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TABLE 2. Clinical and pathological findings in rhesus monkeys
infected with SHIV 4pgy- and its immediate derivatives

Animal Clinical data/pathological findings

Euthanized (wk 199); uncontrolled diarrhea; wt loss

Euthanized (wk 112); P. carinii pneumonia

.Total CD4* T cells, 154/mm® (wk 111)

Euthanized (wk 117); uncontrolled diarrhea, C. coli
enteritis

Total CD4* T cells, 270/mm® (wk 129)

Euthanized (wk 135); uncontrolled diarrhea;
typhlocolitis

Total CD4* T cells: 101/mm? (wk 101)

.....Euthanized (wk 23); rapid progressor

Total CD4™* T cells, 545/mm> (wk 65)

Euthanized (wk 20); rapid progressor

... Total CD4* T cells, 92/mm? (wk 64)

.....Euthanized (wk 19); rapid progressor

....Euthanized (wk 100); disseminated M. avium

(1.6 X 10? to 1.5 X 10° RNA copies/ml). This variability was
also observed in pairs of animals inoculated with identical
SHIV zpg#, derivatives (viz. CK15 and CJ58, and DB99 and
DAI1Z). An extreme example of the nonlinkage between viral-
RNA levels and CD4" T cell loss with SHIV ; ,g occurred with

animal CK5G, which had 43 and 42 circulating naive and

memory CD4* T cells/pl, respectively, at week 86 p.i. and 2
plasma viral load of only 5.4 X 10° RNA copies/ml. During the
chronic phase of SHIV ., infections, the loss of naive CD4*
T cells was more rapid and more marked than the depletion of
the memory subset, as was previously observed in SIVsmE543-
infected animals (35) (Fig. 6). By week 80, for example, NPs
had sustained an 87 to 93% loss of naive CD4™ T cells from
their preinoculation levels, whereas the depletion of memory
cells was significant, but not as pronounced. The dissociation of
plasma virus loads and CD4* T cell loss is reminiscent of the
previously reported infection of pig-tailed macaques with
SIVI'hoest and SIVsun (4). In that study, 8 of 12 infected
- animals developed immunodeficiency over a 5-year period
while maintaining set-point viremia between 102 and 10° RNA
copies/ml

We do not presently understand why naive CD4* T lympho-
cytes are lost in SHIV s NPs. Based on coreceptor expres-
sion, this T cell subset expresses CXCR4, not CCRS, on its
surface and should therefore be refractory to infection by RS-
tropic SHIVs and virus-induced cell killing. An assessment of
the coreceptor utilization status of late-stage viruses recovered
from SHIV ,p,¢ NPs, in fact, revealed that a coreceptor switch
had not occurred in these animals (see Fig. S2 in the supple-
mental material). Although a dissociation between viral-RNA
levels and memory/naive CD4* T cell loss was observed, the
NPs did experience increased memory CD4* T lymphocyte
turnover (see Fig. S1 in the supplemental material), even in
animals with very low plasma virus loads. Activation-induced
proliferation and killing of memory CD4™ T cells during the
lengthy chronic SHIV 5 infection might therefore be respon-
sible for driving the differentiation of naive CD4* lymphocytes
into memory cells and impose an unsustainable drain on this
CD4* T cell subset. It is also possible that SHIV ¢ infection
of rhesus macaques negatively affects naive CD4* T lympho-
cyte homeostasis in the thymus, thereby impeding the differ-
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entiation or emigration of this T cell subset. It has also recently
been reported that the loss of naive CD4* T cells during
SIVsmES543 infections was associated with the presence of
autoreactive antibodies to CD4" T lymphocytes, platelets,
double-stranded DNA, and phospholipid (27). Increased num-
bers of circulating IgG-coated CD4* T cells were observed in
that study, and the levels of autoreactive antibodies were cor-
related with the extent of naive CD4™ T cell depletion.

Approximately 20% of rhesus monkeys infected with
SIVmac/SIVsm lineage viruses become RPs, experiencing per-
sistently high virus set points, rapid and complete losses of
memory CD4™ T cells, undetectable or transient antiviral an-
tibody responses, and early onset (3 to 6 months p.i.) of symp-
tomatic disease (6). Despite losing virtually all of their memory
CD4* T lymphocytes, SIV RPs, at the time of death, usually
maintain preinoculation levels of naive CD4* T cells (35). This
was not the case for SHIV .5 RPs. Although all three expe-
rienced early and massive depletions of memory CD4™ T cells,
two of the infected macaques had lost virtually all of their naive
CD4* T cells at the time of euthanasia. In one of these animals
(DB99), the virus recovered at the time of euthanasia, as well
as a virus pseudotyped with an Env possessing the RIG inser-
tion in the V3 loop, had acquired the capacity to infect cells
expressing CXCR4 (Fig. 9a and c). Interestingly, coreceptor
switching has been previously reported to occur during RP
infections of macaques inoculated with a different R5-tropic
SHIV, SHIVgpi60p3 (18, 19, 47). In one of the SHIVggcops
coreceptor-switching events, the insertion of two positively
charged amino acids (HR) immediately upstream of the V3
loop GPGR crown (Fig. 9b) was shown to confer X4 tropism
(18). In the case of SHIV 5 s oo, 2 3-aa (RIG) insertion, also
located in the N-terminal V3 stem and which increased the net
charge of the V3 loop from +3 to +5, was responsible for the
acquisition of CXCR4 usage. The insertion of HIG at the same
location of the SHIV s1g asm00s V3 region did not affect the
net charge and did not confer tropism for CXCR4-expressing
cells.

