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Figure 1 SIV CA amino acid sequences. (A) Comparison of SIVmac239 amino acid sequences in CA, Gag residues 136-364, with SIVsmE543-3
(GenBank accession number U72748). (B) Schema indicating the amino acid substitutions in mutant SIV CA.
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Full recovery of viral fitness in SIVmac239Gag205E340M
We then focused on analyzing the possibility of func-
tional interaction between Gag residues 205 in CA NTD
and 312/340 in CA CTD. To confirm differences in viral
fitness among SIVmac239, SIVmac239Gag205E, SIV-
mac239Gag205E312P, and SIVmac239Gag205E340M,
we compared their replicative ability by viral competi-
tion assay (Table 1). The competitions confirmed lower
viral fitness of SIVmac239Gag205E compared to wild-
type SIVmac239, SIVmac239Gag205E312P, and SIV-
mac239Gag340M. SIVmac239Gag205E312P showed
lower viral fitness than SIVmac239, whereas replication
ability of SIVmac239Gag205E340M was no less than the
wild-type. These results indicate that the GagD205E
substitution in SIVmac239 reduced viral fitness, which
was recovered partially by an additional GagA312P and
fully by an additional GagV340M substitution. The com-
petition between SIVmac239 and SIVmac239Ga-
g205E340M at the ratio of 1:1 resulted in selection of
the latter, suggesting that SIV CA with Gag205E-340M
combination observed in SIVsmE543-3 may be slightly
more functional than that with Gag205D-340V in
SIVmac239.

Inhibition of the early phase of SIVmac239Gag205E
replication

We examined whether the GagD205E substitution
affects the early or late phase of SIVmac239 replication.
On LuSIV cells, SIVmac239Gag205E infection showed
significantly lower luciferase activity compared to wild-
type SIVmac239, SIVmac239Gag205E312P, or SIV-
mac239Gag205E340M, indicating suppression of the
early phase of SIVmac239GagD205E replication (Figure
5). In contrast, we did not find a significant difference
in viral production among SIVmac239, SIVmac239-
Gag205E, SIVmac239Gag205E312P, and SIVmac239Ga-
g205E340M (Figure 6). These results indicate that the
loss of viral fitness by the GagD205E substitution is
mainly due to inhibition of the early phase of viral
replication.

Loss of in vitro core stability in SIVmac239Gag205E

If the GagD205E substitution disturbs intermolecular
CA interaction for hexamer formation, it may affect SIV
core stability. To assess the core stability in vitro [34],
concentrated viruses were separated into three fractions
by ultracentrifugation under gradient sucrose
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Figure 2 Wild-type and mutant SIV replication kinetics in HSC-
F cells. HSC-F cells were infected with SIVmac239 (WT, open
circles), SIVmac239Gag205E (205E, closed diamonds),
SIVmac239Gag205E312P (205E312P, asterisk), or
SIVmac239Gag205E340M (205E340M, open triangles). Virus
production was monitored by measuring RT activity in the culture
supernatants. A representative result from five sets of experiments is
shown.

concentrations in the presence of Triton X-100 and
each fraction was subjected to Western blot analysis to
detect CA p27 proteins (Figure 7). In the absence of
Triton X-100, CA proteins were detected in the bottom
fraction, whereas those in the presence of 1% Triton X-
100 were sensitive to the detergent and detected not in
the bottom but only in the top fraction (data not
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shown). We compared the in vitro viral core stability
between SIVmac239 and SIVmac239Gag205E in the
presence of 0.6%, 0.9%, and 1.35% Triton X-100, respec-
tively, and found a difference in the presence of 0.6%
Triton X-100. Additional experiments revealed that SIV-
mac239Gag205E core was more sensitive to 0.6% Triton
X-100 treatment than SIVmac239, SIVmac239Ga-
g205E312P, and SIVmac239Gag205E340M (Figure 7).
These results suggest that viral core stability may be
reduced by GagD205E substitution but can be recovered
by additional GagA312P or GagV340M substitution.

Selection of GagD205E plus GagV340M mutations in a
SIVmac239-infected macaque

The GagD205E substitution results in viral escape from
Gagap6-216-specific CTL recognition. Finally, we exam-
ined whether this substitution can be selected in the
chronic phase of SIVmac239 infection in 90-120-Ia-posi-
tive macaques eliciting Gagope.216-specific CTL
responses using plasma samples obtained in our pre-
vious experiments [35,36]. SIVmac239-infected 90-120-
la-positive macaques select the GagL216S mutation
resulting in viral escape from Gag,gg.216-specific CTL
recognition, but we found selection of both GagD205E
and GagV340M mutations in viral genomes in one ani-
mal, RO1-007 (Table 2). In this animal, GagD205E and
GagV340M mutations were undetectable at week 123
after SIVmac239 challenge, but both became detectable
at week 137 and were dominant at week 150. In con-
trast, the GagL216S mutation dominant at week 123
was not detected at week 150. These results present in
vivo evidence indicating functional interaction between
the Gag 205th residue in NTD and the 340th in CTD of
SIV CA.

1st culture

&

SIV,e0308ag205E
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genome
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340V
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Figure 3 Passage of SIVmac239Gag205E culture supernatants. HSC-F cells were infected with SIVmac239Gag205E. The culture supernatant
on day 10 was added to fresh HSC-F cells to start the second culture. Viral RNAs were extracted from the first culture supernatant on day 10
and the second culture supernatant on day 16 after the initial infection and subjected to sequence analyses. Dominant amino acid at the 340th
residue remained V on day 10 in all cases but was M on day 16 in two of four sets of experiments (Gag340M was detectable on day 10 in these
two sets of experiments). No other amino acid change was observed in the CA-coding region.
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A Side view

mutant SIVmac239 CAs.

Figure 4 Structural models of SIVmac239 CA hexamer. The hexameric SIVmac239 CA models were constructed by homology-modeling
using a crystal structure of the hexameric HIV-1 CA at a resolution of 1.90 A (PDB code: 3H47[33)) as a modeling template. “MOE-Align” and
“MOE-Homology” in MOE version 2008.1002 were used for the modeling. The side chains of the 205th, 312th, and 340th aa in Gag are shown as
orange sticks. (A) Overall structure of SIVmac239 CA hexamer. (B) The hexameric structures near positions 205, 312, and 340 of wild-type and

Top view

Discussion

The Gag CA which is one of the most conserved pro-
teins in HIV and SIV may be a promising immunogen
for CTL-based AIDS vaccines. However, the limitations
imposed on amino acid sequences in CA are not fully
understood. In the present study, we found that the
GagD205E substitution in STVmac239 CA NTD reduces
viral fitness, which is recovered by additional GagA312P

or GagV340M substitution in the CTD. SIVmac239-
Gag205E passaged in cell culture often resulted in selec-
tion of an additional GagV340M mutation. Furthermore,
selection of Gag205E plus Gag340M mutations, but not
Gag205E alone, was observed in a chronically SIV-
mac239-infected rhesus macaques. These results provide
evidence indicating a functional interaction between
Gag residues 205 in CA NTD and 340 in CA CTD,
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SIVs in competition Ratio of inoc. titers® Exp. no. Dominant aa sequences®
day 6 day 18
41 #1 205D 205D
#2 205D 205D
SIVmac239 & SIVmac239Gag205E 11 #1 205D 205D
#2 205D 205D
14 #1 205D 205D
#2 205D 205D
41 #1 205D 312A 205D 312A
#2 205D 312A 205D 312A
SIVmac239 & SIVmac239Gag205E312P 11 #1 205D 312A 205D 312A
#2 205D 312A 205D 312A
14 #1 205D 312A 205D 312A
#2 205D 312A 205D 312A
41 #1 205D 340V 205D 340V
#2 205D 340V 205D 340V
SIVmac239 & SIVmac239Gag205E340M 1:1 #1 205D/E 340V/M 205E 340M
#2 205D/E 340V/M 205E 340M
14 #1 205E 340M 205E 340M
#2 205E 340M 205E 340M
4:1 #1 205E 312P 205E 312P
#2 205E 312P 205E 312P
SIVmac239Gag205E & SIVmac239Gag205E312P 11 #1 205E 312P 205E 312pP
#?2 205E 312P 205E 312P
14 #1 205E 312P 205E 312P
#2 205E 312p 205E 310P
41 #1 205E 340M 205E 340M
#2 205E 340M 205E 340M
SIVmac239Gag205E & SIVmac239Gag205E340M 11 #1 205E 340M 205E 340M
#2 205E 340M 205E 340M
14 #1 205E 340M 205E 340M
#2 205E 340M 205E 340M

?HSC-F cells were coinfected with two kinds of SIVs indicated. Viral gag fragments were amplified by RT-PCR from viral RNAs from the culture supernatants on
days 6 and 18 postinfection and then sequenced. Results from two sets of experiments (Exp. #1 and #2) are shown.

