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E1 3'UTR contained two target sites for miR-195 (Fig. 5A, B). To investigate the direct
interaction between them, the part of the cyclin E1 3'UTR containing the two miR-195
target sites (497 bp) was cloned from LX-2 cells, inserted the downstream of a firefly
luciferase reporter gene in a pmirGLO vector (Fig. 5C), and cotransfected into LX-2
cells. As shown in Fig. 5D, luciferase reporter activity decreased significantly in
miR-195 precursor-transfected cells compared with cells transfected with a negative
control of the precursor. These results suggested a direct interaction between miR-195
and cyclin E1 3'UTR in LX-2 cells. Binding site of miR-195 was not found in p21
3'UTR by TargetScan.

Regulation of cyclin E1 expression by IFN-£ and miR-195

To confirm the contribution of miR-195 to the inhibitory effect of IFN-B on cyclin E1
expression, LX-2 cells were first transfected with 50 nM miR-195 inhibitor and then
treated with 1,000 IU/ml IFN-B. As shown in Fig. 6A, miR-195 inhibitor blocked the
inhibitory effect of IFN-B on cyclin E1 mRNA expression at 16 h and 24 h. Although
there was no difference in the cyclin E1 mRNA expression between IFN-B-treated cells
and non-treated cells (control) at 48 h, the cyclin E1 mRNA expression level in
miR-195 inhibitor plus IFN-B-treated cells was up-regulated compared with non-treated
cells (Fig. 6A). Immunoblot analysis revealed that miR-195 inhibitor elevated the cyclin

E1 expression level of IFN-B-treatéd cells at 24 h and 48 h (Fig. 6B).

Discussion
In this study, we showed that IFN-f is more antiproliferative on LX-2 cells than IFN-a.,

which appears to be contradictory to their known mechanism of action: both IFN-a and
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IFN-B exert their activities through the common signaling pathway, beginning with
binding to the same type I IFN receptor (IFNAR) consisting of IFNAR1 and IFNAR2,
which activate the common components of Janus kinase/Signal Transducer and
Activator of Transcription (STAT) pathway (Darnell et al., 1994). However, a similar
activity difference between the IFNs has also been demonstrated in colon cancer cell
lines (Katayama et al., 2007) and in rat HSCs (Shen et al., 2002). Some studies showed
that IFN-3 but not IFN-a. formed a stable complex with IFNARs, suggesting that IFN-
may interact with IFNAR chains in a manner different from IFN-a. (Croze et al., 1996;
Russell-Harde et al., 1999).

We showed here that IFN-§ down-regulated the expression of cyclin E1 and
up-regulated the expression of p21, which caused the cells to be less active proceeding
in the transition from GO to G1 phase and in the progression of S phase. The cell cycle
is regulated by various molecules, such as cyclins and CDKs. Cyclin E is essential in
activating CDK2. The cyclin E-CDK2 complex phosphorylates pRb at G1 phase,
leading to gene transcription activities that are needed in S phase, and also activates the
factors involved in DNA replication at early S phase (Golias et al., 2004). It has been
reported that cyclin E1 expression increased in non-parenchymal cells of human fibrotic
liver and that cyclin E1-deficient mice developed milder liver fibrosis compared with
wild-type mice after CCly administration (Nevzorova et al., 2010). These results imply
that cyclin E1 regulates the progression of liver fibrosis by accelerating HSC
proliferation.

The most frequent miRNAs that targets cyclin E1 are the miR-16 family, which

consists of miR-15, -16, -195, -424, and -497 (Liu et al., 2008; Wang et al., 2009). We