Independent and unrecognized cross-species transmissions
and spread of SIVsm at different U.S. primate facilities during
the 1970s contributed to the emergence of SIVmac and
SIVsmE660 lineages with distinctive replicative and patho-
genic phenotypes. The serial passaging of SHIV ,pq in rhesus
monkeys described here also resulted in"an AIDS-inducing
primate lentivirus with its own characteristic properties. First,
in contrast to commonly used pathogenic SIVs, SHIV sz,
and its immediate derivatives generated sustained but, as pre-
viously noted, highly variable set-point virus loads in NPs.
Similarly variable viral loads were also observed in eight rhesus
monkeys inoculated with four independent SHIV 4 Stocks
prepared from macaques CK15, CES8J, CL98, and CJ58 at the
time of their euthanasia (data not shown). Profound depletions
of both memory and naive CD4* T cells, which accompany
relatively low virus set points (geometric mean level, 1.7 X 10°
RNA copies/ml) in NPs, is a second property that distinguishes
the R5-tropic SHIV ,y,5 from pathogenic SIVs. Finally, unlike
SIVs, SHIV ,pg RPs experience an initial loss of memory
CD4* T lymphocytes and a later rapid deletion of naive CD4*
T cells prior to death, which in one animal occurred following
a CCR5-to-CXCR4 coreceptor switch. Based on the results
shown in Fig. 4 and Table 2, we plan to use and distribute
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SHIV spsswarre: SHIV spgsezpemc OF the SHIVs recovered
from NPs at the time of euthanasia (SHIV ,ps cros
SHIV spg. ckis» 0f SHIV 5pg g4 as challenge viruses in vac-
cine experiments. Animals inoculated with cell-free prepara-
tions of the last group of viruses have experienced variable but
sustained plasma viremia associated with a gradual but signif-
icant CD4™ T cell loss during 30 weeks of infection. Some of
these macaques have developed a rapid-progressor clinical
course.
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Human immunodeficiency virus type 1, simian immunodeficiency virus and simian/human

immunodeficiency virus (SHIV) infection generally lead to death of the host accompanied by high
viraemia and profound CD4* T-cell depletion. SHIV clone KS661-infected rhesus macaques with
a high viral load set point (HVL) ultimately experience diarrhoea and wasting at 6—12 months after

- infection. In contrast, infected macaques with a low viral load set point (LVL) usually live

asymptomatically throughout the observation period, and are therefore referred to as
asymptomatic LVL (Asym LVL) macaques. Interestingly, some LVL macaques exhibit diarrhoea
and wasting similar to the symptoms of HVL macaques and-are termed symptomatic LVL (Sym-
LVL) macaques. This study tested the hypothesis that Sym LVL macaques have the same degree
of intestinal abnormalities as HVL macaques. The proviral DNA loads in lymphoid tissue and the
intestines of Sym LVL and Asym LVL macaques were comparable and all infected monkeys
showed villous atrophy. Notably, the CD4" cell frequencies of lymphoid tissues and intestines in
Sym LVL macaques were remarkably lower than those in Asym LVL and uninfected macaques.
Furthermore, Sym LVL and HVL macaques exhibited an increased number of activated
macrophages. In conclusion, intestinal disorders including CD4* cell reduction and abnormal
immune activation can be observed in SHIV-KS661-infected macaques independent of virus
replication levels.

infection. HIV-1 infection of the intestinal tract is

characterized by virus replication (Fackler et al, 1998),

The intestinal tract, which is the largest mucosal and
lymphoid organ and which contains the majority of the
total lymphocytes in the body, is an important port of entry
for human immunodeficiency virus type 1 (HIV-1})
infection in vertical and homosexual transmission (Smith
etal., 2003). Additionally, the intestinal tract is a central site
in the interaction between HIV-1 and its host, and suffers
profound pathological changes as a result of HIV-1

