments are discussed.

MECHANISMS FOR HCV-ASSOCIATED INSULIN
RESISTANCE

Indirect Effects of HCV

Various factors are reported to be associated with the de-
velopment of HCV-associated insulin resistance (Table 1).
Similar to the life style-associated insulin resistance, obesity
with decreased serum adiponectin levels [40-42], inflamma-
tory cytokines [41, 43, 44], oxidative stress [45-47], hepatic
steatosis [48], pancreatic beta-cell function [49], and serum

© 2010 Bentham Science Publishers Ltd.
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Table 1. Factors Associated with Insulin Resistance in Patients with HCV Infection

Factor

References

Obesity and decreased serum adiponectin levels [40-42]
[45-47]

pigment epithelium-derived factor (PEDF) levels are also
involved in the development of HCV-associated insulin re-
sistance. In addition to those common factors, liver specific
factors are underlying in the development of HCV-associated
insulin resistance.

Ferenci et al. reported that portal-systemic shunts caused
not only hepatic encephalopathy, but also insulin resistance
in patients with liver cirrhosis [50]. Reduced hepatic blood
flow may lead liver dysfunction and subsequent insulin resis-
tance. In fact, Tanabe et al. reported that occlusion of portal-
systemic shunt improved glucose metabolism in patients
with liver cirrhosis [51].

Hepatic iron accumulation is one of characters for HCV
infection. Hepcidin is a key negative regulator of iron me-
tabolism [52] and hepcidin levels are correlate with hepatic
iron accumulation in HCV transgenic mice [53] and patients
with chronic hepatitis C [54, 55]. Excessive iron induces
reactive oxygen species mediated oxidative stress [56]. In
patients with HCV infection, hepatic iron accumulation is
associated with insulin resistance [57, 58]. Furthermore, iron
depletion by phlebotomy reduces serum and hepatic levels of
thioredoxin, a marker of oxidative stress, and homeostasis
model assessment-insulin resistance, an index for insulin
resistance in patients with chronic hepatitis C [46]. Thus,
hepatic iron accumulation may cause insulin resistance
through induction of inflammatory cytokines and oxidative
stress.

Direct Effects of HCV on the Development of Insulin
Resistance

Direct effects of HCV on the development of insulin re-
sistance are still debatable. Tsochatzis E et al. reported that
insulin resistance is not associated with viremia [59]. On the
other hand, some previous studies reported that serum HCV
RNA levels is associated with insulin resistance in a dose-
dependent manner, independent of the visceral adipose tissue
area [60-62] and HCV suppression by anti-viral treatment
correlates with improvement in insulin resistance [63-65].
These findings suggest a possible role of HCV in the devel-
opment of insulin resistance. Recently, HCV is now known
to directly associate with insulin signaling molecules and
cause insulin resistance. HCV core protein causes nuclear
translocation of signal transducer and activation of transcrip-
tion 3 and subsequent up-regulation of suppressor of cyto-
kine signaling (SOCS) 3 proteins in various hepatoma cell

lines [26]. SOCS3 is known to block insulin signaling cas-
cade by ubiquitin-mediated degradation of insulin receptor
substrate (IRS)1/2 [66]. Down-regulation of IRS1/2 are seen
in livers from HCV-core transgenic mice and in livers of
patients with HCV infection [26] and therefore, HCV core-
induced SOCS3 up-regulation may promote proteasomal
degradation of IRS1 and IRS2 through ubiquitination, lead-
ing to insulin resistance in patients with HCV infection [26,
67] (Fig. 1).

1 )
HCV core
\. J
Ll
4 N
Up-regulation of SOCS3
. v,

p =
Proteasomal degradation of IRS‘
through ubiquitination

Impairment of intracellular
insulin signaling

Insulin resistance

Fig. (1). Direct effects of HCV on the development of insulin
resistance.