here observed the induction of miR-195 by IFN-B. miR-195 was reported to be
down-regulated in human HCC tissues and to suppress HCC growth through the
targeted interference of cyclin D1, CDK6, and E2F3 in a xenograft mouse model (Xu et
al., 2009), while it was reported to target cyclin E1 in addition to the above-mentioned
factors in A549 cells (Liu et al., 2008). miR-15b and miR-16 are down-regulated
concomitantly with HSC activation and their overexpression induces apoptosis and a
delay of cell cycle in HSCs by targeting Bcl-2 and cyclin D1 (Guo et al., 2009a; Guo et
al., 2009b). However, the role of miR-195 in HSCs remains unknown. We showed here
that miR-195 expression was decreased during spontaneous activation of
primary-cultured mouse HSCs and that miR-195 interacted with cyclin E1 3'UTR and
lowered the expression levels of the cyclin E1l mRNA and protein in LX-2 cells. These
results suggest that the down-regulation of miR-195 may associate with the proliferation
of HSC:s in fibrotic liver similarly to miR-15 and miR-16. In this study, the changes of
the protein expression levels of E2F3, CDK6, and cyclin D1, which were reported to be
regulated by miR-195 (Xu et al., 2009), were negligible by miR-195, although the exact
reason for this phenomenon was not determined. However, because the total context
scores obtained by TargetScan were -0.73 for cyclin El1, -0.33 for E2F3, -0.32 for cyclin
D1, and -0.09 for CDKS®, the result obtained here was thought to be reasonable. In
addition, minimal or negligible effect of miR-195 on the expression of E2F3, CDK4,
CDK®, and cyclin D1 was compatible with that of IFN-f on these factors. Furthermore,
inhibition of miR-195 by miR-195 inhibitor attenuated the effect of IFN-B on cyclin E1
expression, though not so strong. Taken together, it is most likely that the

down-regulation of cyclin E1 by IFN-f treatment in HSCs is mediated through miR-195
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up-regulation. The mechanism through which IFN- induces miR-195 in LX-2 cells
need to be explored further.

It is well known that IFNs induce the expression of p21 in various cancer cells
(Katayama et al., 2007; Sangfelt et al., 1999). We also observed the up-regulation of p21
in IFN-B-treated cells. Therefore, p21, in addition to cyclin E1, may play a role in
IFN-induced growth inhibition of HSCs. Until now, it has been reported that [FNs
induce p21 expression through the binding of STAT and interferon regulatory factor,
which are critical signaling molecules after IFN-IFNAR interaction, to p21 gene |
promoter (Gartel and Tyner, 1999). Unexpectedly, we found the up-regulation of p21 by
miR-195 (Fig. 4). The results obtained here raise a new possibility that the up-regulation
of p21 by IFN-B in HSCs may be partially mediated through miR-195.

In conclusion, type I IFN, in particular IFN-f, inhibited the proliferation of human
HSCs by delaying the cell cycle in G1 to early S phase through the down-regulation of
cyclin E1 and up-regulation of p21. The cyclin E1 down-regulation and p21
up-regulation were partially mediated by miR-195 that was up-regulated by IFN-3. This
study raises a new mechanistic aspect of the antifibrotic effect of IFN in liver fibrosis

and the possibility of influencing miR-195 as a therapeutic strategy for liver fibrosis.
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Figure legends

Fig. 1. Expression of miR-195 in mouse HSCs during primary culture and growth
inhibitory effect of IFN-o. and -B on human stellate cells. (A and B) Isolated mouse
HSCs were cultured for the indicated periods. The expression levels of miR-195 (A),
and a-SMA and cyclin E1 mRNA (B) were measured by real-time PCR. *P < (.05, **P
<0.01 compared with 1 day. (C and D) LX-2 cells were incubated with IFN-a or -8
(1,000 IU/ml) for 3-7 days (C), or with IFN-a. or -B at the concentration of 10-1,000
IU/ml for 7 days (D). Control indicates non-treated cells. The proportion of viable cells

was determined using a WST-1 assay. **P < (.01 compared with control.

Fig. 2. Effect of IFN-o and - on cell cycle distribution in human stellate cells.
LX-2 cells synchronized in GO/G1 phase were then incubated with IFN-a or -§ (1,000
IU/ml) in DMEM/FBS for the indicated periods. Control indicates non-treated cells.
The cell cycle was analyzed by flow cytometry. The white, black, and shaded region
indicates the histogram measured by flow cytometry, GO/G1 phase (left) or G2/M phase

(right), and S phase, respectively, as analyzed by ModFIT LT software.