CD4" T-cell depletion (Brenchley et al, 2004), oppor-
tunistic infection and HIV enteropathy, which is an
idiopathic intestinal disorder observed in infected patients
with diarrhoea (Kotler, 2005). In particular, CD4" T-cell
depletion, which is the immunological hallmark in the
development of AIDS, preferentially takes place in the
intestinal tract rather than in the peripheral blood
throughout the infection (Brenchley et al, 2004). This
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observation is based on the following findings: (i) most
naturally transmitted HIV-1 strains are chemokine receptor
5 (CCR5)-tropic; and (ii) the intestinal tract, especially
the lamina proptia, contains a large number of activated
memory CCR5* CD4" T cells, which indicates a high
susceptibility for HIV-1 infection, whereas the peripheral
blood has a relatively small population of these cells (Anton
et al, 2000; Lapenta et al, 1999). CD4" T-cell depletion
from the intestinal tract by HIV-1 infection is thought to
lead to progressive dysfunction of mucosal immunity,
which triggers immunodeficiency (Paiardini et al., 2008). In
addition to CD4" T-cell depletion in the intestinal tract,
HIV-1 infection causes histopathological changes in the
intestine, including villous atrophy, crypt hyperplasia and
acute/chronic inflammation (Batman et al., 1989).

Chronic disease of the intestinal tract generally manifests as
inflammation (Kahn, 1997). Diarrhoea is a2 major intestinal
symptom caused by various stimuli to the intestinal tract
such as pathogens, toxins and dysfunction of the immune
system (Gibbons & Fuchs, 2007). Because HIV-1 infection
weakens the host immune system, AIDS is one of the
primary causes of chronic diarrhoea (Sestak, 2005). In
developing countries, diarrhoea was a major symptom in
advanced HIV-1 infection prior to the establishment of
highly active antiretroviral therapy (HAART) (Wilcox &
Saag, 2008). Dehydration and malabsorption as a result of
chronic diarrhoea can lead to progressive weight loss and
can contribute to morbidity and mortality in HIV-1-
infected patients (Sharpstone & Gazzard, 1996). Therefore,
chronic diarrhoea is one of the most important clinical
signs in AIDS patients.

AIDS models using non-human primates have provided
many important observations on AIDS pathogenesis. The
first finding of early CD4" T-cell depletion from the
intestinal tract was reported in a study using simian
immunodeficiency virus (SIV)-infected macaques (Veazey
et al, 1998). Intestinal CD4" T cells of rhesus macaques
predominantly exhibit a CCR5" activated memory pheno-
type, and CD4" T cells of this phenotype are selectively
eliminated in SIV-infected macaques, indicating that the
majority of intestinal CD4* T cells are primary targets of
SIV infection (Veazey et al, 2000a, b). Accordingly,
detailed analysis of the intestinal tract using animal models
is essential for an understanding of AIDS pathogenesis.

Simian/human immunodeficiency virus (SHIV)-KS661 is a
molecular clone and a pathogenic virus in rhesus
macaques. SHIV-KS661 systemically depletes CD4" T cells
of rhesus macaques within 4 weeks of infection (Miyake et
al., 2006). Based on our observations over a number of
years, intravenous infection of rhesus macaques with
SHIV-KS661 consistently results in high viraemia and
CD4" T-cell depletion, followed by malignant morbidity as
a result of severe chronic diarrhoea and wasting after 6—
18 months. Generally, the time to clinical morbidity in
rhesus macaques infected with pathogenic SHIVs, such as
SHIV-89.6P and SHIV-KS661, is considerably shorter than

in HIV-1-infected humans, who take an average of 10 years
to progress to AIDS. In addition, all subsets of CD4" T cells
including memory and naive T cells are thoroughly
depleted in pathogenic SHIV-infected macaques.
However, in the SHIV-KS661 macaque model, diarrhoea
and wasting, which are major symptoms in advanced HIV-
1 infection, can clearly be recognized and defined in
association with disease progression.

Recently, we observed that, in many rhesus macaques
infected intrarectally with SHIV-KS661, plasma viral RNA
loads decreased gradually to undetectable levels in the
chronic phase, which is quite different from the case with
intravenous infection. It is well known that pathogenic SIV

-and SHIV infections in monkeys, like HIV-1 infections in

humans, generally lead to high viraemia, profound CD4*
T-cell depletion and death. Interestingly, in this study, two
out of six intrarectally inoculated macaques with a low
plasma viral load experienced malignant morbidity mani-
fest as severe diarrhoea and wasting, similar to what we
observed in infected macaques with high viraemia. The
purpose of this study was to elucidate why macaques with a
low plasma viral load experienced diarrhoea and wasting.
As an explanation for this morbidity, we hypothesized that,
even if the viral load set-point is suppressed, SHIV-KS661-
infected macaques would have the same degree of intestinal
abnormalities as infected macaques with high viraemia. To
test this hypothesis, we analysed CD4* cell frequencies in
lymphoid and intestinal tissues and damage to the
intestinal mucosa in infected macaques with high and
low viral load set points (HVL and LVL, respectively).
Here, we have provided evidence for the development of
intestinal disorders in SHIV-KS661-infected macaques
irrespective of the plasma viral RNA load.

