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Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated
herpesvirus (KSHV, HHV-8)

Harutaka KATANO

Department of Pathology, National Institute of Infectious Diseases
1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
katano@nih.go.jp

Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV or human
herpesvirus 8 HHV-8) are members of gamma-herpes virus family. Both viruses infect to B cells and cause

malignancies such as lymphoma, Since EBV and HHV-8 are so-called ‘oncovirus’, their oncogenecities have
been focused in the researches on EBV and KSHV for a long time. EBV was discovered in 1964,
whereas KSHV was identified in 1994, However, KSIHV was analyzed rapidly in these fifteen vears. One

of the recent progresses in the research on EBV and KSHV is that virus-encoded small RNAs were

identified in their genomes and characterized. EBV is the first human virus in whose genome
microRNA was identified. The oncogenecity of EBV and KSHV remains unclear. Here, I.discuss the
pathogenesis by EBV and KSHV with special reference to recent progress in this field.
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Abstract Antiretroviral therapy for HIV infection is
associated with lipodystrophy. However, raltegravir (RAL),
a new integrase inhibitor, and atazanavir (ATV), a new
generation of protease inhibitor (PI), have not been reported
to significantly induce metabolic abnormalities in some
clinical studies. The aim of this study was to investigate the
influence and molecular mechanisms of RAL and compared
it with the other three classes of ARVs (nucleoside reverse-
transcriptase inhibitors; NRTI, nonnucleoside reverse-
transcriptase inhibitor; NNRTI, and PI) on adipogenesis
using 3T3-L1 cells. RAL and ATV had minimal effects on
the lipid metabolism of 3T3-L1 cells. NRTI induced a
moderate change, and NNRTI and some PIs induced a severe
reduction in cell lipid content. These ARVs induced a
decrease in the expression of genes associated with lipogenic
transcription factors (sterol regulatory-element-binding
protein-1c, CAAT box enhancer-binding protein-o, and
peroxisome proliferator-activated receptor-y). The differ-
entiated 3T3-L1 cells were less sensitive to ARV-induced
metabolic disturbance than were predifferentiated cells.
RAL and ATV did not significantly affect the lipid metab-
olism in our in vitro study. The other ARVs had a direct
influence on adipocytes. Degree and underlying mechanisms
of metabolic disturbance differed among different ARVs.
These data suggest that the distinct metabolic side-effect
profiles of ARVs are a consequences of their differential
effects on the adipocyte physiology. A better understanding
of the mechanism of ARV-induced metabolic abnormalities
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could lead to safer use of ARVs or selection of alternative
agents for further clinical development.

Keywords HIV-1 - Antiretrovirals - Adipocyte -
Lipodystrophy

Introduction

Highly active antiretroviral therapy (HAART) has helped
to control HIV infections and the development of AIDS.
However, this antiretroviral therapy (ART) is often asso-
ciated with severe lipodystrophy, such as peripheral lipo-
atrophy, central fat accumulation, and hyperlipidemia, but
the use of new-generation protease inhibitors (PIs) ataz-
anavir (ATV), and the integrase inhibitor raltegravir
(RAL), has been reported to be associated with a decrease
in hyperlipidemia [1] and reversal of lipodystrophy [2].
The cellular and molecular mechanisms underlying the
metabolic abnormalities induced by ART are unclear, but
many studies have shown that the pathogenesis of adipose
cell dysfunction includes adverse effects on adipocyte
differentiation status [3], survival [4], ability to secrete a
variety of adipokines [5], mitochondrial function [6], and
recovery from oxidative stress [7] induced by antiretrovi-
rals (ARVs). Different ARVs might induce lipid abnor-
malities to a different degree though distinct mechanisms,
and these properties could underlie the metabolic side-
effect profile observed from the use of ARVs.

