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Although X4 tropic SHIVs have been studied extensively, they show distinct infection phenotypes from those
of R5 tropic viruses, which play an important role in HIV-1 transmission and pathogenesis. To augment the
variety of R5 tropic SHIVs, we generated a new R5 tropic SHIV from the highly pathogenic X4 tropic SHIV-
K5661, a derivative of SHIV-89.6. Based on consensus arnino acid alignment analyses of subtype B RS tropic
HIV-1, five amino acid substitutions in the third variable region successfully changed the secondary receptor

preference from X4 fo RS. Improvements in viral replication were observed in infected rhesus macaques after

Keywords: two passages, and reisolated virus was designated SHIV-MK38, SHIV-MK38 maintained RS tropism through
AIDS in vivo passages and showed robust replication in infected monkeys, Our study clearly demonstrates that a
SHIV minimal number of amino acid substitutions in the V3 region can alter secondary receptor preference and
CCRS tropic increase the variety of R5 tropic SHIVs.

Mutagenesis © 2010 Elsevier Inc, All rights reserved.
V3 region

Introduction receptor usage with HIV-1. In early studies of HIV-1, isolated viruses

Simian immunodeficiency virus (SIV) macaque models for AIDS
have been used extensively to elucidate the pathogenesis of human
immunodeficiency virus type 1 (HIV-1) infection. Although SIV is an
excellent model virus that has contributed to various virological
discoveries, SIV has many limitations as an HIV-1 model. Because the
antigenicity of SIV is different from that of HIV-1, it is difficult to
evaluate HIV-1 vaccines in animal models by employing SIV as a
challenge virus, This is especially true for evaluating the induction of
neutralizing antibodies by HIV-1 vaccine candidates {Baba et al., 2000;
Dey et al., 2009; Mascola et al., 2000). In addition to CCRS, SIV utilizes
secondary receptors such as GPR1, GPR15 (Bob), and STRL-33 (Bonzo),
which are scarcely used by HIV-1 (Clapham and McKnight, 2002).
Although there have been no reports that have directly demonstrated
the significance of these receptors for in vivo pathogenesis, possible
influences of these minor receptors cannot be denied.

To supplement the limitations of the SIV model, a simian and
human immunodeficiency virus (SHIV) macaque model has been
generated. SHIVs were constructed by exchanging the envelope gene
and other accessory genes of SIV with that of HIV-1 (Shibata et al.,
1991). Therefore, SHIVs share the same envelope antigenicity and

* Corresponding author. Mailing address: Laboratory of Primate Model, Experimental
Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University,
53 Shogoinkawaramachi, Sakyo-ku, Kyoto 606-8507, Japan, Fax: +81 75 761 9335.
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were mostly X4 or dual tropic because they were isolated from AIDS
patients using T-cell lines expressing CXCR4. Because envelope genes
from X4 or dual tropic viruses were introduced to generate the
chimeric virus, most SHIVs utilize CXCR4 as a secondary receptor. X4
tropic viruses infect distinct subsets of lymphocytes and the mode of
viral replication during the acute phase of infection is different from
that of R5 tropic viruses (Nishimura et al,, 2004). During the acute
phase of infection, X4 tropic SHIVs rapidly deplete circulating CD4
positive (+) T cells (Reimann et al,, 1996; Sadjadpour et al., 2004).
Most infected monkeys fail to seroconvert, because rapid depletion of
helper T cells typically occurs within 4 weeks of infection. In contrast,
R5 tropic viruses do not show such a catastrophic reductionin CD4+ T
cells. The phenotypes observed during X4 SHIV infection are rare
during actual HIV-1 infection, and it has been suggested that R5 tropic
viruses are mainly involved in HIV-1 transmission and pathogenesis
(Margolis and Shattock, 2006). Therefore, there is a demand for R5
tropic SHIVs in this field of research.

There are some R5 tropic SHIVs that have already been used in
various experiments, including analyses on the efficacy of broadly
neutralizing antibodies (Hessell et al., 2009). Due to the paucity of

" available RS tropic SHIVs, however, it is difficult to conduct

comparative analyses on the efficacy of neutralizing antibodies
between different strains of SHIVs. In vivo analyses of neutralizing
antibodies should be conducted with more than one or even a mixture
of several strains of R3 tropic virus to reflect the wide variety of HIV-1
envelope genes that are found worldwide, Therefore, our primary aim
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was to generate a new R5 tropic SHIV, which carries a different env
from that of other existing R5 SHIVs.