RESULTS

Diarrhoea and wasting in two macaques despite
low viral load

All macaques inoculated intravenously with SHIV-KS661
and one out of seven macaques inoculated intrarectally
with SHIV-KS661 exhibited high set points of plasma viral
RNA loads, persisting at over 10° copies ml™" until they
needed to be euthanized as a result of diarrhoea and
wasting (Fig. la). In contrast, in the remaining six
macaques inoculated intrarectally with SHIV-KS661, the
set points of plasma viral RNA load gradually decreased to
undetectable levels (Fig. la). We called these macaques
showing high and low set points of viral RNA load HVL
and LVL macaques, respectively. During an observation
period of approximately 1.4 years, two LVL macaques
(MM397 and MM399) experienced severe diarrhoea and
wasting and required euthanasia at approximately
22 weeks post-infection (p.i.), similar to HVL macaques,
whereas the remaining four LVL macaques were asympto-
matic (Fig. la). We termed the healthy LVL macaques
asymptomatic LVL macaques (Asym LVL) and the LVL
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Nef antigen in thymus, mesenteric lymph nodes

| MM298 (Mes. LN) and jejunum. Brown staining indicates
A MM299 Nef* cells. The upper panels show represent-
v MM338 ative tissue sections from a Sym LVL macaque
4 MM339 (MMB397) and the lower panels show represent-
@ MM376 ative tissue sections from an HVL macaque
O MMm243 . (MM376). Bars, 100 pm. (c) Proviral DNA loads
$ MM400 in different tissues of SHIV-KS661-infected
O MM401 macaques, as measured by quantitative PCR.
X MM375 The detection limit of proviral DNA loads was 10
A MM397 copies pg . Filled black symbols indicate HVL
" MM399 macaques, open black symbols indicate Asym

LVL macaques and open grey symbols indicate

@) Plasma viral RNA load
10
9 " a +oa+ MM299 IV re 20w
:_-l,"‘ ‘.‘"‘\
~ 8 5 "agang oV
L - A ’...-".." & \s‘
[ 7 b .-l,' ".'"(h e
§_ a ',.'.‘--V".'"l,',u.*',.uw---... lle
3
o 5F
o £
4 1
345 ? 5
0 4 8 12 16 20 24 40 65 90
Time p.i. (weeks)
(b)
=~
(%]
[
=
<
=
3
@
o~
(]
=
2
s
=
Thymus Mes. LN
(c)
B=
54 [}
% ‘ Tt
[=)
el ¥ o 1
cg’. n e
O 3+ A
e G
(2]
g - R
o] k& - o=
8 v
1 L] L) L] L] m
Thymus Spleen Mes. LN  Jejunum  Rectum

Sym LVL macaques.

. macaques with diarrhoea and wasting symptomauc LVL
macaques (Sym LVL).

Antibody response against SHIV in infected
macaques

The LVL macaques showed antibody responses to SHIV-
KS661 at 3—4 weeks p.i. and then developed strong
antibody responses that persisted up to 18 weeks p.i.
(Table 1). In contrast, two of the HVL macaques (MM298
and MM299) showed no antibody response, whilst the
remaining two (MM338 and MM339) showed very low

antibody responses. Among the HVL macaques, only
MM376 showed a strong. antibody response: the titre
reached 1:2048 at 6 weeks p.i., but then decreased to a
much lower value. These results showed that LVL
macaques succeeded in maintaining a strong antibody
response, whilst HVL macaques failed to do so.

Viral levels in tissues from Sym LVL and Asym LVL
macaques are not significantly different

To investigate whether the infected macaques had different
viral levels in their lymphoid and intestinal tissues, we used
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Table 1. Anti-HIV antibody titres in infected monkeys

— indicates a titre of <32.

Time Intrarectal inoculation Intravenous inoculation
(weeks)
LVL HVL

MM243 MM397 MM399 MM400 MM401 MM375 MM376 ~MM298 MM299 MM338 MM339
0 — - —-— i == — — - - p— —
1 — — —-— i - — - - — p— -
2 - - - - - - - - - 64 64
3 32 - 32 - - 128 - - - 32 32
4 32 16384 32 64 32 512 512 = - - =
6 8192 16384 256 64 4096 1024 2048 = - ~ -
8 4096 16384 1024 128 1024 16384 512 = - - =
10 16384 16384 2048 512 512 16384 512 - - - -
12 16384 16384 256 512 4096 16384 512 .
13 - - - -
14 16384 16384 1024 512 2048
16 4096 8192 1024 1024 1024 16384 64
17 = - = B
18 8192 16384 2048 8192 4096

the Nef antigen as a marker of virus infection using
immunohistochemistry and quantitative analysis of pro-
viral DNA in lymphoid and intestinal tissues. Nef™ cells
were detected in large numbers in the tissues of HVL
macaques, but were undetectable in both Sym LVL (Fig. 1b)
and Asym LVL (data not shown) macaques.