PThe ratio of the dose (RT activity) of the virus indicated at the top to that at the bottom at coinfection.

“Dominant amino acid sequences at the positions where mutations were included in the inoculums are shown. 205D/, D and E were detected equally at the

205th aa in Gag; 340 V/M, V and M were detected equally at the 340th aa in Gag.

presenting a structural constraint for functional interac-
tion between SIV CA NTD and CTD.

HIV and SIV Gag proteins are expressed as unpro-
cessed polyproteins, which are assembled and incorpo-
rated into the virions. Concomitant with viral budding,
incorporated Gag polyproteins are proteolytically
cleaved by viral protease into processed proteins includ-
ing MA (matrix), CA, and NC (nucleocapsid), participat-
ing in mature infectious virion formation [37,38]. Recent
structural analyses [31-33,39-41] indicated that CA pro-
teins form hexamer lattice in matured virions; in the
mature CA core, the intermolecular NTD-NTD and
NTD-CTD interfaces are involved in the formation of

CA hexamers, while the intermolecular CTD-CTD
interface connects neighboring hexamers. Our modeling
analyses did not support a possibility of intramolecular
interaction but indicated possible intermolecular interac-
tion between Gag205 in CA NTD and Gag312/340 in
CA CTD, which may affect CA hexamer formation dur-
ing viral maturation. This is consistent with our results
in Figure 5 indicating that the GagD205E substitution
results in inhibition of the early phase of SIVmac239
replication, which can be overcome by additional
GagA312P or GagV340M substitution. This possibility is
supported also by our results on viral core stability in
vitro, although it remains unclear how much extent the
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Figure 5 Mutant SIV infection. LuSIV cells were infected with
SIVmac239 (WT), SWVmac239Gag205E (205E), SIVmac239Gag205E312P
(205E312P), or SIVmac239Gag205E340M (205E340M). Luciferase
activity was measured 24 hr after infection. Relative infectivity is
shown as the ratio (%) of the luciferase activity to that of SIVmac239
(WT). Mean values in three sets of experiments are shown.
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core stability in vitro can reflect the one in vivo [42].
There has been no report suggesting the influence of
the Gag 205 residue on SIV sensitivity to tripartite inter-
action motif 5a. (TRIM5a). A previous report on HIV
CA lattice [31,43] indicated a potential interaction
between the helix 4 of NTD and the loop connecting
helices 10 and 11 of CTD in the adjacent molecule. Our
results suggest the possible involvement of Gag205 and
Gag340 residues in this intermolecular NTD-CTD inter-
action in CA hexamers.

The molecular model of CA hexamers incorporating
the GagD205E substitution suggested shortening of the
distance between Gag205 and Gag340 residues, which
looked to be compensated by GagV340M substitution
(Figure 4). The modeling can draw a hydrophobic
pocket between Gag205 and Gag340 residues in

10000+
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Figure 6 Mutant SIV production. COS-1 cells were transfected
with molecular clone DNAs of SIVmac239 (WT), SIVmac239Gag205E
(205E), SIVmac239Gag205E312P (205E312P), or
SIVmac239Gag205E340 M (205E340 M). RT activity of the culture
supernatants two days after transfection was measured. Mean
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Figure 7 SIV core stability in vitro. Concentrated SIVmac239 (W¢;
lanes 1-3), SIVmac239Gag205E (205E; lanes 4-6),
SIVmac239Gag205E312P (205E312P; lanes 7-9), or
SIVmac239Gag205E340M (205E340 M; lanes 10-12) was separated
into three fractions (top [a], middle [b], and bottom [c]) by
ultracentrifugation under gradient sucrose concentrations in the
presence of 0.6% Triton X-100. Each fraction was subjected to
Western blot analysis to detect SIV CA p27 proteins (A). A
representative result from three sets of experiments is shown. The
bottom (c) fractions were also subjected to RT assay (B).

RT activity (cpm/ul) o

WT

values in five sets of experiments are shown.

-

SIVmac239Gag205E340M as well as SIVmac239, but
not in SIVmac239Gag205E CA hexamers. Thus, this
pocket may be a target candidate for anti-viral drugs.
Both GagL216S and GagD205E mutations can result
in escape from Gagjpe.216-specific CTL recognition
[19,28], but the former is usually selected in SIV-
mac239-infected 90-120-Ia-positive macaques probably

Table 2 Viral gag sequences in macaque R01-007
infected with SIVmac239?

Wks after challenge

Amino acid sequences®

at 205th at 216th at 340th
123 D S \
137 D(® S V(M)
150 E L M

Viral RNAs were extracted from plasma obtained from a 90-120-la-positive
macaque R01-007 at weeks 123, 137, and 150 after SIVmac239 challenge. Viral
gag fragments were amplified by RT-PCR from viral RNAs and then
sequenced. This animal showed efficient Gagos-216-specific CTL responses and
vaccine-based control of a SIVmac239 challenge with rapid selection of the
GaglL216S escape mutation (at week 5), but accumulated viral mutations in
the chronic phase, leading to reappearance of plasma viremia around week
60 after challenge as described previously [19,35].

®Dominant amino acid sequences at the 205th, 216th, and 340th aa in Gag
are shown. Parentheses indicate the sequences that are not dominant but
detectable.
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because the latter reduces viral fitness more severely
than the former. In this study, we found selection of
GagD205E plus GagV340M mutations in the chronic
phase of SIVmac239 infection in a 90-120-Ia-positive
macaque. In this animal, the CTL escape GagL216S
mutation first selected after SIVmac239 challenge
became undetectable and was replaced with the CTL
escape GagD205E mutation in combination with
GagV340M in the chronic phase. This may imply that
the GagD205E plus GagV340M mutations might be
more advantageous than the GaglL216S mutation for
SIVmac239 replication in the presence of Gagype.216-
specific CTL pressure.

We observed the addition of GagV340M mutation but
not a Gag205E-to-Gag205D reversion in SIVmac239-
Gag205E passage. This may be due to difference in fre-
quencies between purine-to-purine (guanine-to-adenine)
change in the former and purine-to-pyrimidine (ade-
nine-to-thymine) change in the latter. The appearance
of additional GagV340M mutation in SIVmac239-
Gag205E passaged in cell culture as well as the selection
of GagD205E plus GagV340M mutations in an animal
provides key evidence indicating functional interaction
between Gag residues 205 in CA NTD and 340 in CA
CTD. The Gag is a promising candidate as a vaccine
immunogen for CTL induction, because cumulative stu-
dies have indicated the efficacy of Gag-specific CTL
responses against HIV and SIV infection [7,25,44,45].
However, viral mutational escape from CTL recognition
is a major challenge for AIDS vaccine design. Thus, the
information on the structural constraint presented in
this study might be helpful for immunogen design in
AIDS vaccine development.

Conclusions

Our results present in vitro and in vivo evidence impli-
cating the interaction between Gag residues 205 in CA
NTD and 340 in CA CTD in SIV replication. SIV CA
with Gag205D-340V (observed in SIVmac239) or
Gag205E-340M combination (observed in SIVsmE543-3)
is functional whereas the CA with Gag205E-340V is less
functional. Thus, the present study indicates a structural
constraint for functional interaction between SIV CA
NTD and CTD, providing valuable information for
immunogen design to limit viral escape options.