Currently available R5 SHIVs were constructed by introducing the
envelope gene and other accessory genes from R5 tropic HIV-1 into
the SIV backbone (Humbert et al., 2008; Luciw et al., 1995). There is
one report that demonstrated the construction of an R5 tropic SHIV by
exchanging the whole third variable region (V3) of an X4 tropic SHIV
with that of an R5 SHIV {Ho et al., 2005). This study clearly indicated
that the V3 region of the envelope gene determines the secondary
receptor preference in vivo, Although other studies have indicated
that there are specific amino acids within the V3 region that are
responsible for receptor preference {Cardozo et al., 2007; Yamaguchi-
Kabata et al., 2004), there have been no reports demonstrating the
generation of RS tropic SHIV by the introduction of specific amino acid
substitutions to the V3 region. Therefore, our secondary aim in this
study was to alter the receptor usage of a well-studied X4 tropic SHIV
by introducing a minimal number of amino acid substitutions in the
env V3 region. The consensus amino acid alignment of subtype B R5
tropic HIV-1, which is strongly correlated with secondary receptor
usage (Cardozo et al,, 2007; Yamaguchi-Kabata et al, 2004), was
introduced to the V3 region of a highly pathogenic SHIV-KS661 that
possesses the typical infection phenotype of X4 tropic SHIV
(Fukazawa et al, 2008; Miyake et al, 2006). SHIV-KS661 is a
molecular clone constructed from the consensus sequence of SHIV-
C2/1 (Gen Bank accession number AF21718) (Shinchara et al,, 1999),
a derivative of the non-pathogenic SHIV-89.6

Results

Generation of R5 tropic SHIV-MK1 from the highly pathogenic X4 tropic
SHIV-KS661

The X4 tropic virus SHIV-KS661, a derivative of SHIV-89.6, depletes
D4+ Tlymphocytes in systemic tissues within weeks of infection and
causes AIDS-like symptoms in macaque monkeys (Fukazawa et al.,
2008; Miyake et al,, 2006). To convert the virus into an R5 tropic virus,
we introduced five amino acid substitutions in the V3 region of SHIV-
KS661 by site-directed mutagenesis. The positions of the substitutions
were selected using information from alignment of the V3 amino acids
of R5 tropic HIV-1 {Cardozo et al,, 2007; Yamaguchi-Kabata et al,,
2004). All five substitutions (E305K, R306S, R318T, R319G, and
N320D) were accompanied by changes in electrical charge. As a result,
the net charge of the V3 region shifted towards being more acidic (Fig:
1A). To determine whether this mutant, designated SHIV-MK1, was
capable of replication within monkey cells, we spinoculated SHIV-MK1
on rhPBMCs at an MOI of 0.1. The RT activity in the supernatant was
monitored daily. The X4 tropic SHIV-DH12R-CL-7 and parental SHIV-

KS661 actively replicated on rhPBMCs, reaching its peak RT activity .

level 4 days after inoculation. The R5 tropic SIVmac239 reached its
peak RT value at the same time point; however, the peak value was less
than 50% of that of SHIV-DH12R-CL-7 and SHIV-KS661. SHIV-MK1 also
replicated on rhPBMCs, but it took 2 days longer to reach peak RT
activity levels, and the peak RT value was significantly lower than that
of the parental SHIV-KS661 (Fig. 1B).

Next, to determine whether SHIV-MK1 was capable of utilizing
CCRS5, but not CXCR4, we conducted a small molecule inhibitor assay.
Briefly, SIVmac239, SHIV-DH12R-CL-7, SHIV-KS661, or SHIV-MK1 was
spinoculated on rhPBMCs that were preincubated with AD101 (R5
inhibitor), AMD3100 (X4 inhibitor), or both inhibitors at various
concentrations. The supernatant RT activities were measured 5 days
post-inoculation. The replication of X4 tropic SHIV-DH12-CL-7 was
inhibited with AMD3100 in a dose-dependent manner; however, it
was not restrained with AD101 as described previously (Igarashi et al,
1998, 2003; Sadjadpour et al., 2004). The same pattern was observed
in SHIV-KS661-infected rhPBMCs, thus indicating that this virus is also
an X4 tropic virus. In contrast, there was no replication inhibition of

R5 tropic SIVmac239 in the presence of AMD3100; however, dose-
dependent inhibition was observed in the presence of AD101. This
result is consistent with other reports (Marcon et al, 1997; Zhang
et al, 2000). SHIV-MK1 exhibited the same inhibition profile as
SIVmac239, indicating that this virus predominantly utilizes CCR5, but
not CXCR4, as an entry secondary receptor.