In the HVL macaques, high proviral DNA loads (>1000
copies pg ') were found in all of the tissues examined (Fig.
Lc). In contrast, the proviral DNA loads in the tissues of
the LVL macaques were only several tens to several
hundreds of copies pg™' (Fig. lc). Furthermore, Sym
LVL and Asym LVL macaques exhibited comparably low
proviral DNA loads in these tissues (Fig. 1c). The low viral
levels in lymphoid and intestinal tissues in the LVL
macaques were consistent with their set points of plasma
viral RNA loads. The viral levels in lymphoid and intestinal
tissues were not significantly different between Sym LVL
and Asym LVL macaques.

Diarrhoea and wasting in LVL macaques correlate
with CD4" cell frequency in lymphoid and
intestinal tissues, but not in peripheral blood

Because CD4" T-cell depletion is the hallmark of AIDS, we
first examined CD4" T-cell counts in peripheral blood.
Whilst peripheral CD4" T cells were completely and
irreversibly depleted in HVL macaques throughout the
infection, they displayed various kinetics in LVL macaques
(Fig. 2a). MM397 (Sym LVL) and MM401 (Asym LVL)
had very low CD4" T-cell counts (<150 cells ml™") at all
times at which they were examined after infection, whereas
MM399 (Sym LVL) and MM400 (Asym LVL) maintained

moderate CD4" T-cell counts (>300 cells ml™?) through-
out the experiment (Fig. 2a).

Naive CD4" T cells of MM397 (Sym LVL), MM243 (Asm
LVL) and MM401 (Asym LVL) were depleted as early as 4
weeks p.i., whereas those of MM399 (Sym LVL) and
MM400 (Asym LVL) remained at moderate levels (Fig. 2b).
The HVL macaques were not examined because their
peripheral CD4" T cells were depleted.

In addition to evaluating CD4" T cells in the blood, we
evaluated CD4" cells in lymphoid and intestinal tissues
using CD4 staining. The HVL macaques showed severe
depletion of CD4" cells in all lymphoid tissues and
intestine compared with the uninfected macaques (Fig. 2c,
d). Interestingly, the CD4" cell frequencies in the tissues were
clearly lower in Sym LVL macaques than in uninfected
macaques (Fig. 2c, d). However, the CD4" cell frequencies in
the tissues of Asym LVL macaques were comparable to those
in uninfected macaques. These findings indicated that the
emergence of diarrhoea and wasting in LVL macaques
correlated with the low CD4" cell frequency in lymphoid
tissues and the intestines, but not with the counts of
peripheral CD4" T-cell subsets.

Infected animals exhibit significantly shorter villi

Symptomatic animals (Sym LVL and HVL macaques)
exhibited diarrhoea. To examine whether the jejunum of
symptomatic animals exhibited the histopathological
changes that suggest AIDS-related enteropathy, we meas-
ured villous length on haematoxylin and eosin (H&E)-
stained samples of jejunum in uninfected and infected
macaques. Surprisingly, villous length was significantly
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Fig. 2. Counts of circulating CD4* T-cell subsets and: CD4* cell frequency in lymphoid and intestinal tissues at the time of
euthanasia in SHIV-KS661-infected rhesus macaques. Counts of circulating CD4" T-cell subsets were analysed by flow
cytometry and whole-blood counts. (a) Circulating CD4" T-cell counts. The ID numbers of the macaques are indicated on the
figure. (b) Proportion of CD95* naiive cells in circulating CD4* T cells of LVL macaques. Solid black lines indicate Asym LVL
macaques and solid grey lines indicate Sym LVL macaques. (¢) CD4* cell frequencies in thymus, mesenteric lymph nodes
(Mes. LN) and jejunum of representative uninfected, Asym LVL, Sym LVL and HVL macaques. Bars, 100 pum. (d) Quantification
of jejunum CD4" cells in uninfected and infected macaques. The numbers of CD4* cells were enumerated in at least ten fields
of the tissues at a magnification of 200x. Statistical analysis was performed using Student's t-test for the data from five
uninfected and each infected macaque (*, P<0.0001). Data for MM299, MM338, MM339 and MM401 were not available.

shorter in all of the infected animals than in uninfected
animals (P<<0.0001) (Fig. 3a, b). This suggested that SHIV-
infected animals develop villous atrophy, irrespective of
viral load.