Adipocyte differentiation involves sequential and coor-
dinated action of several transcription factors that regulate
expression of adipocyte-specific genes [8]. Following the
initial and transient increase in CAAT box enhancer-binding
protein (C/EBP)-f and -6, peroxisome-proliferator-acti-
vated receptor (PPAR)-y, and C/EBP-« promote expression
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of a number of adipose-specific markers, allowing acquisi-
tion of an enlarged, rounded shape and progressive accu-
mulation of cytoplasmic triacylglycerol droplets. C/EBP-u is
expressed early during adipogenesis and is involved in the
induction of PPAR-y. Coexpression of C/EBP-« and PPAR-
1 has synergistic effects on adipogenic conversion, including
lipid metabolism, adipokine secretion, and insulin sensitiv-
ity. Adipocyte differentiation is also enhanced by sterol
regulatory-element-binding protein (SREBP)-1c. SREBP-
lc activates PPAR-y or related adipogenic transcription
factors, thus leading to defective adipogenesis and insulin
resistance. Therefore, PPAR-y, C/EBP-2, and SREBP-1c act
in concert to induce and maintain the adipocyte phenotype.

Many studies provide evidence that some PIs influence
lipid metabolism by inhibiting degradation of adipogenic
transcription factors, such as SREBPs [9, 10], C/EBP-o [ 11],
and PPAR-y [12, 13]. On the other hand, treatment with
nucleoside reverse-transcriptase inhibitors (NRTIs) has
been reported to affect mitochondrial functions [2, 14] by
depleting mitochondrial DNA (mtDNA) and inhibiting
transcription. Integrase inhibitor and the newer genera-
tion of PIs have been reported to exhibit antiviral effi-
cacy without adverse affects on lipid metabolism [2, 15].
A re-examination of the molecular pharmacology and tox-
icology of ART, including these new drugs, may help
explain the differences in the metabolic profiles observed
among ART in clinical use and lead to the discovery of new
drugs that will reduce the incidence of lipodystrophy and
related metabolic complications in HIV-infected patients
receiving HAART. This study first examined the influence
of RAL and then compared it with the four classes of ARVs
(NRTI, NNRTI, PI, and integrase inhibitor) with regard to
lipid metabolism using well-characterized 3T3-L1 adipo-
cytes [16].

Materials and methods
Cells

This study used the 3T3-L1 cell line, which is one of the
most widely used and well-characterized models for
studying adipocyte differentiation and function. After
stimulation, 3T3-L1 preadipocytes show changes in gene
expression and acquire adipocyte characteristics, such as a
spherical shape and accumulation of triglyceride-rich lipid
droplets, as signs of differentiation. The 3T3-L1 cells were
purchased from the Japanese Collection of Research Bio-
resources (Tokyo, Japan) and maintained in Dulbecco’s
modified Eagle medium (DMEM) supplemented with 10%
fetal bovine serum (FBS). Postconfluent cells were induced
to differentiate by incubation with 0.5 mM 3-isobutyl-
methylxanthine and | pM dexamethasone for 2 days. This
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was followed by incubation with 10 pg/ml insulin for
2 days. The cells were then maintained in DMEM with
10% FBS for another 2 days. Antiretroviral drugs were
added to the medium before and after the differentiation of
3T3-L1 cells.