R5 tropic SHIV-MK1 can replicate in rhesus macaques

To determine whether SHIV-MK1 is capable of replication in
rhesus macaques, we intravenously inoculated two monkeys (MM482
and MM483) with 20,000 TCID50 SHIV-MK1. Large amount of virus
was inoculated to this group of monkey because in vitro replication of
SHIV-MK1 was significantly weak compared with that of parental
SHIV-KS661. As a conirol, two other monkeys (MM455 and MM459)
were infected with 2000 TCID50 SHIV-KS661, a sufficient amount of
virus to induce AIDS-like symptoms (Fukazawa et al,, 2008; Miyake
et al, 2006). Plasma viral RNA loads were monitored periodically
using quantitative RT-PCR. Both groups of infected monkeys exhibited
viremia, which reached peak plasma viral RNA loads of 10%-108
copies/m! 2 weeks post-infection. In SHIV-KS661-infected monkeys,
the set point of plasma viral RNA loads was between 10* and 108
copies/ml (Fig. 2Ai). In contrast, the plasma viral RNA load in one of
the two monkeys infected with SHIV-MK1 was undetectable by 6
weeks post-infection, although 10-fold more virus was inoculated.
The other monkey maintained 10°-10* copies/ml plasma viral RNA
for more than 25 weeks post-infection (Fig. 2Aii).

Next, circulating CD4+ T lymphocytes were analyzed by fluores-
cence activated cell sorting (FACS) to elucidate the impact of infection
on lymphocyte subsets. As previously reported, X4 tropic SHIV-KS661
caused a massive depletion of circulating CD4+ T lymphocytes within

" 4 weeks post-infection (Fig. 2Bi). In contrast, circulating CD4+ T

lymphocytes transiently decreased in monkeys infected with SHIV-
MK1; however, they tended to recover by 24 weeks post-infection
(Fig. 2Bii).

Because X4 tropic viruses preferably target naive (D4+ T
lymphocytes, and RS tropic viruses preferably target memory €D4+
T lymphocytes, circulating memory and naive CD4+ T lymphocytes
were analyzed. The ratios of memory and naive CD4+ T cells were
monitored 0, 2, 4, and 8 weeks post-SHIV-MK1 infection (Fig. 2C).
Consistent with previous reports (Nishimura et al., 2004), X4 tropic
SHIV-KS661 preferentially depleted naive T lymphocytes by 2 weeks
post-infection, Although there was a subtle reduction in CD4% T
lymphocytes, the ratio of memory and naive CD4+ T lymphocytes did
not change in SHIV-MK1-infected monkeys. This result indicates that
a reduction in CD4+ T cells during SHIV-MK1 infection was not
sufficient to alter the ratio of memory T cells, at least in circulating T
lymphocytes.

The intestine is an effecter site where most CD4+ T lymphocytes
are memory cells, and is the primary target for R5 tropic viruses
(Harouse et al., 1999; Veazey et al., 1998). To elucidate the impact of
viral infection in the intestine, tissue samples from the jejunum were
obtained periodically and CD4+ T lymphocyte subsets were analyzed
(Fig. 2D). As reported previously, CD4+ T lymphocytes of KS661-
infected monkeys were depleted by 4 weeks post-infection (Fukazawa
et al, 2008; Miyake et al, 2006). Although CD4+ T lymphocyte
depletion was observed in one of the SHIV-MK1-infected monkeys
(MM482) within 4 weeks post-infection, CD4+ T lymphocytes
recovered as plasma viral RNA loads decreased. Another SHIV-MK1
infected monkey (MM483) whose plasma viral RNA load dropped
below detectable levels showed only a transient reduction in CD4+
lymphocytes 5 weeks after infection. Taken together, these results
suggest that, although the magnitude of jejunal CD4+ T-cell reduction
was greater than that of circulating CD4+ T cells, the capability of
SHIV-MK1 to cause CD4+ T lymphocyte depletion in the jejunum is
not as strong as the parental SHIV-KS661.
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In vivo passage and characterization of the reisolated virus, SHIV-MK38

To adapt SHIV-MK1, we conducted in vivo passages. Briefly,
disaggregated lymphocytes from inguinal lymph nodes and fresh
blood collected from SHIV-MK1-infected MM482, were mixed and
intravenously inoculated into an uninfected monkey, MM498. During
the first passage, MM498 showed a plasma viral RNA load peak and
set point equal to that of SHIV-MK1-infected MM482. During the
second passage, disaggregated lymphocytes from inguinal lymph
nodes and fresh blood collected from MM498 were mixed and -
intravenously inoculated into an uninfected monkey, MM504.
MM504 showed a peak plasma viral RNA load of 5x 107 copies/ml,
which is slightly higher than that of MM482 and MM498, Further-
more, the set point of the viral load ranged from 10* to 10 copies/ml,
which is approximately 10 times higher than that of MM482 and
MM498 (Fig. 3A).