Increased number of activated macrophages in
the jejunum of symptomatic animals

Macrophages appeared to be more abundant in H&E-stained
jejunal sections in symptomatic animals. This was confirmed
by CD68 staining: the frequency of CD68" macrophages in
the jejunum was considerably higher in symptomatic animals
than in uninfected animals, but was not significantly different
between uninfected animals and Asym LVL macaques (data
not shown). Furthermore, CD68" macrophages in the small
intestine of Sym LVL and HVL macaques appeared to be

activated because their size was increased. To examine
whether the number of activated CD68" macrophages
increased in the small intestine, we double stained for
CD68 and Ki67 in the small intestine sections by immuno-
histochemistry. The frequency of CD68" Ki67" macrophages
in the jejunum of all symptomatic animals examined was
significantly higher than that of uninfected animals
(P<0.0001) (Fig. 3c, d). This suggested that abnormal
activation of intestinal macrophages occurred in symp-
tomatic animals irrespective of viral load.

DISCUSSION

It is important to discuss initially why some SHIV-infected
macaques had an HVL at the late stage, whilst others had
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Fig. 3. Villous length in jejunum and counts of activated macrophages in the small intestine at the time of euthanasia in SHIV-
KS661-infected rhesus macaques. (a) H&E-stained sections of jejunum of representative uninfected, Asym LVL, Sym LVL and
HVL macaques. Bars, 200 pm. (b) Comparison of villous length in uninfected and infected macaques. The lengths of at least
100 villi were measured in each macaque. Statistical analysis was performed using Student's t-test for the data from four
uninfected and each infected macaque (*, P<0.0001). Data for MM299, MM338, MM339 and MM401 were not available. (c)
Ki67 and CD68 staining in the small intestine of representative uninfected, Asym LVL, Sym LVL and HVL macaques. Brown
staining indicates Ki67* cells and blue staining indicates CD68™ cells. Bar, 50 pm. (d) Comparison of CD68% Ki67™* cell
counts in uninfected and infected macaques. The numbers of CD68* Ki67* cells were enumerated in at least ten fields of the
tissues at a magpnification of 200x. Statistical analysis was performed using Student's t-test for the data from seven uninfected
and each infected macaque (*, P<0.0001). Data for MM299, MM338 and MM339 were not available.

an LVL. The LVL macaques had much stronger antibody
responses than the HVL macaques (Table 1). SHIV-89.6P
is easily controlled by the antibody response (Montefiori
et al,, 1998). SHIV-KS661, which shares its genetic origin
with SHIV-89.6P, might be strongly affected by the
antibody response. Virus replication during the primary
phase clearly occurred later in the intrarectally inoculated
macaques than in the intravenously inoculated macaques.
Therefore, this delay might contribute to the continuous
and strong antibody response in the intrarectally inocu-
lated macaques, consequently resulting in a low viral load
in most of the intrarectally inoculated macaques.

The purpose of this study was to elucidate why LVL
macaques experience diarrhoea and wasting. A comparison
of circulating CD4* T-cell counts (Fig. 2a) and relative
levels of naive T-cells (Fig. 2b) in LVL macaques did not
reveal a substantial difference between Sym LVL (which
showed diarrhoea and wasting) and Asym LVL (which
were healthy) macaques. The villous length in the intestine

also did not affect the level of malignancy of the disease
condition, as all infected monkeys showed significant villous
atrophy, suggesting a high sensitivity to infection itself.
However, Sym LVL and HVL macaques exhibited two
findings that Asym LVL macaques did not: (i) CD4" cell
reduction in intestinal and lymphoid tissues (Fig. 2c, d), a
hallmark of AIDS; and (ii) abnormal innate immune
activation, which was reflected by an increased number of
activated macrophages within the intestines (Fig, 3c, d).
Ki67 serves as a proliferation marker and proliferation of
macrophages may seem unlikely. However, there are some
reports about local macrophage proliferation in inflam-
mation sites, indicating the infiltration of activated macro-
phages associated with tissue damage (Isbel et al, 2001;
Norton, 1999). These observations indicated the existence of
immunopathological disorders in the intestines not only in
HVL macaques but also in Sym LVL macaques.

Many studies have shown positive correlations between the
development of AIDS and some characteristic features in
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the intestinal tracts of HIV-1-infected humans and
pathogenic SIV- or SHIV-infected monkeys: continuous
CD4" T-cell depletion (Brenchley et al., 2004; Ling et al,
2007), abnormal and chronic immune activation
(Brenchley et al, 2006; Hazenberg et al, 2003) and
enteropathy (Kotler, 2005). Immune activation (as shown
by an increased number of intestinal activated macro-
phages) and intestinal CD4" cell depletion in Sym LVL
macaques strongly suggest the presence of an AIDS-like
disease in this subset of animals. Hence, these results
suggest that an AIDS-like intestinal disease can occur in
LVL macaques despite their low viral load, as well as in
HVL macaques.