HCV core protein up-regulates suppressor of cytokine signaling
(SOCS) 3 protein. SOCS3 ubiquitinates insulin receptor substrate
(IRS) and causes proteasomal degradation of IRS. Since IRS is a
central molecule of intarcellular insulin signaling, down-regulation
of IRS blocks insulin signaling cascade, leading to insulin
resistance in patients with HCV infection.
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In addition to down-regulation of IRS1/2, HCV core pro-
tein also up-regulates serine phosphorylation of IRS1 or
down-regulate tyrosine phosphorylation of IRS1 and subse-
quently impairs Akt signaling pathway, a downstream sig-
naling of IRS1 in vitro [68] and in HCV-core transgenic
mice [29]. Possible mechanism for changes in serine or tyro-
sine phosphorylation of IRSI1 is due to increased activation
of mammalian target of rapamycin [69] or Jun-N-terminal
kinase [68]. Although changes in serine phosphorylation of
IRS1 have not been validated in human liver tissue, down-
regulation in tyrosine phosphorylation of IRS1 and subse-
quent Akt signaling pathway has been reported in human
liver tissue [24].

HCYV Genotype and Insulin Resistance

Although associations between HCV genotypes and the
development of insulin resistance are still controversial [26,
59, 70, 71], HCV genotype-specific interactions of insulin
resistance are reported in patients with HCV genotype 1b,
3a, and 4 [61, 69].

HCV genotype 1b significantly suppresses IRS1 expres-
sion compared to HCV genotype 2 in HepG2 cell [67]. The
suppression of IRS1 expression is due to two different path-
ways. HCV genotype 1b up-regulates SOCS3, which causes
proteasomal degradation of IRS1 [26]. Alternatively, HCV
genotype 1 activates mammalian target of rapamycin, which
suppress IRS1 expression [69]. Recently, Akuta et al. found
that amino acid substitutions in the HCV core region of
genotype 1b were associated with severe insulin resistance in
patients without cirrhosis [22]. Although the precise mecha-
nisms for the development to insulin resistance by amino
acid substitutions in the HCV core region are unclear, HCV
core seems to impair intracellular insulin signaling through
several pathways.

In in vitro experiments, HCV genotype 3a modulates
SOCS7 expression and causes down-regulation of IRS1 [69,
72]. In fact, patients infected with HCV genotype 3 fre-
quently associated with insulin resistance [73]. In patients
infected with HCV genotype 3, a decrease in total and high
molecular weight adiponectin is another causative factor for
the development of insulin resistance [74].

High prevalence of insulin resistance is also seen in pa-
tients infected with HCV genotype 4 and insulin resistance is
a major determinant of both rapid virologic response and
sustained virologic response [61, 75]. Normal BMI and no
significant fibrosis are characters for patients HCV genotype
4 infected with insulin resistance [61, 76]. Although molecu-
lar mechanisms of HCV genotype 4 associated insulin resis-
tance is not unclear, these findings suggest the genotype spe-
cific interaction with intracellular insulin signaling.

COMPLICATIONS OF HCV-ASSOCIATED INSULIN
RESISTANCE

Insulin regulates not only glucose metabolism, but also
protein synthesis, lipid metabolism and cell proliferation
through activation of various intracellular signaling mole-
cules [77]. Therefore, insulin resistance is involved in not
only the development of DM, but also non-response to anti-
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viral treatment [25, 28] and hepatic fibrosis [32]. In addition,
insulin resistance causes esophageal varices [78] and HCC
[33-35], life-threatening complications. Recently, the devel-
opment of lichen planus [79], multiple primary carcinomas
[80], and other extrahepatic manifestations [81] are associ-
ated with insulin resistance. Thus, insulin resistance could
play crucial roles in the development to variety of complica-
tions in patients with HCV infection. In this review, we fo-
cused on an association between insulin resistance and HCC,
amajor cause of death for patients with HCV infection.

DIABETES MELLITUS AND HCC

DM has been found as a potential risk factor for the de-
velopment of HCC. Three large population based cohort
studies, in Sweden [82], Denmark [83], and the United States
[84], reported that the development of HCC was increased 2
to 4 fold in patients with diabetes. Moreover, in some case-
control studies, the positive association between DM and
HCC has been suggested [85-88]. However, in patient HCV
infection, an association between DM and HCC remains
unclear, because most of these study populations had not
been routinely surveyed for serological marker of HCV or
contained only small number patients with HCV infection.