Although the inoculum doses were different in passaged monkeys,
this result suggests that SHIV-MK1 acquired a better replicative
capacity through in vivo passage. Therefore, we decided to reisolate
the virus from MM504 for in vitro characterization. Briefly, CD8-

depleted PBMCs from MM504 and an uninfected monkey were co-
cultured for 2 weeks. The culture supernatant with the highest RT
activity was stored in liquid nitrogen. This virus stock was designated
SHIV-MK38,

First, we examined the replication kinetics of SHIV-MK38 in
rhPBMCs. The infection assay revealed that although SHIV-MK38
could not replicate as fast or as efficiently as the parental KS661, there
was a slight improvement in replication capacity compared with the
original SHIV-MK1 (Fig. 3B). This result indicates that mutations that
arose through in vivo passage increased replication ability in
rhPBMCs.

As shown in Fig. 1B, however, X4 tropic viruses (SHIV-DH12R-CL-7
and SHIV-KS661) usually show fast and efficient replication in PBMCs
compared with that of R5 tropic viruses (SIVmac239 and SHIV-MK1).
Hence, there is the possibility of reversion in the V3 region, which may
give SHIV-MK38 the appearance of having better replication capacity

- in thPBMCs (Cho et al,, 1998). Therefore, we examined the viral

genome sequence to rule out the presence of reversions in the V3
region. Indeed, there were no back mutations in the V3 region of
SHIV-MK38 when the V1 to V3 regions of the env sequences from 14
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clones were analyzed (Fig. 3C). Nonetheless, we found mutations in
the V1 and V2 regions of SHIV-MK38. These mutations have the
potential to affect secondary receptor usage.

To confirm whether SHIV-MK38 maintains R5 tropism, we
conducted a small molecule inhibitor assay, which revealed that
SHIV-MK38 could not replicate in thPBMCs in the presence of AD101
but could replicate in the presence of AMD3100. This indicates that
SHIV-MK38 maintains R5 tropism in the primary cell (Fig. 3D).

In vivo analysis of SHIV-MK38

To evaluate whether SHIV-MK38-infected monkeys show stable
infection phenotypes compared with that of SHIV-MK1-infected
monkeys, we inoculated three monkeys with 20,000 TCID50 SHIV-
MK3S8. All three infected monkeys possessed a peak plasma viral RNA
load of approximately 107 copies/ml 12 days after infection. Although
the peak plasma viral RNA load was at the same level in these
monkeys, set points varied widely (Fig. 4A). That of MM501 was 10—
10* copies/ml, which is similar to that of SHIV-MK1-infected MM482,
MMB502 had a slightly higher set point of 10*-10° copies/ml, which is
similar to that of MM504. Finally, MM481 had the highest set point, at
108-107 copies/ml. No monkey showed a decrease in viral RNA load
under the detectable level, indicating that SHIV-MK38 robustly
replicates in rhesus macaques. .

Next, reductions in circulating CD4+ T cells were analyzed. Unlike
SHIV-MK1 infection, all of the SHIV-MK38-infected monkeys exhib-
ited a continuous reduction in CD4+ T cells without signs of recovery

(Fig. 4B). The impact of infection on ratios of circulating memory and
naive CD4+ T cells was also analyzed. Compared with monkeys
infected with SHIV-MK1, SHIV-MK38 preferentially reduced memory
fractions of CD4+ T cells (Figs. 2C and 4C).

To elucidate how improvements in viral replication affect the
reduction of CD4+ T cells at effector sites, tissue samples from the
jejunum were obtained periodically and CD4+ T lymphocyte subsets
were analyzed. In SHIV-MK38-infected monkeys, CD4+ T cells were
rapidly reduced by 2 weeks post-infection, as seen in SHIV-MK1
infection. Furthermore, recovery of CD4+ T cells was not observed in
infected monkeys. In particular, CD4+ T cells in MM481 were
depleted throughout the observation period (Figs. 2D and 4D).
These data indicate that SHIV-MK38 has an increased ability to
reduce CD4+ T cells and maintain higher plasma viral RNA loads in
infected monkeys compared with pre-adapted SHIV-MK1.