Methods

Analysis of mutant SIV replication

SIV molecular clone DNAs with gag mutations were
constructed by site-directed mutagenesis from the wild-
type SIVmac239 molecular clone DNA [24]. Virus
stocks were obtained by transfection of COS-1 cells
with wild-type or mutant SIV molecular clone DNAs
using Lipofectamine LTX PLUS (Invitrogen, Tokyo,
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Japan). Viral titers were measured by reverse transcrip-
tion (RT) assay as described previously [46]. For analysis
of viral replication kinetics, HSC-F cells (herpesvirus sai-
miri-immortalized macaque T-cell line) [47] were
infected with wild-type or mutant SIVs (normalized by
RT activity), and virus production was monitored by
measuring RT activity in the culture supernatants. To
examine viral infectivity, LuSIV cells, which are derived
from CEMx174 cells and contain a luciferase indicator
gene under the control of the SIVmac239 long terminal
repeat, were cultured for 24 hr after viral infection and
then lysed in a reporter lysis buffer (Promega Corp.,
Tokyo, Japan) for measurement of the luciferase activity
in a luminometer (GloMax™ 96 Microplate Lumin-
ometer, Promega Corp.).

Viral competition assay

HSC-F cells were coinfected with two SIVs at a ratio of
1:1 or 1:4, and the culture supernatants harvested every
other day were used for RT assays. On day 6, the super-
natant was added to fresh HSC-F cells to start the sec-
ond culture. Similarly, on day 12 after the initial
coinfection, the second culture supernatant was added
to fresh HSC-F cells to start the third culture. RNAs
were extracted using the High Pure viral RNA kit
(Roche Diagnostics, Tokyo, Japan) from the initial cul-
ture supernatant on day 6 and from the third culture
supernatant on day 18 post-coinfection. The fragment
(nucleotides 1231 to 2958 in SIVmac239 [GenBank
accession number M33262]) containing the entire gag
region was amplified from the RNA by RT-PCR and
sequenced to determine dominant sequences as
described previously [19].

Molecular modeling of hexameric SIVmac239 CA

The crystal structures of HIV-1 CA NTD at a resolution
of 2.00 A (PDB code: 1M9C[48]), HIV-1 CA CTD at a
resolution of 1.70 A (PDB code: 1A80]5]), and hexame-
ric HIV-1 CA at a resolution of 1.90 A (PDB code: 3H47
[33]) were taken from the RCSB Protein Data Bank [49].
Three-dimensional (3-D) models of monomeric SIV-
mac239 CA were constructed by the homology modeling
technique using ‘MOE-Align’ and ‘MOE-Homology’ in
the Molecular Operating Environment (MOE) version
2008.1002 (Chemical Computing Group Inc., Quebec,
Canada) as described [50,51]. We obtained 25 intermedi-
ate models per one homology modeling in MOE, and
selected the 3-D models which were the intermediate
models with best scores according to the generalized
Born/volume integral methodology [52]. The final 3-D
models were thermodynamically optimized by energy
minimization using an AMBER99 force field [53] com-
bined with the generalized Born model of aqueous solva-
tion implemented in MOE [54]. Physically unacceptable
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local structures of the optimized 3-D models were further
refined on the basis of evaluation by the Ramachandran
plot using MOE. The structures of hexameric SIVmac239
CA were generated from the monomeric structures by
MOE on the basis of the assembly information of hex-
americ HIV-1 CA crystal structure [33].

Analysis of viral CA core stability in vitro

Detergent treatment of wild-type and mutant SIV parti-
cles was performed essentially as described previously
[34]. Briefly, viruses from COS-1 cells transfected with
viral molecular clone DNAs (normalized by RT activity)
were concentrated by ultracentrifugation at 35,000 x
rpm for 75 min at 4°C in a SW41 rotor (Beckman
Instruments, Tokyo, Japan) through a cushion of 20%
sucrose in phosphate buffered saline (PBS). The concen-
trated viral pellets were suspended in PBS. Sucrose step
gradients were prepared in SW55 centrifuge tubes with
the 2.0 ml layer of 60% sucrose on the bottom and 2.1
ml layer of 20% sucrose overlaid. Then, 0.1 ml of Triton
X-100 in PBS and 0.5 ml of concentrated viruses were
overlaid and ultracentrifuged at 35,000 x rpm for 60
min at 4°C in a SW55Ti rotor (Beckman Instruments).
Three fractions (top [a], middle [b], and bottom [c]) of
1.1 ml each were collected from the top and subjected
to Western blot analysis using plasma from a simian-
human immunodeficiency virus 89.6PD-infected rhesus
macaque [55] and RT assay.
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Abstract

Human immunodeficiency virus type 1 (HIV-1) hardly replicates in Old World monkeys. Recently, a mutant HIV-1 clone, NL-DT5R, in
which a small part of gag and the entire vif gene are replaced with STVmac239-derived ones, was shown to be able to replicate in pigtail monkeys
but not in rhesus monkeys (RM). In the present study, we found that a modified monkey-tropic HIV-1 (HIV-1mt), MN4-5S, acquired the ability
to replicate efficiently in cynomolgus monkeys as compared with the NL-DT5R, while neither NL-DT5R nor MN4-5S replicated in RM cells.
These results suggest that multiple determinants may be involved in the restriction of HIV-1 replication in macaques, depending on the species of
macaques. The new HIV-1mt clone will be useful for studying molecular mechanisms by which anti-viral host factors regulate HIV-1 replication

in macaques.

© 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Keywords: HIV-1; Old World monkey; TRIM5a

1. Introduction

Human immunodeficiency virus type 1 (HIV-1) produc-
tively infects only humans but not Old World monkeys
(OWM) such as cynomolgus monkeys (CM) or rhesus
monkeys (RM), whereas RM-derived simian immunodefi-
ciency virus (SIVmac) can efficiently replicate in OWM.
Because of this species barrier, alternative monkey models
using SIVmac or simian/human immunodeficiency viruses
(SHIV) have been used for AIDS research [1—4]. However,

* Corresponding author. Primate Research Institute, Kyoto University,
Inuyama 484-8506, Japan. Tel.: +-81 568 63 0440; fax: +81 568 63 0459.
E-mail address: akari@pri.kyoto-u.ac.jp (H. Akari).
' A.S. and M.N. contributed equally to this work.

detailed analyses of molecular mechanisms of the pathogen-
esis of HIV-1 have been hampered by the lack of appropriate
non-human primate models for HIV-1 infection.

The mechanistic basis for the inability of HIV-1 to replicate
in OWM cells has remained unclear. Recently, a number of
intrinsic anti-HIV-1 cellular factors, including tripartite motif
protein 5a. (TRIMS5a), Cyclophilin A (CypA), apolipoprotein B
mRNA-editing catalytic polypeptide (APOBEC3) family and
Tetherin were discovered in OWM cells [5,6]. TRIMS5a
strongly suppresses HIV-1 replication, mainly by affecting the
viral disassembly step, resulting in a decrease of reverse tran-
scription products [7,8]. CypA acts as a regulator promoting
TRIMS5a-mediated restriction of HIV-1 [8]. APOBECS3 is also
a major regulator of HIV-1 replication [9,10]. APOBEC3 exerts
its inhibitory effect mainly by inducing G to A hypermutation

1286-4579/$ - see front matter © 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
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into the viral genome due to its cytidine deaminase activity,
while hypermutation-independent inhibitory activity at the
stage of reverse transcription is also evident [11]. Tetherin, also
referred to as a BST-2, was identified as an intrinsic anti-viral
factor that restricts the egress of HIV-1 by tethering virions to
the host cell surface [12,13]. Importantly, HIV-1 can counteract
human APOBEC3 activity by utilizing the viral accessory
protein Vif, whereas it cannot counteract OWM APOBEC3
[14]. Similarly, HIV-1 counteracts human Tetherin activity by
utilizing another viral accessory protein Vpu, whereas HIV-1
does not counteract OWM Tetherin activity [15].

In an attempt to generate a monkey-tropic HIV-1 (HIV-
Imt), Kamada et al. constructed an HIV-1 variant carrying
minimal SIVmac-derived sequences to overcome the restric-
tion factors [16]. The prototype HIV-1 clone NL-DT5R had
a sequence encoding an SIVmac loop between alpha helices 4
and 5 (L4/5) of capsid gene (CA) and the entire vif gene,
which relieved the inhibitory effects on viral replication by
restriction factors CypA, TRIM5a and APOBEC3. NL-DT5R
was able to replicate in pigtail monkeys (PM) in vivo as well
as in vitro, as reported by Igarashi et al. [17]. Although NL-
DT5R induced immune responses in infected animals, the
virus did not establish persistent infection.

