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Abstract

HIV vaccine development has been hampered by issues such as undefined correlates of protection and extensive diversity
of HIV. We addressed these issues using a previously established SIV-macaque model in which SIV mutants with deletions of
multiple gp120 N-glycans function as potent live attenuated vaccines to induce near-sterile immunity against the parental
pathogenic SIVmac239. In this study, we investigated the protective efficacy of these mutants against a highly pathogenic
heterologous SIVsmE543-3 delivered intravenously to rhesus macaques with diverse MHC genotypes. All 11 vaccinated
macaques contained the acute-phase infection with blood viral loads below the level of detection between 4 and 10 weeks
postchallenge (pc), following a transient but marginal peak of viral replication at 2 weeks in only half of the challenged
animals. In the chronic phase, seven vaccinees contained viral replication for over 80 weeks pc, while four did not.
Neutralizing antibodies against challenge virus were not detected. Although overall levels of SIV specific T cell responses did
not correlate with containment of acute and chronic viral replication, a critical role of cellular responses in the containment
of viral replication was suggested. Emergence of viruses with altered fitness due to recombination between the vaccine and
challenge viruses and increased gp120 glycosylation was linked to the failure to control SIV. These results demonstrate the
induction of effective protective immune responses in a significant number of animals against heterologous virus by
infection with deglycosylated attenuated SIV mutants in macaques with highly diverse MHC background. These findings
suggest that broad HIV cross clade protection is possible, even in hosts with diverse genetic backgrounds. In summary,
results of this study indicate that deglycosylated live-attenuated vaccines may provide a platform for the elucidation of
correlates of protection needed for a successful HIV vaccine against diverse isolates.
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Introduction

Molecular epidemiological studies have revealed the existence
of an extensive degree of diversity of HIV-1 isolates [1]. HIV-1 is
classified in three major groups (M, N, O) based on their
geographical origin. Group M represents the predominant HIV-1
circulating through the world and has been divided into more than
10 subtypes (clades) as well as increasing number of circulating
recombinant forms (CRF) primarily due to error-prone viral
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reverse transcriptase and the occurrence of super-infections. This
diversity is continuously expanding worldwide and is a major
obstacle for the successful development of an AIDS vaccine. While
the generation of a vaccine capable to prevent transmission of
HIV isolates endemic in a particular area remains an unfulfilled
task, protection against phylogenetically distant viruses represents
an even more formidable hurdle. The failure and dismal success of
HIV-1 vaccine trials that have been conducted so far has
prompted a re-emphasis for more basic studies concerning vaccine
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design against heterologous challenge viruses, which can at present
only be addressed in a macaque model. One of the pre-conditions
for the objective assessment of the protective efficacy against a
heterologous strain would be that the macaque model used should
have the capacity to confer sterile or near-sterile immunity against
the homologous virus challenge.

SIVmac239 infected rhesus macaques gradually develop AIDS
after a variable period of chronic infection. In order to investigate
the role and function of the glycan shield of the viral envelope, we
previously developed a panel of deglycosylated mutants from this
pathogenic SIVmac239 backbone [2]. Among these mutants, one
mutant with five MN-glycans deleted (A5G) was found to be
profoundly attenuated in rhesus macaques. Thus, while the acute
primary viremia showed viral peaks undistinguishable from those
measured in animals infected with the wild-type SIVmac239
infection, viral load during the chronic phase was contained at or
below the level of detection [3]. More importantly, these A5G
“immunized” macaques during the chronic phase manifested
near-sterile immunity when challenged with the homologous wild-
type SIVmac239, and the animals showed neither evolution of
pathogenic revertants nor clinical disease manifestation during a
10 year follow up period. While it is clear that similar live
attenuated HIV-1 vaccines will not likely be utilized in humans, it
is extremely important to have an animal model that shows
protection against heterologous challenge virus so that minimally
such a model can be exploited to identify reproducible immune
correlates of protection. We therefore reasoned that our
SIVmac239-deglycosylation platform may provide an unique
opportunity to test and analyze protection against challenge with
heterologous isolates.