Discussion

Based on the analysis of consensus amino acid alignments of
subtype B R5 viruses, five amino acid substitutions (E305K, R306S,
R318T, R319G, and N320D) were introduced into the V3 region of the
pathogenic SHIV-KS661 env gene by site-directed mutagenesis. These
substitutions included the 11/24/25th amino acid of the V3 region,
which are strongly correlated with secondary receptor usage
(Cardozo et al, 2007; Yamaguchi-Kabata et al., 2004). As expected,
these substitutions successfully altered the secondary receptor usage
of SHIV-KS661 from X4 to R5 tropic. This result clearly demonstrates
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for the first time that specific V3 amino acid alignment information
from HIV-1 can be applied to SHIV to alter secondary receptor usage,
at least in the context of the subtype B envelope. The prediction of
viral secondary receptor tropism in HIV-1-infected people prior to the
prescription of CCR5 antagonists has important economic and
practical implications. There are at least six algorithms that predict
viral tropism from the V3 sequence; however, the accuracy of these
algorithms must be improved (de Mendoza et al., 2008; Dorr et al,,
2005; Fétkenheuer et al., 2005; Mefford et al,, 2008). For example, the
Web PSSM algorithm (Jensen et al., 2003) predicts that SHIV-MK1
exclusively utilizes CCR5, while the Geno2pheno algorithm (Sing et
al,, 2007) suggests that it may also utilize CXCR4. In this study, we

demonstrated that specific amino acids in the V3 region are
responsible for secondary receptor usage both in vitro and in vivo.
Accumulation of this type of information will provide important data
that can be used to improve predictions and increase the genotype
sensitivity of algorithms,

Although minimal numbers of amino acid substitutions were
introduced to change secondary receptor usage, SHIV-MK1 showed
relatively inefficient replication compared with that of parental SHIV-
KS661, both in vitre and in vivo. SHIV-MK1 caused measurable levels
of viremia in infected monkeys; however, plasma viral RNA levels
dropped below detectable levels in one of two infected monkeys 6
weeks after inoculation, despite the fact that enormous amount of
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virus was inoculated. When evaluating the efficacy of passively
administered neutralizing antibodies, or those induced by candidate
anti-HIV-1 vaccines, this variability in viral replication is not desirable
for the assessment of efficacy, because it is impossible to determine
whether the virus was controlled by natural immune responses or by
vaccine-induced immune responses. However, an improvement in
viral replication-was observed in ThPBMCs after in vivo passage of
SHIV-MK1. This outcome suggests that, as in the case of other existing
R5 tropic SHIVs, in vivo adaptation is required reégardless of the
minimal number of amino acid substitutions (Humbert et al., 2008;
Tan et al,, 1999).

Because various reports have demonstrated the emergence of the
X4 tropic virus from the R5 tropic virus after serial passages (Ho et al,
2007, Pastore et al., 2000), there was a concern over the emergence of
the X4 tropic virus through two in vivo passages. Although there were
only five amino acid substitutions, no reversions in any of the
substituted amino acids in the V3 region were observed. Some
mutations were accompanied by amino acid substitutions in V1 and
V2 regions. Previous reports suggest that these two variable regions
may influence secondary receptor preference (Cho et al, 1998);
however, a small molecule inhibitor assay revealed that SHIV-MK38
maintained RS tropism after passage. The V1 and V2 regions also play
a role in sensitivity against neutralizing antibodies (Laird et al., 2008;
Wei et al,, 2003). Although further investigations are required, SHIV-
MK38 could have developed mutations in the V1 and V2 regions to
modify antigenicity in an attempt to evade neutralizing antibodies
(Sagar et al,, 2006). Indeed, neutralization assay on TZM-BL cells
revealed that neutralizing antibody from an MK1-infected monkey
can neutralize SHIV-KS661 and SHIV-MK1, but fail to neutralize SHIV-
MK38. Cn the other hand, plasma from the monkey in which SHIV-
MK38 was isolated could neutralize all three viruses. Thus, the
antigenicity was changed through in vivo passages (Supplementary
Figure). Taken together, these results suggest that the improved
replication of SHIV-MK38 over MK1 was not due to the re-emergence
of X4 tropic viruses, Furthermore, the acquisition of mutations outside
the V3 region is most likely attributable to the improved replication of
SHIV-MK38 in vivo.