In the present study, we sought to adapt NL-DT5R to CM
by performing long-term passage in CM-derived HSC-F cells.
We successfully obtained a modified HIV-1mt clone having
several mutations. Additionally, we inserted an SIVmac loop
between alpha helices 6 and 7 (L6/7) of CA [18]. The resultant
clone named MN4-5S was found to replicate efficiently and to
induce strong immune responses in infected CM, suggesting
the impact of viral adaptation.
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2. Materials and methods
2.1. Plasmid construction

The HIV-1 derivatives were constructed on a background of
an infectious molecular clone, NL4-3 [19]. NL-DT5R, a cloned
virus containing SIVmac239 L4/5 and the entire vif gene, was
reported previously by Kamada et al. [16]. In addition,
NL-DT562, a virus having an R5-tropic SF162-derived env
gene on a background of NL-DT5R, was used in this study [20].
After long passage of NL-DT5R and NL-DT562 in cynomolgus
T cell line HSC-F [21], several mutations were appeared in both
viral genomes, and then all of them were inserted into
NL-DT5R by gene-engineering techniques. Consequently,
a clone having 14 nucleotide substitutions in its genome was
constructed and named MN4-5. Among these substitutions, 7
were non-synonymous mutations. The structure of the clone is
shown in Fig. 1. A part of L6/7 of CA (aa residues 120—122;
HNP) of MN4-5 was also replaced with the corresponding
segment of SIVmac239 CA (aa residues 120—123; RQQN) by
means of site-directed mutagenesis as described previously in
Ref. [18]. The resultant construct was designated MN4-58S.

2.2. Cells and viruses

Human embryonic kidney cell line HEK293T was main-
tained in DMEM supplemented with 10% fetal bovine serum,
100 units/ml of penicillin and 100 pg/ml of streptomycin
(Sigma). Monkey peripheral blood mononuclear cells
(PBMCs) were separated with a standard Ficoll density
gradient separation method and cultured in R-10 composed of

vor - env 3LTR
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NL-DT5R [ . P
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Fig. 1. Structure of HIV-1mt clones used in this study. The positions of nucleotide mutations are indicated by arrows in this figure. Among nucleotide substitutions,

the positions of non-synonymous mutations are indicated in red.
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RPMI-1640 medium supplemented with 10% fetal bovine
serum, 100 units/ml of penicillin and 100 pg/ml of strepto-
mycin (Sigma). The growth kinetics of each HIV-1 clone were
examined in activated CD8* cell-depleted PBMCs. Briefly,
separated PBMCs were reacted with a PE-labeled anti-CD8
antibody and then treated with anti-PE magnetic beads. After
washing, CD8" cell-depleted PBMCs were negatively sepa-
rated by using MACS columns (Miltenyi Biotec). For stimu-
lation, CD8™ cell-depleted PBMCs were first cultured in R-10
containing 1 pg/ml of concanavalin A (Sigma) for 2 days
followed by culture in R-10 supplemented with 100 U/ml IL-2
(Shionogi) for more 2 days. The cells were then infected with
100 ng of p24 of HIV-1 and the culture supernatant was
collected periodically. HSC-F, a cynomolgus monkey-derived
CD4™" T cell line [21], was cultured in R-10.

Virus stocks were prepared as follows: sub-confluent
HEK293T cells were transfected with proviral DNA using
Lipofectamine2000 reagent according to the manufacturer’s
instructions. At 42 h after transfection, culture supernatants
were centrifuged, filtrated with a 0.45 pm filter, and aliquoted
as virus stocks for in vitro experiments. For preparation of
viral stocks for in vivo experiments, CD8" cell-depleted
PBMCs were infected with the HEK293T-derived stocks as
described above. After washing, the cells were maintained for
several days and the culture supernatants were collected and
stored as described above.

2.3. Reverse transcription (RT) assay

Virion-associated RT activity was measured as described
previously in Ref. [22]. HSC-F cells (1 x 10°) were infected
with equal amounts of viruses (1 X 107 RT units). Viral growth
kinetics was determined by RT production in the culture
supernatants.

2.4. Animal experiments

Healthy adult cynomolgus monkeys were used in this study.
All animals were confirmed to be negative for simian retro-
virus and were housed in individual isolators in a biosafety
level 3 facility and maintained according to the National
Institute of Biomedical Innovation rules and guidelines for
experimental animal welfare. Bleeding and viral inoculation
were performed under ketamine hydrochloride anesthesia.
Viral stocks for inoculation were inoculated into each animal.
The profiles of plasma viral RNA loads, circulating CD4" and
CD8" T lymphocytes were evaluated as described below.

2.5. Flow cytometry and immunophenotyping of
peripheral blood lymphocytes

Immunophenotyping of freshly isolated PBMCs was per-
formed according to standard procedures using multicolor
flow cytometry performed with a FACSCantoll (Becton
Dickinson). CD4" and CD8"' T cells were identified using
monoclonal antibodies (mAbs) to CD3 (clone SP34-2, BD
Pharmingen), CD4 (clone L200, BD Pharmingen) and CD8

(clone DK25, DAKO). Flow cytometric acquisition and anal-
ysis of samples was performed on at least 10,000 events
collected by a flow cytometer driven by FACSDiVa software.

2.6. Analysis of anti-viral antibody response

Plasma samples from infected animals were first heat-
inactivated at 56 °C for 30 min. Then, 100-fold diluted
samples were reacted with commercially available anti-HIV-1
antibody detection strips (New LAV Blot I, Bio-Rad)
according to the manufacture’s instructions.

2.7. In vivo depletion of CD8" lymphocytes

Infected animals received an anti-CD8 mAb (cM-T807) as
follows: 10 mg/kg (body weight) inoculation subcutaneously
at 42 days post infection (DPI), followed by 5 mg/kg inocu-
lation intravenously at 45, 49, and 52 DPI. The cM-T807 mAb
was provided by the NIH Nonhuman Primate Reagent
Resource. To repeatedly confirm the depletion of CD8™ cells
in the presence of cM-T807, an anti-CD8 mAb (clone DK25,
DAKO) was used as reported previously in Ref. [23].

2.8. Quantification of viral RNA

Total RNA was collected from monkey plasma using a High
Pure Viral RNA Kit (Roche Diagnostics) according to the
manufacturer’s instructions. Viral RNA was quantified with
a quantitative real-time PCR system using TagMan One-Step
RT-PCR Master Mix Reagents (Applied Biosystems). The
primers and probe used in this study were as follows: Forward
primer: HIVgag683 (+) (5'-CTCTCGACGCAGGACTCGGC-
TTGCT-3'); Reverse primer: HIVgag803 (—) (5'-GCTCT-
CGCACCCATCTCTCTCCTTCTAGCC-3'); Probe: HIVgag
TagMan 720R748 (FAM-GCAAGAGGCGAGRGGCGGC-
GACTGGTGAG-TAMRA). The quantification and data anal-
ysis were performed using the iQ5 Real-Time PCR Detection
System (Bio-Rad). The detection limit of this assay was 400-
copies/ml plasma.

3. Results

3.1. Growth properties of prototype HIV-Imt clone,
NL-DT5R in macaques in vitro and in vivo

We first examined the replication properties of prototype
HIV-1mt NL-DT5R in CD8™ cell-depleted PBMCs of CM and
RM. NL-DT5R replicated in the cells of CM but not in those
of RM (Fig. 2). We next examined the in vivo replication
properties of NL-DT5R in CM. Viral stocks for inoculation
were prepared with CD8" cell-depleted CM PBMCs as
described above. Then, two monkeys were infected with
NL-DT5R intravenously and bled periodically. As shown in
Fig. 3A, NL-DT5R established infection as indicated by
detectable levels of plasma viremia and an anti-HIV-1 anti-
body response, although the viral level was marginal (about
1 x 10® copies/ml) and disappeared at 4 weeks post infection.
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Fig. 2. Growth properties of the NL-DT5R in CD8" cell-depleted PBMCs
from CM (A) and RM (B). The cells were infected with NL-DT5R and the
viral replication was monitored by p24 antigen in the culture supernatants
using a p24 quantitative ELISA kit. Animal identifications are indicated at the
top of each panel.