Antiretroviral drugs

Zidovudine (AZT) was purchased from Calbiochem-
Novabiochem. (California, USA). Abacavir (ABC), stavu-
dine (d4T), didanosine (ddI), lamivudine (3TC), efavirenz
(EFV), ritonavir (RTV), and nelfinavir (NFV) were pur-
chased from Toronto Research Chemicals Inc. (Ontario,
Canada). Atazanavir (ATV) was provided by Bristol-Myers
Squibb Company (New York, USA). Lopinavir (LPV) was
provided, by Abbott Laboratories (Illinois, USA). Ampre-
navir (APV) was provided by Glaxo SmithKline (North
Carolina, USA). Raltegravir (RAL) was provided by Merck
(New Jersey, USA). Drug stocks in dimethyl sulfoxide
(DMSO) were stored at —20°C and diluted into culture
media. Vehicle controls received the same final DMSO
concentration as all drug-treated incubations (0.1%).
The peak serum concentration (Cy,.,) of each drug are
as follows: AZT 1.07-3.03 uM, ABC 3.4-8.19 uM, d4T
2.14 uM, ddl 6.95 uM, 3TC 7.89-15.6 uM, EFV
14.2-28.8 uM, RTV 0.84-21.9 uM, NFV 5.0-8.6 uM,
ATV 496-838 pM, LPV 8.22-22.2 uM, APV 6.68-
16.2 uM, and RAL 10.44-11.15 pM. Cells were treated
with 10 uM of ABC, AZT, d4T, ddl, 3TC, and NFV; and
with 20 uM of EFV, RTV, ATV, LPV, APV, and RAL.

Quantitative real-time RT-PCR

Total cellular RNA was isolated from 3T3-L1 cells using
QIAamp RNA Blood Mini (QIAGEN, Tokyo, Japan),
including treatment with DNase. Complementary DNA
(cDNA) was generated from the RNA using TAKARA
RNA Polymerase Chain Reaction (PCR) kit (TAKARA
BIO, Shiga, Japan). Real-time PCR was conducted with
LineGene33 (BioFlux, Tokyo, Japan) using SYBR Green
Realtime PCR Master Mix (TOYOBO Co, Osaka, Japan).
The copy numbers of f-actin were determined in
every sample tested as internal control to normalize DNA
input. The ratio of the normalized mean value for drug-
treated samples was calculated and is indicated in the
graphs.

Oil red O staining

The cellular lipid content was assessed by lipid staining
with Oil red O. Staining was quantified at 490 nm after
solubilization using an Adipogenesis Assay Kit (Chemicon
International, California, USA).
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Quantitation of 8-OHdG in culture medium

The levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in
the culture medium were determined using a competitive
enzyme-linked immunosorbent assay (ELISA) kit (DNA
Damage ELISA Kit; Assay Designs Stressgen, Michigan,
USA).

Statistical analysis

Results were reproduced in at least three independent
experiments and are presented as mean = standard error
(SE). The Fisher least significant difference (LSD) post hoc
test was used for multiple comparisons if analysis of var-
iance (ANOVA) was significant. In all statistical compar-
isons, a P value of <0.05 was considered to be significant.

Results
Effect of ARVs on lipid content in 3T3-L1 cells

Effects of ARVs on dyslipidemia and lipodystrophy differ
among ART regimens, but it is nearly impossible to fully
assess the separate effects of each class of drug from the
clinical data because patients almost always receive a
combination of several classes of ARVs. As a result, in
vitro models were used to examine the exact influence of
the individual drugs on adipocyte development or metab-
olism using well-characterized preadipocyte 3T3-LI cells.
Lipid accumulation in predifferentiated 3T3-L1 cells was
dramatically decreased by NFV and mildly decreased by
ABC, AZT, d4T, EFV, LPV, and APV (Fig. I).
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Fig. 1 Effect of antiretrovirals (ARVs) on triglyceride accumulation
during 3T3-L1 adipose conversion. From confluence (day 0), 3T3-L1
cells were treated with differentiation medium in the absence
(control) or presence of vehicle or various ARVs. To compare the
effects of ARVs on preadipocytes with mature adipocytes, ARVs
were added to the medium on day 0, when 3T3-L1 cells were still
preadipocytes (white bar), or on day 6. when 3T3-L1 cells differen-
tiate into mature adipocytes (gray bar). On day 7, the cells were
stained with Oil red O. Staining was quantified at 490 nm after
solubilization and expressed as percent =+ standard error (SE) of the
control. P values were evaluated by the Fisher least significant
difference (LSD) post hoc test. V vehicle, ABC abacavir, AZT
zidovudine, d4T stavudine, 37C lamivudine, EFV efavirenz, RTV
ritonavir, ATV atazanavir, NFV nelfinavir. LPV lopinavir, APV
amprenavir, RAL raltegravir. *P < 0.01