To confirm the replication advantage of SHIV-MK38 over SHIV-
MK1, SHIV-MK38 was intravenously inoculated into three uninfected
monkeys. Despite the fact that the same amount of SHIV-MK38 was
inoculated, higher peaks and set points of plasma RNA loads were
observed in SHIV-MK38 compared with SHIV-MK1 infection. Al-
though SHIV-MK38-infected monkeys showed no obvious signs of
AIDS-like symptoms during the observation period, none of these
monkeys was able to control viral replication. A greater reduction in
the memory portion of circulating CD4+ T cells was observed in SHIV-
MK38-infected monkeys. This preferential reduction of circulating
memory CD4+ T cells was well defined in MM481, which correlates
with the maintenance of high plasma viral RNA loads throughout the
observation period. Reductions of CD4+ T cells in the jejunum of
SHIV-MK38-infected monkeys were greater than that of SHIV-MK1-
infected monkeys, and there was no obvious recovery during the
observation period. These infection phenotypes are characteristic of
an RS tropic virus, which is distinct from the infection of X4 tropic
SHIVs such as parental SHIV-KS661 (Fukazawa et al., 2008; Miyake
et al,, 2006). ’

Harous et al. clearly demonstrated that R5 tropic virus preferen-
tially reduces mucosal CD4+ T cells where memory CD4+ T cells are
abundant, whereas X4 tropic virus preferentially reduces peripheral
CD4+ T cells where naive CD4+ T cells are abundant (Harouse et al.,
1999). From this observation, it is clear that the receptor preference
has strong impact on tissue specific CD4+ T-cell reductions. However,
in some cases, systemic and irreversible reduction of CD4+ T cells was
observed in highly pathogenic X4 SHIV infection (Fukazawa et al,,
2008; Nishimura et al., 2004). It has been suggested that highly
pathogenic X4 SHIV preferentially targets naive CD4+ T cells but

.

eventually reduces memory CD4+ T cells (Nishimura et al.,, 2004).
The depletion of CD4+ T cells at the effector site in SHIV-KS661
infected monkeys supports this suggestion (Fig. 2D).

The envelope gene of SHIV-MK38 belongs to subtype B, which can
be compared with other subtype B or C R5 tropic SHIVs (Humbert
et al, 2008; Tan et al, 1999). Comparing the efficacy of passively
administered neutralizing antibodies and their induction by candidate
HIV-1 vaccines against a variety of R5 tropic SHIVs would provide a
more precise evaluation against a variety of HIV-1 strains worldwide
(Wei et al., 2003). Furthermore, despite the fact that SHIV-MK38 is
derived from SHIV-KS661, and mutations were obtained through the
alteration of secondary receptor usage and passage, SHIV-MK38 is still
genetically homologous to SHIV-89.6P, because they both originate
from the same molecular clone, SHIV-89.6. Highly pathogenic X4
tropic SHIV-89.6P has been used extensively in various experiments,
including vaccine concept evaluations (Shiver et al., 2002). There are
claims, however, that the utilization of X4 tropic SHIVs as challenge
viruses has led to overestimation of vector-based vaccines (Feinberg
and Moore, 2002). Therefore, SHIV-MK38 can be useful in the future
to determine whether such overestimations are truly caused by using
X4 SHIVs or are due to using an SHIV derived from the specific lineage
of SHIV-89.6,

Based on our observations, it can be concluded that R5 tropic SHIV-
MK38 can robustly replicate, and we successfully generated a new R5
tropic SHIV by a new method. Although infected monkeys showed no
signs of AIDS-like symptoms during the observation period, and
further characterization such as neutralization profiles must be
conducted, SHIV-MK38 has the potential to be a new R5 SHIV model.

Materials and methods
Virus production

Non-synonymous nucleotide substitutions in the V3 domain of the
SHIV-KS661 env gene were introduced by site-directed mutagenesis
for substitution of amino acids. A 5.9 kb DNA fragment containing the
env V3 domain was subcloned into a pUC119 vector following
digestion with restriction enzymes Sse83871 and Xhol. The resulting
vector was designated pKS661v3, and was used as the template for
two sets of polymerase chain reaction (PCR). All amplifications were
performed as follows: one cycle of denaturation (98 °C, 5 min), 32
cycles of amplification (98 °C, 10 s/60 °C, 30 s/72 °C, 2 min), and an
additional cycle for final extension (72 °C, 10 min) using iProof High-
Fidelity Master Mix (Bio-Rad Laboratories, Hercules, CA). The
following primers were used for the first set of PCR: 5’ CAATACAA-
GAAAAAGTTTATCTATAGGACCAGGGAGAGCATTTTATGCAACAGGAGA-
CATAATAGGAG 3’ (forward primer corresponding to the 7250-7317th
nucleotides of SHIV-KS661; positions of mismatches are underlined)
and 5’ GCTGAAGAGGCACAGGCTCCGC 3’ (reverse primer corresponding
to the 8633-8612th nucleotide of SHIV-KS661; no mismatches). The
following primers were used for the second set of PCR: 5/ CTCCTAT-
TATGTCTCCTGTTGCATAAAATGCTCTCCCTGGTCCTATAGA-
TAAACTTTTICTTGTATTG 3’ (reverse primer corresponding to the
7317-7250th nucleotide of SHIV-KS661; positions of mismatches are
underlined) and 5' CTCCAGGACTAGCATAAATGG 3’ (forward primer
corresponding to the 5617-5637th nucleotide of SHIV-KS661; no
mismatches), The products from these two sets of PCR were mixed,
and overlap PCR was performed using primers 5’ GCTGAAGAGGCA-
CAGGCTCCGC 3’ and 5 CTCCAGGACTAGCATAAATGG 3. The PCR
product was then digested with the restriction enzymes BsaBI and
Ncol. The resulting fragment was introduced back into the pKS661v3
vector, and designated pKS661v3m. Then pKS661v3m DNA with
mutations was digested by Sse8387I and Xhol, and the fragment was
introduced back into the KS661 full genome plasmid, and designated
pMK1.
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SHIV-MK1 was prepared by transfecting pMK1 into the 293T cell
line using the FuGENE 6 Transfection Reagent (Roche Diagnostics,
Indianapolis, IN) and the culture supernatant 48 h after transfection,
and was stored in liquid nitrogen until use, The same procedures were
conducted to prepare SIVmac239 (Kestler et al., 1991), SHIV-KS661
(Shinchara et al., 1999), and SHIV-DH12R-CL7 (Igarashi et al., 1999).
The 50% tissue culture infectious dose (TCID50) was measured using
the C8166-CCR5 cell line (Shimizu et al., 2006).