These results indicated that although CM appeared permissive
for NL-DTS5R as compared with RM, the mutations introduced
in NL-DT5R were not still sufficient to overcome the
restriction by host factor(s) of these macaques.

3.2. MN4-5§ showed improved replication capability in
CM CD8" cell-depleted PBMCs

In order to improve the replication capability of HIV-1mt in
CM, we conducted long-term passage of NL-DT5R in HSC-F
cells. Additionally, NL-DT562, having an R5-tropic env gene
on a background of NL-DT5R, was also passaged long-term in
HSC-F cells. We found that the passaging improved the growth
of the viruses (data not shown), and then viral clones were
obtained after the long-term passaging and sequenced. Ten
nucleotide substitutions were identified in the NL-DT5R-
derived clone and 4 nucleotide substitutions (except for the env
gene) in the NL-DT562-derived clone. These 14 nucleotide
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substitutions (7 of which were non-synonymous mutations)
were assembled and introduced into NL-DT5R. The resultant
clone was named MN4-5, and its structure is shown in Fig. 1.
We previously found that insertion of an SIVmac loop between
alpha helices 6 and 7 (L6/7) of CA into the corresponding
region in HIV-1 significantly enhanced the viral replication in
HSC-F cells and PBMCs of CM by relieving the inhibitory
effect of TRIM5a. [18]. We therefore inserted an SIVmac-
derived L6/7 sequence into MN4-5. The resultant clone was
named MN4-58S (Fig. 1). In order to examine the impact of these
modifications on the viral replication, we analyzed the repli-
cation properties of this “adapted” virus in HSC-F cells and
CD8" cell-depleted PBMCs of CM. MN4-5 showed higher
replication as compared with NL-DT5R in both types of cells
(Figs. 4 and 5). Moreover, MN4-5S showed enhanced growth
capability in the cells as compared with the parental clones,
NL-DTS5R and MN4-5 (Figs. 4 and 5).

Notably, MN4-5S did not show any replication in RM cells
(data not shown), indicating that the combination of the
mutations introduced in NL-DT5R may be effective for escape
from the restriction in CM cells but not in RM cells.

3.3. MN4-5S induced greater viremia in CM as
compared with parental clone, NL-DT5R

Since MN4-5S showed enhanced ability to replicate in CM
cells, we next examined the viral replication in vivo. The stock
of MN4-5S virus was inoculated into 3 CM. MN4-5S induced
10-fold higher viremia in infected animals at 2—3 weeks after
infection (Fig. 6A), as compared with that induced by
NL-DT5R (see Fig. 3). This result was consistent with the in
vitro result (Fig. 5) and demonstrated that the mutations
inserted into NL-DT5R contributed to enhancement of viral
replication in vivo. In addition, at the acute phase of infection
a slight decrease of CD4™" T cells was observed (Fig. 6B). The
viremia became undetectable at 6 weeks after infection.

Mf 97-108 Mf 97-070
33 3z 2
2e222232828%2 222232208322
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L

Fig. 3. Profiles of plasma viral RNA loads (A) and anti-HIV-1 antibody responses (B) in CM infected with NL-DT5R. Mf97-108 (open circles) and Mf97-070
(closed diamonds) were used in this study. Viral stocks for inoculation were prepared in CD8™ cell-depleted PBMCs, and then 6.1 ng p24 of HIV-1 were inoculated
into each animal. Commercially available diagnostic HIV-1 Western blotting strips were reacted with 100-fold diluted monkey plasma. Plasma from HIV-1-
infected or uninfected individuals was used as a positive or a negative control, respectively.
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Thereafter, antibody response against MN4-5S was observed
in infected animals (Fig. 6C). As indicated by comparison
with the lane of the positive control as a standard, the degree
of antibody response seemed to be stronger than that against
NL-DT5R (see Figs. 3B and 6C). Next we attempted to clarify
the role of CD8' lymphocytes in the disappearance of
viremia. We conducted in vivo depletion of CD8" cells by
using a method reported previously [23]. We found that the
reappearance of viremia was observed in all monkeys tested in
parallel with the decline of CD8™ T cells after the anti-CD8
mADb administration (Fig. 6A and D). This result indicated that
CD8™ T cells had a critical role in the control of HIV-1mt
replication and suggested that the virus was able to infect
latently in vivo.

4. Discussion

In the present study, we found that a modified HIV-1mit,
MN4-5S, acquired greater ability to replicate in CM than

A. Saito et al. / Microbes and Infection 13 (2011) 58—64

NL-DT5R, and that both the SIVmac-derived L6/7 (HNP120-
122 > RQQN120-123 of CA) and a series of substitutions
identified by long-term passage of NL-DT5R in HSC-F cells
contributed to this ability (Fig. 1). We recently showed that the
substitution of L6/7 relieved the inhibitory effect of TRIMS5a.
[18]. Additionally, our preliminary data suggest that non-
synonymous mutations in the integrase and env genes are
likely to be critical for the improved activity (Nomaguchi
et al., manuscript in preparation). It is possible that these
adaptive mutations may optimize the interaction between host
and viral proteins.

It seemed that the growth kinetics of NL-DT5R in PM were
comparable with those of MN4-5S in CM, which had peak
levels in acute viremia of approximately 10* copies/ml [17]. Tt
is therefore likely that PM may exhibit better susceptibility to
HIV-1mt than CM. It is possible that the greater susceptibility
of PM to HIV-1mt replication could be due to the genotype of
TRIMS, because PM usually expresses a chimera between
TRIMS5a and CypA, so-called TRIM-Cyp, whose anti-HIV-1
activity is defective [24].

One unexpected finding in this study was that MN4-5S was
unable to replicate in PBMCs of RM (data not shown), which
was in contrast with the greater susceptibility of RM to SIV-
mac infection. Our results suggested that RM was most
resistant to HIV-1mt replication among the three macaque
species. Since our HIV-1mt clones (NL-DT5R and MN4-5)
were established on the basis of information obtained from
serial passages of the viruses in CM-derived cells, it may be
reasonable to consider that these viruses were consequently
optimized to CM. Alternatively, it is also possible that anti-
HIV-1 activities such as TRIM5a and APOBEC3 of RM could
be greater than those of other macaques. Further studies are in
progress to address these questions.
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Fig. 5. Growth properties of HIV-1mtin CD8" cell-depleted PBMCs from four CM. The cells were infected with a series of HIV-1mt derivatives. The viral replication
was monitored by p24 antigen in the culture supernatants using a p24 quantitative ELISA kit. Animal identifications are indicated at the top of each panel.
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We demonstrated that the reappearance of viremia was
observed in all monkeys tested in parallel with decline of
CD8™ T cells after anti-CD8 mAb administration (Fig. 6A and
D). This result indicated that HIV-1-specific CD8" T cells had
a critical role in the control of HIV-1mt replication and sug-
gested that the virus may be able to infect latently in vivo. In
order to establish a set point viremia and persistent infection,
further modifications of HIV-1mt may be required to enable
potent escape from the anti-viral immune response.

Further mechanistic characterization of anti-HIV-1 restric-
tion factors will help in the construction of highly replicative
and pathogenic HIV-1mt clones. As in the case of SHIV, in
vivo passage of the virus could be a conventional and
straightforward procedure for achieving such purposes [4].
However, the results of our study demonstrate that selective
modification of HIV-Imt based on available knowledge
regarding the molecular machineries is an alternative and

powerful way. We are now in the process of developing the
next generation of HIV-1mt that will acquire growth ability
and pathogenicity in macaques as well as in humans.
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Hepatitis E virus (HEV) is a human pathogen that causes acute hepatitis. When an HEV capsid protein
containing a 52-amino-acid deletion at the C terminus and a 111-amino-acid deletion at the N terminus is
expressed in insect cells, the recombinant HEV capsid protein can self-assemble into a T=1 virus-like particle
(VLP) that retains the antigenicity of the native HEV virion. In this study, we used cryoelectron microscopy and
image reconstruction to show that anti-HEV monoclonal antibodies bind to the protruding domain of the
capsid protein at the lateral side of the spikes. Molecular docking of the HEV VLP crystal structure revealed
that Fab224 covered three surface loops of the recombinant truncated second open reading frame (ORF2)
protein (PORF2) at the top part of the spike. We also determined the structure of a chimeric HEV VLP and
located the inserted B-cell tag, an epitope of 11 amino acids coupled to the C-terminal end of the recombinant
OREF?2 protein. The binding site of Fab224 appeared to be distinct from the location of the inserted B-cell tag,
suggesting that the chimeric VLP could elicit immunity against both HEV and an inserted foreign epitope.
Therefore, the T=1 HEV VLP is a novel delivery system for displaying foreign epitopes at the VLP surface in

order to induce antibodies against both HEV and the inserted epitope.