The studies reported herein utilized a series of four deglycosy-
lated SIVmac239 mutants as potential live attenuated vaccine
viruses and the SIVsmE543-3 isolate [4] as the heterologous
challenge virus. We submit that the diversities between the vaccine
viruses and the challenge virus are equivalent to those found
between major HIV-1 subtypes. Thus, this heterologous challenge
model provides an ideal model to assess the potential of and define
the conditions for cross-subtype (clade) protection against HIV.

The natural protective effects of select rhesus macaque (Mamu)
MHC class I alleles such as Mamu B*08, Mamu B*17, Mamu
A*01 and the MHC class I haplotype 90120-Ia have been shown
to be associated with better control of SIV [5,6,7,8,9]. In sharp
contrast, protection by the deglycosylated SIV mutants exhibited
no such selectivity; protection was achieved in all 9 rhesus
macaques tested so far, which were later found to be indeed
genetically highly diverse. Previous human cohort studies revealed
that individuals who demonstrated control of HIV infection
without any treatment, called long-term non-progressors and elite
controllers, have common genetic properties associated with
susceptibility to HIV or anti-viral host responses [10,11,12].
However, candidate vaccines that are aimed at targeting outbred
human population will have to show effectiveness in humans with
diverse genetic backgrounds. In order to minimize the contribu-
tion of particular positive or negative genetic background,
macaques possessing the above described elite genotypes were
therefore eliminated from the studies reported herein. Further-
more, the macaques were grouped based on the genetic data so
that each group comprised animals with an essentially similar
genetically diverse background.

We herein report data from a series of studies that support the
concept that cross-subtype control of HIV-1 is theoretically
possible irrespective of genetic background. Data derived herein
demonstrate a critical role that glycosylation plays in not only
conferring attenuation of SIV/HIV but also the potential role
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glycosylation plays in conferring pathogenic properties to viruses
that emerge following challenge with heterologous viruses.

Results

Genetic diversity of the challenge virus from the vaccine
virus

SIVs are as diverse as the HIV-1 subtypes in group M, and at
present a total of 9 different SIV lineages have been identified
[13]. SIVmac239 belongs to lineage 8. We have generated a
variety of modified candidate live vaccine strains by the
introduction of deglycosylation mutations into multiple N-
glycosylation sites of the gpl20 of SIVmac239 (Fig. 1). The
heterologous challenge virus used in this study is the molecularly
cloned pathogenic strain SIVsmE543-3 that belongs to lineage 1.
SIVmac239 and SIVsmE543-3 possess 23 and 22 N-glycosylation
sites, respectively, and as seen their topologies in the gp120 protein
backbones are almost the same (Fig. 1).

At first, we compared the amino acid sequence differences for
the individual viral proteins between SIVmac239 and
SIVsmE543-3 (Table 1). The genetic differences varied from
7.9% for Pol to 35.9% for Tat. We then compared the diversity
between the 2 SIV strains utilized herein with the intra-subtype or
inter-subtype diversities in the HIV-1 isolates and found that the
differences between SIVsmE543-3 and SIVmac239 were signifi-
cantly greater than any intra-subtype diversities of HIV-1
(Table 1). For the inter-subtype diversity analysis, we used
subtypes B and C and a circulating recombinant CRFO1_AE as
reference strains that are predominantly circulating in Asian
countries. The data indicated that the differences between the two
SIV strains were as high or higher as those found among the three
HIV-1 subtypes. These results validate the use of SIVmac239 as
the parental virus for live attenuated vaccine virus and the
SIVsmE543-3 as the heterologous challenge virus in the rhesus
macaque model of human AIDS.