Viral replication on rhPBMCs

Rhesus macaque PBMCs (rhPBMCs), prepared from an uninfected
monkey, were suspended in Rosewell Park Memorial Institute (RPMI)
1640 medium supplemented with 10% (vol/vol) fetal bovine serum
(FBS), 2 mM L-glutamine, and 1 mM sodium pyruvate, and then
stimulated for 20 h with 25 pg/ml Concanavalin A (Sigma-Aldrich, St.
Louis, USA), followed by an additional 2-day cultivation with 100
units/ml IL-2 (Shionogi, Osaka, Japan). On day 3, 5x10* cells were
dispensed into 96-well round-bottom plates in triplicate. The cells
were then inoculated with virus at a multiplicity of infection (MOI) of
0.1 using the spinoculation method (O'Doherty et al.,, 2000). Virion-
associated reverse transcriptase (RT) activity of the culture superna-
tant was monitored periodically (Willey et al., 1988).

Inhibition of viral replication by a small molecule inhibitor

A small molecule inhibitor assay was conducted as described
previously (Igarashi et al, 2003), with minor modifications. Briefly,
uninfected rhesus PBMCs were prepared as described above. On day 3,
5x10* cells were dispensed into 96-well round-bottom plates,
Various concentrations {0, 0.05, 0.1, 0.5, 1, and 5 pM) of a small
molecule CCR5-specific receptor antagonist (AD101 was provided by
Dr. Julie Strizki, Schering Plough Research Institute, Kenilworth, NJ)
(Trkola et al, 2002) and/or a CXCR4-specific receptor antagonist
(AMD3100; Sigma-Aldrich, St. Louis, MO) (Donzella et al., 1998) were
added to duplicate wells and incubated for 1 hat 37 °C. Then each test
virus was spinoculated at 1200x g for 1 h at an MOI of 6.1. On day 5
post-infection, virus replications were assessed by RT assay of the
culture supernatants. :

Virus inoculation

Indian-origin rhesus macaques were used in accordance with the
institutional regulations approved by the Committee for Experimental
Use of Nonhuman Primates of the Institute for Virus Research, Kyoto
University, Kyoto, Japan. Monkeys were housed in a biosafety level 3
facility and all procedures were performed in this facility. Collection of
blood, biopsies, and iv. virus inoculations (2000 TCID50 of SHIV-
KS661, 20000 TCID50 of SHIV-MK1, 20000 TCID50 of SHIV-MK38)
were performed on monkeys under anesthetization with ketamine
hydrochloride (Daiichi-Sankyo, Tokyo, Japan). Plasma viral RNA loads
were determined by quantitative RT-PCR as described previously
{Kozyrev et al., 2002). Plasma viral RNA loads under 100 copies/ml
were characterized as undetectable levels.

Jejunal biopsy

Tissue samples from the jejunum were collected with a pediatric
enteroscope (Olympus GIF type XP260N, Olympus Medical System
Corp., Tokyo, Japan). Five pieces (samples) of fresh jejunal tissue were
placed on a shaker for 2 h at room temperature in 40 ml RPMI 1640
medium containing 10% FBS and 0.01 g collagenase from Clostridium
histolyticumn (Sigma-Aldrich, St. Louis, MQ). Disaggregated cells were
filtered through glass wool loaded in a 20 ml disposable syringe. Cells
were prepared from the filtrate by centrifugation at a speed of

1200 rpm for 10 min. Subsets of lymphocytes in the resuspended cells
were analyzed by flow cytometry.