It is possible that the effect of ARVs on adipocyte
metabolism is different between preadipocytes and differ-
entiated mature adipocytes because the differentiation of
adipocytes involves the sequential and coordinated action
of several transcription factors that regulate the expression
of adipocyte-specific genes and proteins. Therefore, dif-
ferentiated 3T3-L1 cells were also treated with ARVs and
assessed for effects on lipid accumulation. The differenti-
ated 3T3-L1 cells were less sensitive to the effects of
ARVs on lipid accumulation level than on immature 3T3-
L1 cells. Lipid accumulation in mature 3T3-L1 cells was
reduced by EFV, RTV, NFV, LPV, and APV (Fig. 1). On
the other hand, RAL had little effect on lipid accumulation
in both the immature and mature 3T3-L1 cells.

Effect of ARVs on lipogenic gene expression in 3T3-L1
cells

As shown in Fig. 1, several ARVs reduced lipid accumula-
tion to different degrees. This suggests that various mecha-
nisms are involved in the regulation of lipid accumulation
and that different drugs might induce lipid abnormalities
through distinct mechanisms. The key lipogenic transcrip-
tion factors, including SREBP-lc (Fig. 2a), C/EBP-a
(Fig. 2b), C/EBP-f (Fig. 2¢), and PPAR-y (Fig. 2d) were
investigated to determine the primary cellular mechanisms
that underlie these ARV-mediated lipid abnormalities.
Treatment with several of the ARVs resulted in marked
decreases in the expression of messenger RNAs (mRNAs)
for C/EBP-« and SREBP-I1c in predifferentiated 3T3-L1
cells (ABC, AZT, d4T, EFV, NFV, LPV, and APV for
C/EBP-u; ABC, AZT, d4T, 3TC, EFV,NFV, LPV, and APV
for SREBP-1c¢), and differentiated 3T3-L1 cells (AZT, d4T,
EFV, RTV, NFV, LPV, and APV for C/EBP-«; ABC, d4T,
3TC, EFV, NFV, LPV, and APV for SREBP-Ic) (Fig. 2).
Expression of C/EBP-o and SREBP-1c¢ was not affected by
RTV, ATV, or RAL in predifferentiated 3T3-L1 cells. Pre-
differentiated 3T3-L1 cells were more sensitive to these
ARVs than differentiated 3T3-L1 cells, but only RTV had a
little stronger effect in the differentiated 3T3-L1 cells than in
the predifferentiated cells on C/EBP-u expression. Effects of
ARVs on C/EBP-« were similar to those on SREBP-Ic.
PPAR-y was also down-regulated by EFV and some PIs
(NFV, LPV, APV) but not by NRTIs (ABC, AZT, d4T,
3TC). ATV- and RAL-treated cells remained relatively
quiescent. C/EBP-f3, which is expressed early during adi-
pogenesis, was not affected by any of the ARVs.

Effect of ARVs on oxidative stress in 3T3-L1 cells
Increased oxidative stress is associated with obesity-related