Some HIV-1-infected patients experience poor recovery of
circulating CD4* T cells, even when their plasma HIV-1
RNA load is suppressed by HAART (Kaufmann et al., 2003;
Marchetti et al, 2006; Piketty et al., 1998). These individuals

are called immunological non-responders (Marchetti et al.,

2006), and have been found to have increased plasma
lipopolysaccharide levels, suggesting that bacteria had been
translocated from the intestines into the circulation with
concomitant activation of T-cell compartments (Marchetti
et al, 2006, 2008). Furthermore, some patients who
maintain an undetectable or nearly undetectable plasma
viral RNA load in the absence of HAART also develop AIDS
disease progression (Madec et al., 2005) and have abnormal
immune activation and increased plasma lipopolysaccharide
levels (Hunt et al., 2008). These observations may indicate
that disease progression in a subset of HIV-1-infected
individuals is independent of viraemia. Accordingly, the
disease progression under conditions of low viral load that
we observed in SHIV-KS661-infected macaques can also
occur in HIV-1-infected individuals.

Consistent with the fact that intestinal CD4* cell depletion
triggers mucosal immune dysfunction, a notable difference
observed between Sym LVL and Asym LVL macaques was
the low CD4* cell frequency in the intestines of the Sym
LVL macaques. We propose that the intestinal CD4*" cells
in Sym LVL macaques were not able to recover after
intestinal CD4" cell reduction during the early phases of
infection. We reported previously that SHIV-KS661
infection of rhesus macaques caused early intestinal
CD4" T-cell depletion (Fukazawa et al, 2008; Miyake
et al., 2006). Although we did not examine the macaques
during the early phases of infection, the intestinal CD4* T
cells of both Sym LVL and Asym LVL macaques should
have been depleted at this time, as even moderately
pathogenic SHIV can cause intestinal CD4" cell reduction
during the early phase of infection (Fukazawa et al., 2008).
Therefore, the near-normal frequency of intestinal CD4"
cells in Asym LVL macaques would be the result of CD4"
cell recovery after intestinal CD4" cell reduction during the
early phase of infection. In contrast, intestinal CD4* cells
in Sym LVL macaques may be unable to recover, even
though virus replication has been controlled. Similarly,
intestinal CD4* cell recovery was found to be important
for halting disease progression in SIVmac239-infected
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rhesus macaques (Ling et al., 2007). Accordingly, one of
the important determinants for disease progression in
SHIV-KS661-infected macaques may be CD4" cell recov-
ery in the intestines.

We further hypothesize that this inappropriately low level
of CD4" cells within the intestines of the SHIV-KS661-
infected animals (and phenotypically similar humans) is
permissive to the excessive activation of resident tissue
macrophages. One implication of these studies is that
regulatory T-cell subsets of CD4" cells may be especially
vulnerable to this depletion, thus allowing this macrophage
activation in view of the well-known role of regulatory T
cells in inhibiting innate immune responses (Maloy et al.,
2003). This hypothesis will be important to assess in future
studies to understand the pathophysiology in the intestines
during the chronic phase of HIV-1 infection.

Taken together, the present results suggest that CD4* cell
reduction and enteropathy can occur in SHIV-KS661-
infected rhesus macaques even when the viral load is low.
The ability or inability to restore intestinal CD4* cells may
be a key factor determining disease progression, irrespect-
ive of virus replication levels in the chronic phase of SHIV-
KS661 infection. The reason that the recovery of intestinal
CD4" cells is impeded is unknown, although we can
speculate on some possibilities such as the co-existence of
other infectious microbial agents or impaired T-cell
reconstitution caused by damage during thymopoiesis at
an early phase of SHIV infection (Motohara et al., 2006).
We demonstrated comparable proviral DNA loads in the
examined tissues between Sym and Asym LVL macaques,
although the €D4" cell frequencies in the tissues were
clearly reduced in Sym LVL macaques. Therefore, the
quantity of provirus per CD4 cell in the tissues of Sym LVL
macaques is considered to be relatively higher than that of
Asym LVL macaques, and low-level replication that may be
undetectable in the plasma viral load might be maintained
in Sym LVL but not in Asym LVL macaques. Identifying
the mechanisms of poor recovery of intestinal CD4" cells is
needed to understand AIDS pathogenesis, because, as
stated above, some HIV-1-infected patients have low CD4* -
T-cell counts even when viraemia is controlled. One useful
approach is comparative and periodical analysis, including
cellular immunology data, of the intestinal tract of the
same animals from the early to the chronic phases using
Sym LVL and Asym LVL macaques in this SHIV infection
macaque model.

METHODS

Virus, animals and sample collection. Highly pathogenic SHIV-
KS661 is a molecular clone of SHIV-C2/1 (GenBank accession no.
AF217181), which was derived through in vivo passages of SHIV-89.6
(Shinohara et al, 1999). The virus stock was prepared from the
supernatant of virus-infected CEMx174 and M8166 human lymphoid
cell lines.