Table 2 shows a summary of recent seven cohort studies
that investigated an association between DM and the devel-
opment of HCC. Three of 7 studies reported by Tazawa et al.
[89], Chen et al. [90] and Wang et al. [91] found that DM
was significantly associated with the development of HCC in
patients with HCV infection, with relative risk ranging from
3.1 to 9.4. On the other hand, three studies reported by Ohota
et al. [92], Lai et al. [93] and Henderson et al. [94] found
that there was no significant association between DM and the
development of HCC in patients with HCV infection. Al-
though the reason for this discrepancy is unclear, one possi-
ble explanation is that DM is diagnosed based on fasting
plasma glucose and hemoglobin Alc levels. Both plasma
glucose and hemoglobin Alc levels are not adequate diag-
nostic markers for DM in patients with HCV infection be-
cause of depletion of hepatic glycogen content and increased
turnover of erythrocytes [95]. Thus, underdiagnosis of DM is
a possible reason for the discrepancy. Recently, measure-
ment of serum insulin levels is reported as a relevant clinical
marker for predicting the development of HCC [96].

INSULIN RESISTANCE/HYPERINSULINEMIA AND
HCC

Insulin is known as one of the most important factors not
only for a variety of metabolic pathways, but also for cell
growth. Insulin stimulates, via phosphorylation of IRS,
phosphatidylinositol 3-kinase and Akt cascade [97] as well
as Ras and mitogen-activated protein kinase cascade [98].
Since these cascades regulate hepatocyte proliferation and
apoptosis, hyperinsulinemia may stimulate growth of HCC.
Saito et al. demonstrated that postprandial hyperinsulinemia
accelerated tumor doubling time of HCC in patient with cir-
rhosis [99]. Moreover, several previous studies showed that
insulin resistance and subsequent hyperinsulinemia contrib-
uted to progression of liver fibrosis in patients with HCV
infection, regardless of the degree of steatosis [100, 101]. As
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Table 2. A Summary of Seven Cohort Studies for an Association Between Diabetes Mellitus and the Development of HCC in the

Population Based on HCV Infection

No. of No. of No. of Cohort

Year Country with HCV (%)

Cases Cohort

age, sex, alcohol, blood transfusion,
2002 Japan 279 (100%) 9.4 (ND)* a-fetoprotein, biopsy, IFN, HCV
genotype, viral road

2009 United State 262 32806 32806 (100%)

RR (95% CI)

1.17 (0.90-1.52)

Adjustment References

age, sex, race, duration on dialysis [94]

Abbreviation: RR; relative risk, Cl; confidence interval, ND; no description in the text, IFN; interferon, BMI; body mass index, ALT; alanine aminotransferase. * P value <0.05

a pathogenesis of these positive associations, it has been
demonstrated that hyperinsulinemia promotes fibrogenesis
by stimulating the secretion of connective tissue growth fac-
tor from hepatic stellate cells [102]. Therefore, it is sug-
gested that the insulin resistance/hyperinsulimemia causes
progression of hepatic fibrosis, leading to development of
HCC in patients with HCV infection.

THERAPEUTIC STRATEGY FOR HCV-ASSOCI-
ATED INSULIN RESISTANCE

In this review, we propose the clinical therapeutic strat-
egy for the treatment of HCV-associated insulin resistance,
which can be determined by life-style and stage of the liver
disease, but not by definition of metabolic syndrome (Fig. 2).

The International Diabetes Federation definition of meta-
bolic syndrome is central adiposity plus two or more of the
following factors; 1) raised concentration of triglycerides, 2)
reduced concentration of HDL cholesterol, 3) raised blood
pressure, and 4) raised fasting plasma glucose concentration
[103]. In general, overeating and less activity induce meta-
bolic syndrome through changes in adipocytokines. There-
fore, diet therapy and exercise are recommended to patients
with central adiposity [104]. However, none of the adipocy-
tokines is associated with insulin resistance in patients with
HCV infection, suggesting life-style may not be a major
cause of HCV-associated insulin resistance [105]. Excessive
life style modification such as fasting and over exercise
could worsen liver function in patients with chronic liver

disease [106-108], diet therapy and exercise are recom-
mended if patients are overeating or less active.