Properties of the 3 new deglycosylation mutants as live
attenuated candidate vaccines

We previously reported that A5G, a SIVmac239 molecular
clone with quintuple deglycosylation mutations behaved as a live-
attenuated virus in vivo [2,3]. In addition to A5G, we tested three
newly constructed deglycosylated mutants of SIVmac239 viruses,
A5G-ver], A5G-ver? and A3G as potential candidate vaccines in
this study (Fig. 1). They differ by the sites or numbers of N-
glycosylation sites mutated in gpl20 (Fig. 1). All four deglycosy-
lated mutants replicated well in rhesus peripheral blood mononu-
clear cells (PBMC) in vitro, and the replication kinetics were
similar to SIVmac239 ([2], and data not shown). However,
differences were noted in the rate of replication in macrophage
cultures and sensitivity to neutralizing antibodies (NAb) (data not
shown). To investigate whether these differences translated into
altered in vivo properties such as viral replication kinetics in rhesus
macaques, reduced pathogenicity and potential vaccine properties,
12 animals were inoculated intravenously in groups of three with
100 TCIDsq of each of the four mutants (Fig. 2 A). Since the
MHC types have been shown to significantly influence the
outcome of HIV/SIV infection in their respective hosts, we chose
macaques which did not inherit any of the known elite MHC
alleles [5,6,7,8,9] (File S1). Furthermore, to minimize the possible
influence of other MHC types, we distributed the animals evenly
into vaccine and control groups such that each group comprised
animals with randomized MHC alleles (File S1).

Consistent with our previous studies [3], the prototypic vaccine
strain A5G, replicated as robustly as the SIVmac239 in macaques
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Figure 1. Live attenuated vaccines with deglycosylation mutations. N-glycosylation sites (vertical bars) localized within gp120 of SIVmac239
and SIVsmE543-3 are shown. SIVmac239 and SIVsmE543-3 have 23 and 22 N-glycosylation sites, respectively. The position of N-glycosylation sites
mutated to remove the specific glycans for A5G, A5Gver-1, A5Gver-2, and A3G were indicated and constructed by site-directed mutagenesis based

on SIVmac239. V1 to V5 indicate variable region 1 to 5 respectively. C-loop indicates the constant loop region within SIVmac239 [15].

doi:10.1371/journal.pone.0011678.g001

with peak plasma viral loads (VL) of ~107 copies/ml at 2 weeks
post infection (pi) (Figs. 2A and 3). However, subsequently the VL
of A5G rapidly declined to a level around or below the level of
detection (100 copies/ml) whereas relatively high VL persisted in
SIVmac239-infected macaques (Figs. 2A and 3). Essentially the
kinetics of viremia observed with the three deglycosylation
mutants, A5G-verl, A5G-ver2 and A3G were similar to that seen
with A5G (Fig. 2 A).

It has been well established that STVmac239 elicits poor NAb in
macaques [14]. In contrast, a deglycosylation mutant derived from
SIVmac239 elicited higher NAb than SIVmac239, but levels of
NAb responses varied among the animals [15]. Thus, we

determined levels of potential NAb responses against each animal’s
respective infecting virus. Consistent with our previous results,
most macaques infected with each of the deglycosylated SIVs
induced NAb (Fig. 2 B). However, the levels of NAb responses
differed among the four groups, with a decreasing order of
magnitude for NAb responses from A5G-ver2>A5G-
ver] >A3G>A5G. We detected no NAb response in two animals
(Mm0301 in the A5G group and Mm0304 in the A3G group), and
delayed and relatively weak responses in three animals (Mm0409
in the A5G group, Mm0511 in the A5G-ver] group, and Mm0516
in the A3G group) (Fig. 2 B). Regardless of the levels of NAb, all 12

animals infected with the deglycosylation mutant viruses contained

Table 1. Differences between the vaccine and challenge SIV and inter-subtype differences of HIV-1.

Viral proteins  SIV® HIV?