Hepatitis E virus (HEV) is a causative agent of acute hep-
atitis in humans and is primarily transmitted via the fecal-oral
route. HEV is thus resistant to the low pH and digestive en-
zymes associated with the stomach and gastrointestinal tract.
HEYV regularly causes epidemics in many tropical and subtrop-
ical countries. In India, 101 outbreaks were confirmed by se-
rological analysis in the state of Maharashtra in the last 5 years
(6), and the lifetime risk of HEV infection exceeds 60% (28).
Sporadic cases have also been reported in regions where HEV
is endemic, as well as in areas where it is not endemic. Al-
though some of these cases were associated with travel, many
cases involved patients without a history of travel to regions
where HEV is endemic. Accumulating evidence suggests that
sporadic infection occurs through a zoonotic route and is not
limited to developing countries. Seroprevalence suggests hep-
atitis E infection may also be prevalent in high-income coun-
tries (21), such as the United States (17), the United Kingdom
(3), and Japan (18). The overall mortality rate of HEV infec-
tion during an outbreak generally ranges from 1 to 15%, and
the highest mortality occurs in pregnant women, with fatality
rates of up to 30% (19).

The HEV virion is composed of a 7.2-kb single-stranded
RNA molecule and a 32- to 34-nm icosahedral capsid. The
HEV genome contains three open reading frames (ORFs).
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The capsid protein, encoded by the second open reading frame
(ORF2), located at the 3" terminus of the genome, comprises
660 amino acids and is responsible for most capsid-related
functions, such as assembly, host interaction, and immunoge-
nicity. Recombinant ORF2 proteins can induce antibodies that
block HEV infection in nonhuman primates (12, 27). Four
major antigenic domains were predicted to be located within
the C-terminal 268 amino acids of the ORF2 protein; one
domain was experimentally identified as a neutralization
epitope in the Sar-55 ORF?2 capsid protein (25, 26). However,
the minimal peptide needed to induce anti-HEV neutralizing
antibodies contains residues 459 to 607 of the ORF2 protein
(33), which is much longer than a linear antigenic epitope,
suggesting that the neutralization epitope is conformational.
Therefore, the detailed structure of the HEV capsid protein is
required in order to understand the organization of HEV
epitopes.

Currently, there are 1,600 HEV genomic sequences avail-
able through the International Nucleotide Sequence Database
Collaboration. They are classified into four genotypes which
vary by geographic distribution and host range (10). In con-
trast, only a single serotype has been identified, suggesting that
the immunodominant domain of HEV is highly conserved
among genotypes. Antibodies from any one of the four geno-
types cross-react with the capsid protein of genotype 1 (7).

Like other hepatitis viruses, HEV does not propagate well in
currently available cell culture systems. Hepatitis E preventive
strategies so far rely on the use of ORF2-derived recombinant
protein (16). When expressed in insect cells, recombinant trun-
cated ORF?2 protein (PORF2), with 52 residues deleted from
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the C terminus and 111 residues deleted from the N terminus,
self-assembles into virus-like particles (VLPs) (15). Our previ-
ous structural analysis of recombinant HEV VLP by cryoelec-
tron microscopy (cryo-EM) provided the first understanding of
the quaternary arrangement of PORF2.

The essential assembly element of the PORF2 protein con-
tained amino acids 125 to 600 (13), and the reconstructed VLP
displayed a T=1 icosahedral particle composed of 60 copies of
truncated PORF2 (30). Recently, crystal structures were re-
ported for genotype 1 T=1 VLPs (31), genotype 3 T=1 VLPs
(32), and genotype 4 T=1 VLPs (8), revealing that PORF2 is
composed of three domains, the S domain, M domain, and P
domain. The T=1 icosahedral shell is composed of 60 copies of
S domains, while the M domain binds tightly to the S domain
and interacts with two 3-fold-related M domains to form a
surface plateau at each of the 3-fold axes. Two P domains are
tightly associated as a dimeric spike that protrudes from each
of the icosahedral 2-fold axes. As a result, on a low-resolution
cryo-EM density map, the HEV T=1 VLP appears as an ico-
sahedral particle with 30 spikes (30).

Although these VLPs are smaller (270 A in diameter) than
the native HEV virion (320 to 340 A), oral administration of
HEV VLPs to experimental animals can induce anti-HEV
antibodies that bind to native HEV (14). When a B-cell tag of
11 amino acids on glycoprotein D of herpes simplex virus was
covalently coupled to the C-terminal end of PORF2 (after
residue 608), the fusion protein retained the ability of PORF2
to assemble and form chimeric T=1 icosahedral VLPs that
were capable of eliciting systemic and mucosal antibodies
against both HEV capsid protein and the attached B-cell tag
(20). Therefore, the HEV T=1 VLP is a potential carrier for
delivering not only HEV antigen but also foreign antigens or
antiviral drugs to the host immune system. However, rational
design of HEV-based delivery vectors requires detailed infor-
mation on HEV VLP structure, as well as on HEV immuno-
dominant domains.

Here, we identified antigenic structures using cryo-EM and
three-dimensional reconstruction. Our results indicate that the
binding footprint of a neutralizing antibody covers the lateral
side of the P domain, while a B-cell tag at the C terminus does
not alter the assembly of T=1 HEV VLP.

MATERIALS AND METHODS

Production and purification of anti-HEV monoclonal antibody (MAb)
MAb224. Eight-week-old female BALB/c mice were immunized at 0 and 4 weeks
by intraperitoneal inoculation with HEV VLPs (100 p.g/ml). Four weeks later, a
final boost containing an equal volume of antigen was administered. Three days
after the final boost, mouse spleen cells were fused with P3U1 mouse myeloma
cells using polyethylene glycol 1500 (50% [wt/vol]) (Boehringer, Mannheim,
Germany) essentially as described by Adler and Faine (1). Supernatants from
microplate wells positive for hybridoma growth were screened by enzyme-linked
immunosorbent assay (ELISA) using recombinant HEV VLPs as the antigen.
Hybridomas that secrete antibodies specific for HEV were subcloned three times
by limiting dilution, after which they were considered to be monoclonal. Anti-
bodies in the supernatants were isotyped using a mouse monoclonal antibody
isotyping kit (Amersham, Little Chalfont, Buckinghamshire, United Kingdom) in
accordance with the manufacturer’s protocol. Hybridomas were grown in bulk in
stationary flasks (Nunc, Roskilde, Denmark) using RPMI 1640 with 15% fetal
calf serum. Antibodies were purified from cell supernatants using HiTrap protein
G affinity columns (Pharmacia Biotech AB, Uppsala, Sweden) and stored at
—80°C. Among all of the antibodies that were generated, MAb224, an immu-
noglobulin G1 (IgG1) isotype, was chosen for structural analysis.
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Preparation of Fab224 fragments. Isolated Fab224 fragments were prepared
from purified mouse monoclonal antibodies by papain cleavage. A reducing
L-cysteine buffer was used to activate the papain, and MAb224 was mixed with
papain at a molar ratio of 100:1. The mixture was incubated overnight at 30°C.
The reaction was stopped by the addition of iodoacetamide, and the product was
analyzed by SDS-PAGE. The Fab224 fragments were purified using a 5-ml
prepacked protein A chromatography column (Pierce Protein Research) accord-
ing to the manufacturer’s instructions. The Fc fragments and uncleaved MAb224
antibodies were trapped in the column due to their affinity for protein A, while
the Fab224 fragments were collected in the flowthrough fraction.