Nutritional Therapy

Treatment for the insulin resistance could be a therapeu-
tic strategy to prevent the development of HCC and to im-
prove the prognosis in patients with HCV infection. Nutri-
tional therapy and exercise are fundamental for patients with
metabolic syndrome, which is defined by as well as patients
with HCV-associated insulin resistance. However, in patients
with liver cirrhosis, glucose metabolism is characterized as
postprandial hyperglycemia induced by decreased glucose
uptake of the liver [109, 110] and as fasting hypoglycemia
induced by decreased glycogen storage in the liver, accom-
panied with increased ratio of lipid combustion in fasting
state [108, 111-114]. Therefore, in order to improve glucose
metabolism, divided energy intake into a larger number of
meals per day including a late evening snack has been rec-
ommended for cirrhotic patients [115].

Branched-chain Amino Acids (BCAA)

BCAA has been recently demonstrated to play a role in
glucose metabolism [116-119], while it improves the com-
plications and prognosis induced by liver cirrhosis, such as
hyperammonemia, encephalopathy, or HCC [120-122].
Therefore, nutritional therapy containing BCAA is most es-
sential when considering a nutritional therapy for liver cir-
rhosis as well as DM. The mechanism of BCAA action on
glucose metabolism is suggested as follows. In a rat model
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{ HCV + Insulin resistance

Diet therapy
andior Exercise

Overeating and for
l.ack of exercise

Stage of the liver disease

Nutritional therapy

Late evening snack
Branched-chain
amino acids
L 2 &
Anti-diabetic agents

{a-glucocidase inhibitor, insulin sensitizers) )
\

!

Anti-viral treatment for HCV

Fig. (2). Flow chart for the therapeutic strategy for HCV-associated
insulin resistance. The therapeutic strategy for HCV-associated
insulin resistance can be determined not only by life-style, but also
by stage of the liver disease.

with liver cirrhosis, leucine and isolocine upregulate glucose
uptake on skeletal muscle [123]. Similarly, a dipeptide con-
stituted of leucine and isolocine also stimulates glucose up-
take in myotube and skeletal muscle cells [124]. BCAA has
potential to improve abnormal glucose metabolism such as
insulin resistance through anti-obese effect in mice [125,
126]. In human, BCAA-enriched supplementation is also
demonstrated to improve the insulin resistance or glucose
tolerance of patients with chronic liver disease or liver cir-
thosis [64, 127, 128]. Alternatively, intake of enteral nutri-
ents for liver failure that are conditioned with enriched
BCAA and high fisher’s ratio as late evening snack would
improve glucose metabolism [118].

It has been recently demonstrated that BCAA supplemen-
tation is potential to prevent the incidence of HCC [122].
Although the mechanism remains unclear, anti-diabetic and
anti-obese effects might reduce the HCC incidence because
both DM and obesity are shown to be risk factors for HCC.
In addition, BCAA is shown to inhibit in vitro vasculariza-
tion under the high concentration of glucose and/or insulin or
in vivo vascularization of the liver in a diabetic rat model
with liver injury [129]. Because HCC is a hypervascular tu-
mor, the inhibitive effect of vascularization through the im-
provement of glucose metabolism by BCAA might reduce
the incidence of HCC.
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Anti-diabetic Agents

Anti-diabetic agents are generally used if nutritional and
exercise therapies are not sufficient to improve hyperglyce-
mia. When using anti-diabetic agents, the risk for adverse
effects should be considered carefully because most of them
are metabolized in liver. or a-glucocidase inhibitor [130]
have been reported to have an adverse effect of severe liver
injury that could be life-threatening complications for cir-
rhotic patients. In addition, use of biguanide in cirrhotic pa-
tients would be riskier for lactic acidosis than diabetic pa-
tients because lactic acid is also metabolized in liver. Thia-
zolidinedione is an insulin-sensitizing agent and improves
virological response to peginterferon alpha-2b/ribavirin
combination therapy in hepatitis C genotype 4 patients with
insulin resistance [131]. However, thiazolidinedione causes
overproduction of hydrogen peroxide, leading to severe he-
patotoxicity [132-134]. Thus, these risks for adverse effects
may limit the use of anti-diabetic agents and exogenous insu-
lin tends to be administrated in patients with HCV infection.