Fig. 3. Expression of cell cycle-related genes in stellate cells. LX-2 cells were
incubated with IFN- (1,000 IU/ml) for up to 72 h for determining the expression levels
of mRNAs of cyclin D1, cyclin E1, CDK2, CDK4, CDKS6, p21, and p27. Control

indicates non-treated cells. *P < 0.05, **P < (.01 compared with control.

Fig. 4. Regulation of expression of cell cycle regulators by miR-195. (A) LX-2 cells



were incubated with IFN-B (1,000 IU/ml) for up to 72 h for determining the expression
levels of miR-195. Control indicates non-treated cells. *P < 0.05, **P < (.01 compared
with control. (B — D) LX-2 cells were transfected with 50 nM miR-195 precursor or a
negative control (control). (B) mRNA expression levels of E2F3, CDK4, CDKS6, cyclin
D1, cyclin E1, and p21 measured at 24, 48, 72, and 96 h posttransfection. (C) Protein
expression of E2F3, CDK4, CDKS6, cyclin D1, cyclin E1, and p21 examined at 48, 72,
and 96 h posttransfection. (D) Growth of LX-2 cells transfected with miR-195 or
untreated control was measured using a WST-1 assay. *P < 0.05, **P < 0.01 compared

with control.

Fig. 5. Interaction of miR-195 with the 3'UTR of cyclin E1 mRNA. (A) Schematic
indication of the putative miR-195 target sites in the 3'UTR of the cyclin E1 mRNA.
Tested sequences indicate the regions that were inserted into the luciferase reporter
vector. (B) Predicted pairing of the target region and miRNAs. (C) Structure of the
luciferase reporter vector [14]. The putative miR-195 target region in cyclin E1 3'UTR
(tested sequence) was ligated into the MCS. Arrows indicate the gene directions. Amp®
indicates an ampicillin resistance gene. (D) Reporter gene assay of the interaction
between the 3'UTR of cyclin E1l mRNA and miR-195 in LX-2 cells. Results are
expressed as the relative activities against the activity in the presence of the control. *P

<0.05, **P < 0.01 compared with control.

Fig. 6. Regulation of cyclin E1 expression by IFN-B and miR-195. LX-2 cells were

transfected with 50 nM miR-195 inhibitor or a negative control. After 6 h, the culture



medium was changed and then IFN-B (1,000 IU/ml) was added. Cells were then
incubated for the indicated time periods. (A) mRNA expression levels of cyclin E1. (B)
Protein expression levels of cyclin E1. GAPDH are for loading adjustment. Control;
cells were transfected with a negative control and incubated without IFN-B. *P <0.05,

**P <0.01.
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Table 1. Sequences of primers used in real-time PCR analyses and 3'UTR cloning

for luciferase reporter assay

Gene Accession No.  Sequence

real-time PCR

CDK6 NM_001259 Forward: 5'-ATATCTGCCTACAGTGCCCTGTCTC-3'
Reverse: 5'-GTGGGAATCCAGGTTTTCTTTGCAC-3'

Cyclin E1 NM_001238 Forward: 5'-GCAGTATCCCCAGCAAATC-3'

Reverse: 5'-“TCAAGGCAGTCAACATCCA-3'
Cyclin D1 NM_053056 Forward: 5'-GCTGTGCATCTACACCGACAACTC-3'
Reverse: 5-AGGTTCCACTTGAGCTTGTTCACC-3'
E2F3 NM_001949 Forward: 5'-CCAACTCAGGACATAGCGATTGCTC-3'
Reverse: 5'-AGGAATTTGGTCCTCAGTCTGCTGT-3'
GAPDH NM_002046 Forward: 5'-GCACCGTCAAGGCTGAGAAC-3'
Reverse: 5'-TGGTGAAGACGCCAGTGGA-3'
p21 NM_000389 Forward: 5'-“AGCAGAGGAAGACCATGTGGA-3'
Reverse: 5'-GGAGTGGTAGAAATCTGTCATGCT-3'
3'UTR cloning
Cyclin E1 NM_001238 Forward: 5'-TTCTCGAGATCCTTCTCCACCAAAGACAGTT-3'
Reverse: 5-TTTCTAGAGAATGGATAGATATAGCAGCACTTACA-3'