Gag 111

Env
Tat 359

Vif 178 7.0-14.2

Vpx 8.1

@ PLoS ONE | www.plosone.org

Bvs. C

B vs. CRFO1 C vs. CRFO1

288 4.7 31.9 4.9 274 43

20.5 26 21.6 29 213 28

NA NA

?Percentage amino acid sequence differences per site from averaging overall sequence pairs between the subtypes.
bPercent amino acid sequence differences per protein.
“Not applicable.
doi:10.1371/journal.pone.0011678.t001
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Figure 2. Viral loads and neutralizing antibodies in macaques infected with each of 4 deglycosylated SIV mutants. Twelve animals
were divided into 4 groups consist of 3 animals each and infected with each of 4 deglycosylation mutants (A5G, A5Gver-1, A5Gver-2, and A3G). (A)
Plasma viral loads were determined by real-time RT-PCR with SIVmac239 primers and probe set. (B) NAb responses against each respective infecting
virus were measured in CEMx174/SIVLTR-SEAP system. NADb titers were indicated as the reciprocal of the dilutions of the plasma from the vaccinees

yielding 50% inhibition (ICso).
doi:10.1371/journal.pone.0011678.9g002

primary infection with similar kinetics (Fig. 2 A) suggesting that
NAb were most likely not a critical factor for containment of the
acute infection in these animals.

We previously found that animals vaccinated with A5G
completely resist infection when challenged with the parental
pathogenic SIVmac239 [3], showing minimal if any replication of
the challenge virus for more than 10 years. A similar homologous
challenge was performed in a subset of animals that received the
deglycosylation mutants in the present study. Thus, one of the
three “immunized” animals from each group was challenged with

Naive control Vaccinees

MmO -=Mm0301 (A5G
.*:MEDSB‘E 10’] -o-Mm0304 (A3G
-+Mm0522 o] -+Mm0513 (A5Gver1

107  -a-Mm0307 (A5Gver2
10°

SIV RNA
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-0

10 20 30 40

0 10 20 30 40 0
weeks pi

Figure 3. Plasma viral RNA loads in the homologous SIV-
mac239 challenge. Three naive rhesus macaques (Mm0608, Mm0521,
Mm0522) and 4 vaccinees (Mm0301, Mm0304, Mm0513, Mm0307), i.e.
one animal from 4 deglycosylated SIV infection groups, were
challenged intravenously with 1000 TCIDs, of SIVmac239. Plasma viral
loads were determined by real-time RT-PCR with SIVmac239 primers
and probe set.

doi:10.1371/journal.pone.0011678.g003
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a high dose (1000 TCIDsg) SIVmac239 at 40 weeks following
“vaccination” and plasma viral loads were determined (Fig. 3). As
previously reported with A5G, a near-sterile immunity against
challenge with SIVmac239 was not only noted with the A5G but
also seen with our other three new deglycosylated SIV mutants,
A5G-verl, A5G-ver2 and A3G (Fig. 3). These results indicate that
all 3 new vaccine versions possess similar equally high protective
potential against the homologous, wild type SIVmac239 as the
original A5G.

Protection of the vaccinated macaques against
heterologous challenge infection

The remaining eight animals (2 per group) vaccinated with each
of the 4 vaccine versions (A5G, A5G-verl, A5G-ver2 or A3G) and
3 of the four animals that were vaccinated (described in the above
paragraph) and challenged with SIVmac239 (Mm0307 died of
SIV unrelated causes) were challenged with a high dose (1000
TCIDs) of SIVsmE543-3 delivered intravenously. Additional
three naive animals served as a control for this heterologous
challenge experiment (Fig. 4 A). VL were monitored until 80
weeks post challenge (pc) using real time RT-PCR primer pairs
and probes that distinguished the detection of SIVmac239 and
SIVsmE543-3.

The 3 naive control macaques infected with SIVsmE543-3
exhibited a peak VL of ~10" copies/ml at 2 weeks pi which is
essentially similar to those we have routinely noted following
infection with SIVmac239 with a few exceptions. Notably, the set
point VL in SIVsmE543-3 was more than 10° copies/ml in 2
animals which is at least 1-log higher than that noted in animals
infected with SIVmac239 (Figs. 3 and 4 A). We reason that
SIVsmE543-3 is likely to be more pathogenic than SIVmac239 for
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