An Association Between Anti-Diabetic Agents and
Malignancies

Insulin therapy is generally selected for the treatment of
cirrhotic patients with DM, however, insulin therapy has
recently raised a question concerning to cancer incidence. In
fact, use of anti-diabetic agents has been recently demon-
strated to influence the tumor-free survival in diabetic pa-
tients. Currie CJ et al. demonstrated that overall tumor-free
survival in diabetic patients receiving insulin-based therapy
or sulfonylurea, but not metformin, was significantly worse
than receiving no diabetes medications [135]. Although insu-
lin or sulfonylurea does not seem to increase any tumor inci-
dence, these agents could influence the incidence of diges-
tive system cancers such as colorectal and pancreatic can-
cers. Similarly, Yang Y et al. demonstrated that the risk of
colorectal cancer was increased by insulin therapy [136]. Li
D et al. also demonstrated that the risk of pancreatic cancer
was increased by insulin or sulfonylurea and reduced by met-
formin [137].

Concerning to HCC incidence, Donadon V e al. implied
an association between HCC incidence and use of insulin or
sulfonylurea [138]. Subsequently, they carried out a large-
scale survey, demonstrating a direct association of HCC with
use of insulin and sulfonylurea and an inverse relationship
with metformin [139]. We also demonstrated that insulin or
sulfonylurea was an independent risk factor for HCC inci-
dence and hepatocarcinogenic effects of these anti-diabetic
agents are evident in patients who were male or non-cirrhotic
[140]. In addition, Komura T ef al. described that insulin
therapy was a significant factor contributing HCC recurrence
after surgical treatment [141]. Thus, these results strongly
suggest a potential risk factor of insulin for HCC incidence
because either insulin administration or sulfonylurea intake
increases insulin level in serum.

The mechanism between insulin and cancer incidence is
little known. Since insulin has biological activities of cell
proliferation, insulin may stimulate cancer cell proliferation
and develop the cancer [142, 143]. In addition, it has been
shown that the expression of phosphatase and tensin ho-
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molog or SH2 domain-containing inositol phosphatase 2,
suppressive molecules of insulin signaling in cells, is de-
creased in HCC tissues, indicating enhanced action of insulin
in HCC [35, 144-146]. Thus, insulin therapy might worsen
the prognosis of the patients with HCC because suppressors
of intracellular insulin signaling are inactivated in HCC and
therefore, insulin effects may be more evident in HCC than
in hepatocytes.

Anti-viral Treatment for HCV

Since HCV itself plays crucial role in the development of
insulin resistance, eradication of HCV by anti-viral treatment
has a significant impact when patients meet the criteria. We
along with others have shown that clearance of HCV im-
proves insulin resistance, beta-cell function, and hepatic
IRS1/2 expression [25, 28, 65]. Although clearance of HCV
is a fundamental therapeutic strategy for patients with HCV
infection, Tsochatzis et al. described that insulin resistance
develops early in the course of the disease, and negatively
affects treatment response and the development of liver cir-
rhosis and HCC, irrespective of genotype [147]. Thus, ame-
lioration of insulin sensitivity may inhibit the progression of
HCV-associated liver disease.

GUT HORMONES AND GLUCOSE METABOLISM

The gut has currently been recognized as an endocrine
system that regulates glucose metabolism [148, 149]. Among
several gut hormones called “incretin”, glucagon-like pep-
tide-1 (GLP-1) is well known to be involved in the glucose
metabolism. GLP-1 is secreted from endocrine L-cells of the
distal intestine and colon in response to enteric nutrient in-
gestion, such as carbohydrates, fatty acids, essential amino-
acids and dietary fiber [150, 151]. GLP-1 exerts a direct in-
sulinotoropic effect on the pancreatic p-cell [151, 152]. In
addition, GLP-1 activates adenylate cyclase and subse-
quently enhances insulin secretion via GLP-1 receptor on the
cell-membrane of pancreatic B-cell [153], and glucose dis-
posal [154]. GLP-1 also inhibits glucagon secretion via GLP-
1 receptor on pancreatic alpha-cells [155]. Thus, GLP-1 ex-
erts carbohydrate assimilation and inhibits gluconeogenesis,
consequently, GLP-1 is considered as a therapeutic target for
DM as well as insulin resistance [150, 151, 155].