The forward and reverse primers for 3'UTR cloning carried the Xhol and Xbal sites at
their 5'-ends, respectively.
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MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through imperfect base
pairing with the 3’ untranslated region (3'UTR) of target mRNA. We studied the regulation of alpha 1
(1) collagen (Col1A1) expression by miRNAs in human stellate cells, which are involved in liver fibrogen-
esis. Among miR-29b, -143, and -218, whose expressions were altered in response to transforming
growth factor-1 or interferon-« stimulation, miR-29b was the most effective suppressor of type I colla-
gen at the mRNA and protein level via its direct binding to Col1A1 3'UTR. miR-29b also had an effect on
SP1 expression. These results suggested that miR-29b is involved in the regulation of type I collagen
expression by interferon-a in hepatic stellate cells. It is anticipated that miR-29b will be used for the reg-
ulation of stellate cell activation and. lead to antifibrotic therapy.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Hepatic stellate cells, which reside in the Disse’s space outside
the liver sinusoids, maintain a quiescent phenotype and store vita-
min A under physiological conditions [1,2]. When liver injury oc-
curs due to alcohol abuse, hepatitis viral infection, or obesity,
stellate cells activate in response to inflammatory stimuli and be-
come myofibroblastic cells that express smooth muscle o-actin
as a representative marker [2]. Myofibroblastic cells secrete pro-
fibrogenic mediators, such as transforming growth factor-p (TGF-
B), connective tissue growth factor, and tissue inhibitor of matrix
metalloproteinases, and generate extracellular matrix materials
including collagens, fibronectin, and laminin; thus, they play a piv-
otal role in liver fibrogenesis [3]. In particular, collagen production
by activated stellate cells is regulated by TGF- in an autocrine
loop, which is accompanied by the induction of TGF-B receptors
[4]. Suppression of hepatic stellate cell activation and collagen
expression is thus a critical issue to establish therapeutic strategies
for human liver fibrosis [1,5].

Abbreviations: Col1A1, alpha 1 (I) collagen; DMEM, Dulbecco’s modified Eagle’s
medium; FBS, fetal bovine serum; IFN, interferon; miRNAs, microRNAs; TGF-B,
transforming growth factor-B; UTR, untranslated region.
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MicroRNAs (miRNAs) are endogenous small noncoding RNAs
that modulate gene expression through imperfect base pairing
with the 3’ untranslated region (UTR) of target mRNA, resulting
in the inhibition of translation or the promotion of mRNA degrada-
tion [6,7]. miRNAs play roles in cell proliferation [8], development
[9]. and differentiation [10], and their contribution to human dis-
eases such as cancer, cardiomyopathies, and schizophrenia have
been reported [11-13]. miR-122 is also involved in the defense sys-
tem against viral hepatitis C with regard to interferon (IFN)-B ther-
apy [14], and miR-26 expression status is associated with survival
and response to adjuvant I[FNa therapy in patients with hepatocel-
lular carcinoma [15]. Some miRNAs are involved in liver develop-
ment and hepatocyte lipid metabolism [16-18].

Recent studies have shown that miRNAs are additionally in-
volved in the alteration of hepatic stellate cell phenotypes; down-
regulation of miR-27a and -27b allows culture-activated rat
stellate cells to return to a quiescent phenotype with abundant
vitamin A storage and decreased cell proliferation [19]; miR-15b
and -16, which target the Bcl-2 and caspase signaling pathways,
may affect stellate cell activation and liver fibrosis [20]. However,
the function of miRNAs in hepatic stellate cell activation and their
collagen production is largely unknown.

Here, we show that miR-29b, which is induced in human stel-
late cells (LX-2) treated with IFNa, is a potential regulator of type
I collagen mRNA and protein expression. Although the primary ac-
tion of IFNs is to eradicate viruses, i.e., hepatitis B and C viruses in