disorders [17], and some ARVs increase oxidative stress in
adipocytes in vitro [I8] and in vivo [19]. Our study
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Fig. 2 Effect of antiretrovirals (ARVs) on lipogenic gene expression
in 3T3-L1 cells. From confluence (day 0). 3T3-L1 cells were treated
with differentiation medium in the absence (control) or presence of
vehicle or various ARVs. To compare the effects of ARVs on
preadipocytes with mature adipocytes. ARVs were added to the
medium on day 0, when 3T3-L1 cells are still preadipocytes (white
bar), or on day 6, when 3T3-L1 cells differentiate into mature
adipocytes (gray bar). On day 7. total RNA was prepared, and
messenger RNA (mRNA) levels were determined by real-time
reverse-transcriptase  polymerase chain reaction (RT-PCR). The
results shown are after correction for the levels of f-actin mRNA
and were normalized to the controls. P values were evaluated by
Fisher’s least significant difference (LSD) post hoc test. a sterol
regulatory-element-binding protein, b CAAT box enhancer-binding
protein-o, ¢ C/EBP-f, d peroxisome-proliferator-activated receptor-y.
V vehicle, ABC abacavir, AZT zidovudine, d4T stavudine, 3T7C
lamivudine, EFV efavirenz, RTV ritonavir, ATV atazanavir, NFV
nelfinavir, LPV lopinavir, APV amprenavir, RAL raltegravir.
*P < 0.01, #*P < 0.05

investigated the influence of the four classes of ARVs on
the production of oxidative stress by measuring 8-OHdG in
the culture medium. This compound is a modified nucle-
oside base, which is associated with reactive oxygen spe-
cies (ROS) and used as a biomarker of oxidative stress. The
level of 8-OHdG was increased in the culture medium of
predifferentiated 3T3-L1 cells by d4T, RTV, NFV, LPV,
and APV and was increased in differentiated 3T3-L1 cells
by RTV and NFV (Fig. 3a). Expression of antioxidant
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Fig. 3 Effect of antiretrovirals (ARVs) on oxidative stress in 3T3-L1
cells. From confluence (day 0), 3T3-L1 cells were treated with
differentiation medium in the absence (control) or presence of vehicle
or various ARVs. To compare the effects of ARVs on preadipocytes
with mature adipocytes, ARVs were added to the medium on day 0,
when 3T3-L1 cells are still preadipocytes (white bar). or on day 6,
when 3T3-L1 cells differentiate to mature adipocytes (gray bar).
a For the assay of 8-OHdG, each supernatant was collected at day 7.

Then, concentrations of 8-OHdG were determined using an enzyme-

linked immunosorbent assay (ELISA). Results shown were normal-
ized to the controls and represent the mean = standard error (SE). On
day 7, total RNA was prepared, and messenger RNA (mRNA) levels
were determined by real-time reverse-transcriptase polymerase chain
reaction (RT-PCR). Effects of the drugs on b superoxide dismutase
(SOD) and ¢ catalase (CAT) were also examined. The results shown
were obtained after correction for the levels of f-actin mRNA and
were also normalized to the controls. Data are presented as the
mean =+ standard error (SE). P values were evaluated by the post hoc
test. V vehicle, ABC abacavir, AZT zidovudine, d4T stavudine, 3TC
lamivudine, EFV efavirenz, RTV ritonavir, ATV atazanavir, NFV
nelfinavir, LPV lopinavir, APV amprenavir, RAL raltegravir.
*P < 0.01

enzymes, including superoxide dismutase (SOD, Fig. 3b)
and catalase (CAT, Fig. 3c) was also investigated. Gener-
ally, oxidative stress, such as that induced by the free-
radical superoxide, stimulates the expression of SOD and
CAT. Expression of SOD mRNA was increased by the
addition of AZT, d4T, RTV, LPV, and APV in prediffer-
entiated 3T3-L1 cells; and d4T, RTV, and LPV in differ-
entiated 3T3-L1 cells. Expression of CAT mRNA was
increased by the addition of AZT, d4T, RTV, and LPV in
predifferentiated 3T3-L1 cells and of d4T and RTV in
differentiated 3T3-L1 cells. Neither SOD mRNA nor CAT
mRNA was increased by the addition of ABC, 3TC, EFV,
ATV, NFV, or RAL in predifferentiated and differentiated
cells. These results and previous studies indicate that the
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influence of ARVs on oxidative stress or the antioxidant
system differs based upon the class and particular structure
of the ARV.