Active type of GLP-1 is rapidly inactivated by dipeptidyl
peptidase-1V (DPP-4, enzyme code number 3.4.14.5) [151,
152, 156, 157]. DPP-4 is a membrane-associated peptidase
and is widely distributed in numerous tissues, such as intes-
tinal brush-border, endothelial cell and hepatocytes. DPP-4
inactivates GLP-1 within a few minutes. Therefore, DPP-4
inhibitor (incretin enhancer) may be a suitable agent for the
treatment of insulin resistance.

GLP-1 AND GLUCOSE METABOLISM IN LIVER

GLP-1 reduces hepatic glucose production [158]. Al-
though direct effect of GLP-1 on hepatocytes remains un-
clear, GLP-1 increases glycogen synthesis in hepatocytes by
stimulating glycogen synthase alpha via GLP-1 receptor in
rat hepatocytes [159, 160]. In addition, GLP-1 receptor ago-
nist improve hepatic glucose homeostasis by promoting he-
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patic insulin signaling in diabetic rats [161]. In human study,
GLP-1 receptor antagonist promotes hepatocyte proliferation
via induced ¢-AMP [162] and GLP-1 inhibits glucose dis-
posal rather than increasing glucose disposal [163]. These
findings indicate that GLP-1 has a direct effect on hepato-
cytes in the regulation of glucose metabolism.

HCV-ASSOCIATED INSULIN
GLP-1

RESISTANCE AND

We have previously demonstrated that the up-regulation
of DPP-4 causes a decrease in serum active GLP-1 levels,
resulting in a decrease in hepatic glycogen contents and the
development of insulin resistance in patients with HCV in-
fection [39]. The mechanism of increased DPP-4 expression
is unclear. However, a significant increase in DPP-4 expres-
sion is seen in a hepatoma cell line transfected with a HCV
non-structural genome region [164]. In addition, eradication
of HCV by treatment with interferon-alpha decreases serum
DPP-4 activity [165]. These findings may indicate that HCV
directly up-regulates DPP-4 expression. Although limited
information is available for the effects of DPP-4 inhibitor in
HCV-associated insulin resistance, this therapeutic agent
could improve the initial step of the development of insulin
resistance and is considered as a new therapeutic strategy for
HCV-associated insulin resistance.

THE SIGNIFICANCE OF INSULIN RESISTANCE IN
THE ERA OF NEW ANTI-VIRAL TREATMENTS

It is no doubt that these new anti-viral agents will mark-
edly change the treatment for HCV infection in the near fu-
ture. The most of new antiviral agents for HCV infection are
currently in phase I-1II [166~172] and the most studied agent
is an inhibitor of the HCV non-structural 3 protease, telapre-
vir or boceprevir [173-183]. The addition of telaprevir or
boceprevir to pegylated interferon-a and ribavirin combina-
tion therapy significantly enhance sustained virologic re-
sponse rates even in HCV genotype 1 patients [168, 175,
180, 181, 184, 185]. However, the rates of sustained vi-
rologic response of triple therapy with telaprevir, pegylated
interferon-o. and ribavirin are still up to about 50% in pa-
tients who had previously treated by pegylated interferon-a
and ribavirin [181]. In addition, the resistance profile of the
HCV non-structural 3 protease inhibitor is elucidated. Thus,
the triple therapy is not promising to cure all of patients with
chronic HCV infection.

Recetnly, Akuta ef al. examined the impact of substitu-
tion of amino acid in the core region of HCV genotype 1b in
triple therapy with telaprevir, pegylated interferon-a and
ribavirin and identified that substitutions of amino acid 70
and 91 as independent responsible factors associated with
early virologic response [186]. Although the significance of
insulin resistance in the triple therapy with telaprevir, pegy-
lated interferon-a and ribavirin has never been investigated,
insulin resistance may be a crucial factor even in the new era
of anti-viral treatments because substitutions of amino acid
70 and 91 in the core region of HCV genotype 1b are closely
associated with the development of insulin resistance [22].
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CONCLUSION

In this review, we summarize the pathogenesis for HCV-
associated insulin resistance. Similar to the life style-
associated insulin resistance, obesity, inflammatory cytoki-
nes, oxidative stress, and serum PEDF levels are involved in
the development of HCV-associated insulin resistance. Be-
sides these factors, HCV itself also causes insulin resistance
through down-regulation of hepatic IRS1/2. Insulin resis-
tance is responsible for the development of cirrhotic compli-
cations including HCC, however, there is no common thera-
peutic strategy for HCV-associated insulin resistance.