All thesus macaques used in this study were treated in accordance
with the institutional regulations approved by the Committee for
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Experimental Use of Non-human Primates in the Institute for Virus
Research, Kyoto University, Japan. All macaques were inoculated with
2% 10% 50 % tissue culture infectious dose of SHIV-KS661 measured
with CEMx174. The animal ID numbers, infection route and when
they were euthanized are provided in Fig. 1{a).

Blood was collected periodically using sodium citrate as an anti-
coagulant and examined by flow cytometry and for quantification of
plasma viral RNA load. Tissue samples were obtained at the time of
euthanasia and were used for quantification of proviral DNA and
histopathology.

Determination of plasma viral RNA and proviral DNA loads. The
viral loads in plasma and proviral DNA loads in lymphoid and

intestinal tissues were determined by quantitative RT-PCR and.

quantitative PCR, respectively, as'described previously (Motohara et
al., 2006). DNA samples were extracted directly from frozen tissue
sections of each monkey using a DNeasy Tissue kit (Qiagen)
according to the manufacturer’s protocol.

Determination of antibody titres. Anti-HIV antibody titres were
determined using a commercial particle agglutination kit (Serodia-
HIV1/2; Fujirebio). Isolated plasma samples were serially diluted and
assayed. The end point of the highest dilution giving a positive result
was determined as the titre,

Flow cytometry. Flow cytometry was performed as described
previously (Motohara et al, 2006). Briefly, CD4" T cells were
analysed by a combination of fluorescein isothiocyanate (FITC)-
conjugated anti-monkey CD3 (clone FN-18; BioSource) and
phycoerythrin-conjugated anti-human CD4 (clone NU-TH/L;
Nichirei), and subsets of naive and memory CD4* cells were analysed
by a combination of FITC-conjugated anti-human CD95 (clone DX2;
BD Pharmingen) and allophycocyanin-conjugated anti-human CD4
(clone L200; BD Pharmingen). CD95~ CD4" cells were defined as
naive CD4" T cells and CD95% CD4" cells were defined as memory
CD4" T cells, Labelled lymphocytes were examined on a FACSCalibur
analyser using CellQuest software (BD Biosciences).

Histology and immunohistochemistry. Tissue samples were fixed
in 4% paraformaldehyde in PBS at 4 °C overnight and embedded in
paraffin wax, Sections (4 pm) were dewaxed using xylene, rehydrated
through an alcohol gradient, and stained with H&E. The villous
length of the jejunum was measured with a micrometer. At least 40
villi from each section were measured.

For immunohistochemistry, sections were rehydrated and processed
for 10 min in an autoclave in 10 mM citrate buffer (pH 6.0) to
unmask the antigens, sequentially treated with TBS/Tween 20 (TBST)
and aqueous hydrogen peroxide, left at 4 °C overnight or at room
temperature for 30 min or 1h for primary antibody reactions,
washed with TBST, incubated at room temperature for 1 h with an
Envision+ kit (a horseradish peroxidase-labelled anti-mouse immu-
noglobulin polymer; Dako), visualized using diaminobenzidine
(DAB) substrate (Dako) as a chromogen, rinsed in distilled water,
counterstained with haematoxylin and analysed by light microscopy
(Biozero BZ-8000: Keyence).

For double staining (CD68 and Ki67) of sections, appropriately
processed sections were incubated at room temperature for 1 h with
unlabelled anti-Ki67 antibody at a dilution of 1:2000, the highly
sensitive tyramide amplification step (CSAIL; Dako) was performed,
the slides were reacted with DAB to visualize the results and incubated
with unlabelled anti-CD68 antibody at 4 °C overnight followed by
incubation at room temperature for 1 h with Histofine Simple Stain
AP (an alkaline phosphatase-labelled anti-mouse immunoglobulin
polymer (Nichirei), and the results were visualized with a Blue
Alkaline Phosphatase Substrate kit III (Vector Laboratories).

Measurements of CD68" Ki67* cell counts were performed in ten
fields at a magnification of 200 x by light microscopy.

Primary antibodies used in immunohistochemistry were anti-human
CD4 (diluted 1:30; clone NCL-CD4; Novacastra Laboratories), anti-
SIV Nef (diluted 1:500; FIT Biotech), anti-human CD68 (diluted
1:50; clone KP-1; Dako) and anti-human Ki67 (Ki-$5; Dako).

Statistical analysis. The significance of CD4* or CD68* Ki67* cell
frequency measurements and villous length in the jejunum of infected
monkeys compared with uninfected monkeys was analysed using an
unpaired Student’s #test (two-tailed) using GraphPad Prism 4.0F
software (Varsity Wave).
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