Production and purification of anti-HEV Fab4, Fab4 was prepared by phage
display and purified according to the protocol described previously (25). Briefly,
chimpanzee 1441 was infected with HEV strain SAR-55. Bone marrow was
aspirated from the iliac crest of this animal, and the antibody k-chain gene and
y1-chain gene were amplified and cloned into the pComb3H phage display
vector and pGEM-T cloning vector (Promega), respectively, and transformed
into Escherichia coli XL-1 Blue. The bacteria were then amplified and infected
with helper phage VCS M13 at a multiplicity of infection of 50 to produce a
library displayed on the surfaces of phage particles. Phage was panned on
SAR-55 ORF2-coated ELISA wells; four rounds of panning were performed.
After amplification of the selected library, the phagemid DNA was extracted and
the vector was modified to remove the bacteriophage coat protein Ill-encoding
region of the phage. The phagemid DNAs were religated and transformed into
E. coli XL-1 Blue to produce soluble Fabs. The vector pComb3H was con-
structed to encode a six-histidine tail at the end of the Fab fragment, thus
facilitating Fab purification. Fab4 purity was determined by SDS-PAGE, fol-
lowed by colloidal Coomassie brilliant blue staining.

Production and purification of HEV VLPs. The production and purification of
HEV VLPs were conducted as described previously (13, 15, 20, 30). Briefly,
DNA fragments encoding the N-truncated ORF2 protein (for the wild-type
VLP) and the chimeric ORF2 protein (for VLP-C-tag) were cloned using the
baculovirus transfer vector pVL1393 to yield pVLORF2. Insect Sf9 cells (Riken
Cell Bank, Tsukuba, Japan) were used to produce recombinant baculovirus. Tn5
insect cells were infected with the recombinant baculoviruses at a multiplicity of
infection of 5 and incubated in Ex-Cell 405 medium (JRH Biosciences, Lenexa,
KS) for 6 days at 26.5°C. The supernatant was collected after the removal of cell
debris by centrifugation at 10,000 X g for 90 min. The HEV VLPs were pelleted
at 100,000 X g for 2 h in a Beckman SW32 Ti rotor and resuspended in 4.5 ml
Ex-Cell 405. The VLPs were further purified by centrifugation through a CsCl
density gradient (1.31 g/ml) at 110,000 X g for 24 h at 4°C in a Beckman SW 55
Ti rotor. The white virus band was collected and diluted 4 times with Ex-Cell 405
to decrease the CsCl concentration, and then the VLPs were centrifuged for 2 h
in a Beckman TLA 55 rotor at 100,000 X g. The VLPs were resuspended in 100
to 500 pl of 10 mM potassium-MES (morpholineethanesulfonic acid) buffer
(pH = 6.2) and stored at 4°C. To construct chimeric VLP-C-tag, recombinant
baculoviruses were prepared by inserting the B-cell tag epitope from herpes
simplex virus glycoprotein D (QPELAPEDPED) at amino acid position 608 (20).

Western blotting. A series of DNA fragments were constructed to encode
truncated ORF2 residues 112 to 660, 112 to 608, 112 to 602, 112 to 601, 112 to
600, 112 to 596, and 112 to 589. These recombinant ORF2 genes were inserted
into a baculovirus vector and expressed in insect cells using the protocol for VLP
production, except that the recombinant proteins were recovered from the cy-
toplasm after lysis of the cell. Recombinant proteins were heated in 4X Laemmli
sample buffer and electrophoresed under reducing conditions in a 10% SDS-
polyacrylamide gel. After transfer of proteins to a polyvinylidene difluoride
(PVDF) membrane, the membrane was blocked with TBS buffer (20 mM Tris,
pH 7.6, NaCl) containing 0.5% Tween 20 (vol/vol) prior to overnight incubation
with Fab224 fragments at a 1:10 dilution. After extensive washing with TBS
buffer containing 0.05% Tween 20 (vol/vol), alkaline phosphatase-conjugated
anti-mouse IgG (Fab specific) was incubated with the membrane for 1 h at room
temperature. The blot was then washed and developed with the p-nitroblue
tetrazolium-5-bromo-4-chloro-3-indolylphosphate (NBT-BCIP) reaction.

Preparation of VLP-Fab complexes for cryoelectron microscopy. The VLP-
Fab complexes were prepared by incubating Fabs with VLPs at a molar ratio
exceeding 1:300 (VLP versus Fabs) at 4°C overnight. To reduce the background
density in the subsequent structural determination, highly pure VLP-Fab com-
plexes were obtained using a short column containing Sephacryl 300, which
resulted in the removal of the unbound Fab from the sample. The fractions
containing VLP-Fab complexes were collected based on their optical density
readings at a wavelength of 280 nm. The Fab binding occupancy was roughly
estimated by performing SDS-PAGE (8-t0-25% gradient) on the purified VLP-
Fab complexes at a constant voltage using the Phast system (Pharmacia). The
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particle morphology of VLP-Fab complexes was examined by negative-stain
electron microscopy using 2% uranyl acetate.

Cryoelectron microscopy. Sample preparation and cryo-EM were performed
following previously described, well-established procedures (13, 30). Briefly, a
drop containing 3.5 pl of the sample was applied to a glow-discharged holey
carbon-coated copper grid, blotted with a piece of filter paper for 3 s to remove
the extra liquid, and quickly plunged into liquid ethane cooled by liquid nitrogen.
Samples were frozen in a thin layer of vitrified ice. The grid was then transferred
into a Gatan 626DH cryo holder and kept at a low temperature (—178°C) during
the subsequent data collection. Micrographs were collected under low-dose
conditions (<10 e~/A2) using Kodak SO163 film at a magnification of x45,000
on an FEI CM-120 electron microscope operated at 120 kV, and particles were
photographed at a defocus range of 1,000 to 3,000 nm. Micrographs were visually
inspected and selected based on a suitable particle concentration, optimal ice
thickness, and minimal specimen drift. Only micrographs fulfilling these criteria
were analyzed.

Image processing. Selected micrographs were digitized using a Heidelberg
Primescan D8200 (Heidelberg, Germany) at a 14-pm scanning step size, corre-
sponding to 3.11 A per pixel of specimen space. Particles were manually picked
and centered by cross-correlating each one against the circular average image.
The astigmatism and defocus value were evaluated by the superimposed power
spectra from all particles within a single micrograph. The contrast transfer
function’s first zero was approximately within the range of 17 to 20 A~ for the
data used for the structural determination. The self-common-lines algorithm (4)
was used to yield the initial models for VLP-C-tag, VLP-Fab4, and VLP-Fab224.
The origin and orientation search for each particle was carried out iteratively
using the polar Fourier transformation (PFT) algorithm running on an AMD
MP1800 MHz dual-processor Linux workstation (2). Three-dimensional recon-
structions were computed by combining a set of particles with orientations that
spread evenly in an icosahedral asymmetric unit using the Fourier-Bessel algo-
rithm and by superimposing 5-3-2 icosahedral symmetry. To examine the reli-
ability of the three-dimensional reconstruction, the data set was evenly divided
into two parts at the final refinement step and two three-dimensional reconstruc-
tions were computed. The resolution was estimated using Fourier shell correla-
tion (FSC) by assessing the agreement between these two reconstructions in
Fourier space. Using a coefficient value of 0.5 as the criteria, the estimated
resolutions of the three-dimensional reconstructions of VLP-C-tag, VLP-
Fab224, and VLP-Fab4 were computed as 17.5 A, 18.5 A, and 24 A, respectively.

The three-dimensional reconstructions were rendered and visualized using the
Chimera program (22). The contour level was chosen at a value corresponding to
100% of the mass of the PORF2 protein. The electron density map was displayed
in the isosurface mode, which builds a barrier to contour the density about a
certain threshold.