Clearance of HCV by anti-viral treatment is a fundamen-
tal therapeutic strategy for patients with HCV infection. In
addition, amelioration of insulin sensitivity may inhibit the
progression of HC V-associated liver disease, and could im-
prove the survival of these patients. Late evening snack and
BCAA are nutritional therapies which could improve insulin
resistance. However, use of anti-diabetic agents and exoge-
nous insulin are not always recommended because of ad-
verse effects and possible link to the development of HCC.

HCV also affects insulin resistance through activation of
DPP-4 and subsequent inactivation of GLP-1, a key regulator
of insulin secretion and hepatic glucose metabolism. Al-
though availability of DPP-4 inhibitor in HCV-associated
insulin resistance is yet unclear, this therapeutic agent could
improve the early step of the development of insulin resis-
tance and is expected to be a new therapeutic strategy for
HCV-associated insulin resistance.
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LIST OF ABBREVIATIONS

BCAA = branched-chain amino acids
DM = diabetes mellitus

DPP-4 = dipeptidy] peptidase-IV

GLP-1 = glucagon-like peptide-1

HCC = hepatocellular carcinoma

HCV = hepatitis C virus

IRS = insulin receptor substrate

PEDF = serum pigment epithelium-derived factor
SOCS = suppressor of cytokine signaling
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Structure-Function Relationships of PEDF
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Abstract: Pigment epithelial-derived factor (PEDF) is a 50-kDa secreted glycoprotein that belongs to the non-
inhibitory serpin. It has an a/f core serine-protease inhibitor domain, 3 major B-sheets, and 10 o-helices.
Although PEDF does not inhibit either serine or cysteine proteinases, PEDF exerts diverse physiological
activities including anti-angiogenesis, anti-vasopermeability, anti-tumor, and neurotrophic activities. Recent
studies have shown that a variety of peptides derived from PEDF possess activities similar to those of the
parent molecule through interactions with the extracellular matrix, binding to PEDF receptors, nuclear
localization and phosphorylation. Thus, peptides derived from PEDF have therapeutic potential for various
diseases and therefore, it is important to clarify the structure-function relationship of PEDF. In this review, we
summarize structural features of PEDF that could affect various target organs such as blood vessels, tumors,
and the central nervous system. In addition, since PEDF is recently identified as a regulator for glucose and
lipid metabolism, we aiso discuss PEDF structures specially related to insulin-sensitizing and triglyceride-

reducing properties.

Keywords: Pigment epithelial-derived factor, functional domain, anti-angiogenic acftivity, anti-vasopermeability
activity, anti-tumor activity, neurotrophic activity, glucose metabolism, lipid metabolism.

Pigment epithelial-derived factor (PEDF) is widely
expressed throughout the human body and has
muitiple biological activities. A variety of peptides
derived from PEDF exerts diverse physiological
activities including anti-angiogenesis, anti-
vasopermeability, anti-tumor, and neurotrophic
activities as shown in Table 1. In this review, we
summarize structure-function relationships of PEDF.

REGULATION OF SECRETION OF PEDF

C-terminal amino-acid residues play an important
role in the secretion of various proteins [1-5]. The
insertion of a reactive center loop (RCL) into the B-
sheet, which is called “loop-sheet polymerization™ is
involved in impaired secretion of various types of
proteins [6, 7]. PEDF is a secretory protein, and the C-
terminal of PEDF contains highly exposed typical RCL
[8-10]. Truncation of the C-terminal tail of PEDF
(Pro415—Pro418) inhibits the secretion of PEDF by
Chinese hamster ovary cells [11]. Since Pro415 is
mostly buried and interacts with Phe231 and Lue223,
truncation of PEDF at Pro415 causes disruption of the
hydrophobic interactions imposed by Pro415 and
exposure of Asp414 to the negatively charged C-
terminus, resulting in inefficient secretion of PEDF [11].
In addition, not only deletion of Pro373-Ala380, but also
alanine substitution at Gly376 and Leu377 inhibits the
secretion of PEDF. Gly376 and Leu377 are located
within the highly exposed segment of the RCL.
Therefore, these two residues are indispensable for (i)
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interactions of PEDF with components of the quality
control system in the endoplasmic reticulum and (ii)
subsequent efficient secretion of PEDF [11].