Discussion

ART has been involved in the emergence of a metabolic
disorder with potentially severe consequences, but the use of
new-generation PIs ATV and the integrase inhibitor RAL
has been reported to be associated with a decrease in
hyperlipidemia [1] and a reversal of lipodystrophy [2]. Most
previous studies examined one or a few classes of ARVs, and
each study used different cell systems. Therefore, it is dif-
ficult to compare the effects of each drug. Our study inves-
tigated the effect of four classes of ARVs (NRTIs, NNRTI,
PIs, and integrase inhibitor) using pre- and post-differenti-
ated 3T3-L1 cells. We were especially interested in deter-
mining the effects of RAL and ATV compared with other
ARVs in order to obtain a better understanding of the
molecular basis for the more favorable metabolic side-effect
profile associated with RAL and ATV. This is the first study
to investigate the effects of RAL on the cellular and
molecular regulation of adipocytes.

Expression of C/EBP-x, PPAR-7, and SREBP-1c were
strongly inhibited by some PIs, mildly inhibited by NNRTI
and NRTIs, and minimally affected by ATV, RAL, and
RTV. These results and the fact that RTV decreased lipid
accumulation and increased oxidative stress in mature 37T3-
L1 cells more than in predifferentiated cells suggest that
the effect of RTV occurs relatively late in adipocyte dif-
ferentiation. C/EBP-B, which is expressed during early
adipogenesis, was not affected by ARVs, suggesting that
molecular targets affected by the antiadipogenic properties
of ARVs are probably located downstream of this adipo-
genic transcription factor. This is consistent with previous
reports that some ARVs block adipocyte differentiation by
inhibiting the expression of C/EBP-x and PPAR-y [3, 12,
13] or by impairing SREBP-1 intranuclear localization
[9, 20]. These findings indicate that altered functions of
PPARy, C/EBP-a, and SREBP-lc play a role in ARV-
related dystrophy.

Increased oxidative stress is also considered to contrib-
ute to metabolic abnormalities caused by ARVs. Several
reports indicate that ROS production in response to ARVs
probably results from increased mitochondrial oxidative
stress [7, 14]. The marker of oxidative stress, 8-OHdG, was
increased by d4T, RTV, NFV, LPV, and APV, and the
antioxidant pathway was impaired by NFV. These results
indicate that increased oxidative stress by ARVs is due to
activation of ROS production and an impaired antioxidant
system. Oxidative stress also contributed to ARV-induced
lipogenic abnormalities.

Mature 3T3-L1 cells were less sensitive to the lipid-
reducing effect of ARVs than were predifferentiated 3T3-L1
cells, and similar results were obtained with regard to the
inhibitory effect of ARVs on the expression of lipogenic
transcription factors and some oxidative stress markers. One
explanation for the differences between preadipocytes and
mature adipocytes is that the more differentiated adipocytes
have pathways that could enable cells to escape from ARV-
induced blockade of the lipogenic pathway, or they may
have a system that inactivates and/or decreases the intra-
cellular level of ARVs.

It is notable that the intracellular events reflect lipoat-
rophy in the form of depleted adipocyte triglyceride stores,
and the extent that each ARV influences the adipocytes was
in proportion to that observed in clinical manifestations,
although functional links between the molecular mecha-
nism and the observed metabolic alterations are still not
fully understood. It is certain that metabolic disorder is
affected by numerous other modifiers, including genetic
predisposition, diet and lifestyle, and HIV-1 infection.
However, some features can be avoided by careful selec-
tion of ARVs and thus can be effectively treated.

In conclusion, different ARVs acted through distinct
mechanisms to induce disruption of adipocyte differentia-
tion and function to different degrees through distinct
mechanisms. Whereas most of ARVs affected lipid accu-
mulation, RAL and ATV had no influence on lipid
metabolism in our in vitro study. A greater understanding
of the mechanisms underlying the development of this
metabolic effect could lead to safer ARVs while indicating
the best treatment for these metabolic side effects of ARVs.
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