Fitting the crystal structure into cryo-EM density maps. The density of the
bound Fab molecule was determined from a difference density map, which was
calculated by subtracting the cryo-EM map of unbound HEV T=1 VLP from the
density map of the Fab-VLP complex. The cryo-EM map of unbound HEV VLP
was published previously (30). Because the cryo-EM data for unbound VLP and
the Fab-VLP complex were collected with the same FEI CM-120 electron mi-
croscope under similar imaging conditions, the difference density map was cal-
culated by direct subtraction of the density of unbound VLP from the recon-
struction of the Fab-VLP complex after normalizing the contrast between the
two maps. The calculated difference map was used as a constraint in model
fitting. Manual fitting was carried out by translational and rotational movement
of the three-dimensional crystal structure of the PORF2 protein (PDB ID
2Z7ZQ) (31) into the cryo-EM density maps using program O (9). To obtain the
best fit, the atomic model of the PORF2 subunit was treated as a rigid body. The
fitting was first manually refined by minimizing the crashes between symmetry-
related PORF2 molecules and then evaluated based on the cross correlation
coefficient (CC value) between the cryo-EM density and the density computed
from the fitted PORF2 coordinates. Fitting was halted when the CC value
reached 80%. The figures were prepared using the program PyMOL (5), and the
surface stereographic projection of the HEV VLP was prepared using the pro-
gram RIVEM (29).

RESULTS

Binding of antibody MAb224 to PORF2. The binding of the
monoclonal antibody Fab224 to PORF2 was examined via im-
munoblot analysis. A series of recombinant ORF2 proteins
with C-terminal truncations were separated by SDS-PAGE on
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FIG. 1. Characterization of VLP-C-tag and VLP-Fab224.
(A) Western blot assay of the C-terminally truncated ORF2 proteins
with Fab224. M, molecular weight markers; W, peptides recovered
from baculovirus-infected cells. (B) Diagram of the C-terminal mark-
ers. (C) Electron micrograph of frozen-hydrated VLP-C-tag. (D) Elec-
tron micrograph of frozen-hydrated VLP-Fab224. Black arrowheads
indicate the Fab molecules attached to the VLP. Both particles showed
an absence of density in the center. Note that the surface spikes in
VLP-Fab224 appeared as longer thorn-like densities compared to
those of VLP-C-tag.

a 10% gel under reducing conditions and blotted with Fab224
(Fig. 1A). Fab224 recognized both reduced and denatured
recombinant ORF2 proteins that contained amino acids 112 to
660, 112 to 608, 112 to 602, and 112 to 601. In contrast,
recombinant ORF2 proteins composed of residues 112 to 600,
112 to 596, and 112 to 589 did not bind to Fab224. These data
indicate that residues 597 to 601 are critical for Fab224 binding
to PORF2. Because the recombinant ORF2 proteins were
recovered from cell cytoplasm where multiple forms of PORF2
were reported (15), the positive bands observed at a low mo-
lecular weight may be the proteolytic products or degraded
forms of ORF2 that contain the Fab224 binding sequence.

Two-dimensional electron cryomicrographs. The chimeric
VLPs (Fig. 1C) and the Fab224-conjugated VLP complex (Fig.
1D) showed circular profiles with spike-like densities that ex-
tended from the surface. As we observed previously (15, 30),
they appeared to have a white, contrasting center, indicating
that they are empty particles lacking RNA (data not shown).
The sizes of both VLPs were approximately 27 nm without
taking into account the extra densities that extended from the
VLP-Fab224 surface (Fig. 1D).

Binding site of antibodies. The cryo-EM structure of HEV-
Fab224 was reconstructed from 615 images of individual par-
ticles and displayed T=1 icosahedral symmetry with 60 protein
subunits that were arranged into 30 dimeric protruding spikes
located at each icosahedral 2-fold axis (Fig. 2A). Sixty Fab
molecules were observed around each VLP particle, bound to
the shoulder of the P domain. The Fab density extended ~57
A radially away from the spike surface. The density corre-
sponding to the Fab was approximately equal in magnitude to
that of the HEV VLP, indicating that most or all of the 60
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FIG. 2. The cryo-EM structure of HEV T=1 VLP in complex with anti-HEV antibodies. (A) Surface presentation of VLP-Fab224 (left) and
VLP-Fab4 (right) viewed along one of the icosahedral 2-fold axes. One 5-fold axis and two adjacent 3-fold axes are marked with the corresponding
number. In both reconstructions, 60 copies of Fab are attached to the lateral side of HEV VLP; however, the density of Fab4 molecules appears
to be less than that of Fab224 molecules. (B) The viral surface is shown as a stereographic projection overlapped with a line drawing of an
icosahedral asymmetric unit. The 5-fold and two adjacent 3-fold axes are marked with corresponding numbers, while the black triangle encloses
the area of an icosahedral asymmetric unit. The surface residues are colored according to the distance from the center of the VLP, with red being
the furthest away and blue representing the surface depressions. The Fab density is projected as white contour lines on the viral surface, and the

outermost layer of density is drawn as thick white contour lines.

binding sites were occupied by a Fab molecule. The density
corresponding to the VLP capsid was removed from the
cryo-EM map, producing a Fab differential density map that
was used to pinpoint the binding site of the Fab224 antibody
(Fig. 3A and B).

In addition, the structure of HEV VLP in complex with the
neutralizing antibody Fab4 was determined by combining 264
individual images. Fab4 precipitates both the native HEV

virion and recombinant PORF2 peptides, but the reaction de-
pends on the presence of amino acids 597 to 607 (26). Three-
dimensional reconstruction of the VLP-Fab4 complex showed
60 Fab molecules bound to each HEV VLP. Unlike the VLP-
Fab224 complex, the density corresponding to Fab4 was about
one-third of that of the capsid (Fig. 2A), suggesting that only
30 to 40% of the binding sites were occupied by the Fab.
Moreover, the binding of Fab4 appeared to be deeper on the
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FIG. 3. The binding site of Fab224 antibody. (A)
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viewed along a bound Fab molecule. One PORF2 dimer is presented as a solid surface and colored light magenta for the S domain, blue violet
for the M domain, and dark gray for the P domain. The neighboring dimers are drawn in ribbon mode and colored wheat. (B) Side view of a
PORF2 dimer fitted into the cryo-EM density map. (C) A PORF2 dimer viewed along the 2-fold axis and overlapped with the cryo-EM density
map. (D) Top view of a PORF2 dimer viewed along the 2-fold axis. The amino acids in PORF2 responsible for binding to Fab224 are labeled. The
PORF?2 dimer is presented as a solid surface and colored in gray, violet, and light magenta for the P domain, the M domain, and the S domain,
respectively. The residues along the Fab binding interface are colored according to the element, with green for carbon, blue for nitrogen, and red

for oxygen.

side wall of the protruding domain toward the capsid shell,
leaving its Fc domain exposed above the surface of the plateau
(Fig. 2A). In contrast, the entire Fab224 molecule stood mainly
on the top of the P domain surface. The Fab224 and the Fab4
molecules extend along the long axis of the P domain. In both
cases, no steric hindrance of the Fab on the P domain with the
neighboring Fab molecules at either the 5-fold or the 3-fold
axes was apparent. The orientation of the Fabs relative to the
plateau appeared different at a radius of 135 A. The long axis
of Fab224 tilted toward the neighboring spike, while the long
axis of Fab4 pointed to the 5-fold axis (Fig. 2A).

To further analyze the Fab and HEV VLP binding interface,
the crystal structure of genotype 1 PORF2 was docked onto the
VLP-Fab224 cryo-EM density map. The genotype 1 PORF2
crystal structure (PDB ID 2ZZQ) is composed of three do-
mains (31), and these domains are in good agreement with
those of genotype 3 and genotype 4 PORF2 (PDB ID 2ZTN
and 3HAG, respectively) (8, 32). The coordinates fitted very

well with the cryo-EM density map without any adjustment
(CC value of 80%). The atoms on the surface of the HEV VLP
capsid were plotted and colored according to their radial dis-
tance and overlapped with the density of the Fab at the surface
plateau of the protruding spike (Fig. 2B).

The Fab224 interacted with the residues on the side of the
ORF2 spike rather than with those residues on the spike’s
plateau surface (Fig. 3C). The contact footprint did not over-
lap with the dimeric interface of the PORF2 spike. As ex-
pected, Fab224 recognizes a conformational epitope, and its
binding site covers a surface composed of three loops, includ-
ing amino acids 470 to 493 in AB loop, amino acids 539 to 569
in CD loop, and amino acids 581 to 595 in EF loop (Fig. 3D).
Residues E479, D481, T484, Y485, and S487 from the AB loop
and residues Y532, S533, and K534 from the CD loop were in
close contact with the Fab molecule.

Structure of HEV chimeric VLP. Chimeric HEV VLP-C-tag
was constructed using a PORF2 fusion protein in which a