INTERACTIONS OF PEDF WITH THE EXTRA-
CELLULAR MATRIX

PEDF accumulates in the extracellular matrix [12].
The extracellular matrix is a complex of proteins,
proteoglycans, and glycosaminoglycans, and plays a
crucial role in the mechanical strength of cells and the
regulation of cell proliferation and differentiation [13,
14]. It has been speculated, therefore, that PEDF
exerts its diverse biological activities by interacting with
different components of the extracellular matrix [15].

The crystal structure of human PEDF shows an
asymmetrical charge distribution, which is one of the
structural characters of PEDF [8]. A high density of
basic residues exists at the center of B sheet A-strand
2 and 3, and helix F. This region is densely populated
with lysines exposed to the surface (aa134, aa137,
aa189, aa191, aa212, and aa124), which interact with
various glycosaminoglycans [16-18].

The heparin-binding motif is XBBXBX (where B
represents basic amino acids: X represents residues
excluding acidic amino acids) [19] and is localized at
the basic surface of PEDF (aa145-148), which is in the
loop region between sheet 2A and helix E [8, 16].
Studies using site-directed mutagenesis showed that
three clustered basic amino acid residues, Arg145,
Lys146, and Arg148, are necessary for heparin binding
[18]. Binding with heparin increases the proteolytic
susceptibility of PEDF by trypsin and induces a
conformational change in the vicinity of Lys178 of
PEDF [20]. Heparin mediates the binding of PEDF to a
receptor on the cell surface of Y-79 retinoblastoma

© 2010 Bentham Science Publishers Ltd.
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Table 1. Functional Sites of PEDF

Current Molecular Medicine, 2010, Vol. 10, No. 3 303

Amino Acids Function References
16-26 Anti-angiogenic activity [28]
24 Protein kinase CK2 phospherylation site [59, 137]
Neutrophic activity
Anti-angiogenic activity
24-57 PEDF receptor binding site [28]
Anti-angiogenic activity
Apoptotic activity in endothelial cells
32-380 Neurotrophic activity [43]
39-57 Chemotaxis activity [51]
Apoptotic activity in endothelial cells
40-64 Anti-tumor activity [55]
Osteogenic differentiation activity
Collagen I-binding site
41-44 Collagen I-binding site [22]
44-77 PEDF receptor (Laminin receptor) binding site [31]
44-121 Neurotrophic activity [43]
46-70 PEDF receptor {Laminin receptor) binding site [31]
Apoptotic activity in endothelial cells
Anti-migration activity in endothelial cells
Anti-tube-like formation activity in endothelial cells
Anti-angiogenic activity
58-101 Neuroendocrine differentiation activity [28]
64 Caollagen I-binding site [22]
78-94 PEDF receptor binding site [28]
Neuroendocrine differentiation activity
Neurotrophic activity
78-102 Anti-proliferation activity [55]
Collagen I-binding site
78-121 PEDF receptor (PNPLA2) binding site [24, 29, 73, 91]
Neuroendocrine differentiation activity
Lipase activity
Anti-vasopermeability activity
82-121 Neutrophic activity [93]}
90-114 Collagen I-binding site [65]
Anti-VEGF expression activity
101, 103, 112 Anti-vasopermeability activity [73]
114 Protein kinase CK2 phosphorylation site [59, 137]
Neutrophic activity
Anti-angiogenic activity
115 Anti-vasopermeability activity [73]
127, 128, 130 Heparin binding site [20]
134, 137 Glycosaminoglycans binding site [16]
139-147 Cytotoxic T-lymphocyte activity [138]
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