Flow cytometry

To analyze CD4+ T lymphocytes, whole blood and jejunal samples
were stained with two fluorescently labeled mouse monoclonal
antibodies, fluorescein isothiocyanate (FITC) conjugated anti-monkey
CD3 (Clone FN-18, BioSource Intl, Camarillo, CA) and phyccerythrin
(PE) conjugated anti-human CD4 (Clone Nu-TH/; Nichirei, Tokyo,
Japan). To analyze memory and naive CD4+ T lymphocytes, whole
blood and jejunal samples were stained with three fluorescently
labeled mouse monoclonal antibodies, FITC conjugated anti-human
CD95 (Clone DX2; BD Pharmingen, Tokyo, Japan), PE conjugated anti-
human CD28 (Clone CD28.2; Coulter Immunotech, Marseille, France),
and allophycocyanin (APC) conjugated anti-human CD4 {Clone L200;
BD Pharmingen). After hemolysis of whole blood and jejunal samples
using a lysing solution (Beckton Dickinson, Franklin Lakes, NJ), each
type of labeled lymphocyte was examined on a FACScalibur analyzer
using Cellquest (BD Biosciences, San Jose, CA). CD95+4CD4"eM ¢ cells
were considered memory T lymphocytes, and CD95-CD28+CD4"eh
cells were considerad naive T lymphocytes (Pitcher et al., 2002). The
absolute number of lymphocytes in the blood was determined using
an automated blood counter, KX-21 (Sysmex, Kobe, Japan).

In vivo passage

Inguinal lymph nodes were aseptically collected from MM482 25
weeks after infection. The lymph nodes were minced with scissors,
disaggregated using an 85-ml Bellco Tissue Sieve Kit (Bellco Glass,
Inc., Vineland, NJ), and filtered through a 100-um pore cell strainer
(REF 35-2360, BD Falcon, Franklin Lakes, NJ). Filtrates were centri-
fuged and then washed four times with phosphate-buffered saline
(PBS). These disaggregated cells were mixed with 2 ml frozen plasma
(collected from the animal 8 weeks post-infection and stored at
—80 °C) and 20 ml fresh blood from MM482, and then transfused into
an uninfected monkey {MM498) intravenously. During the second
passage, inguinal lymph nodes were aseptically collected from
MM498 5 weeks after infection. The disaggregated inguinal lymph
node was mixed with 2 ml frozen plasma (collected 2 weeks post-
infection), 5x 107 cells inguinal lymphocytes (collected 16 days post-
infection and stored at —80 °C), and 15 ml fresh blood, and then
transfused into an uninfected monkey (MM504).

Reisolation of virus

Fresh blood was‘obtained from the uninfected monkey, and PBMCs
were isolated. These cells were incubated for 30 min with PE labeled
anti-CD8 antibody (SK1 clone, BD Pharmingen), then washed once
with PBS. Next, cells were incubated with anti-PE MACS beads
{Miltenyi Biotec, Bergisch Gladbach, Germany), and CD8— cells were
negatively selected with a magnetic column. CD8— PBMCs were
cultured as described above,

On day 0, fresh blood was obtained from MM504 (16 weeks post-
infection) and CD8 cells were depleted as described above, CD8+ cells
were also depleted from frozen PBMCs (obtained from MM504
8 weeks post-infection and stored at — 80 °C). These CD§— PBMCs
from uninfected and infected monkeys were co-cultured in PBMC
culture medium (described above) at a concentration of 2 x 108 cells/
ml at 37 °C. Medium was replaced daily for 16 days and culture
supernatants were stored at — 80 °C. The culture supernatant with the
highest RT value was stored in liquid nitrogen. This virus stock was
designated SHIV-MK38.
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Sequence of V1, V2, and V3 regions of SHIV-MK38

SHIV-MK38 viral stock was used as a template for RT-PCR to
amplify the V1 to V3 regions of the env gene. The forward primer 5
GTGTAAAATTAACCCCACTCTGTG 3’ and reverse primer 5’
TGGGAGGGGCATACATTGCTTITCC 3/ were used for RT-PCR. The
amplified DNA fragment was cloned into the pCR2.1 vector using a
TA Cloning Kit (Invitrogen, Carlsbad, CA), and 14 clones were
sequenced.
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