- 20) Okada M, Kita Y, Nakajima T, et al. Evaluation of a novel vaccine (HVJ-liposome/HSP65 DNA+IL-12 DNA) against tuberculosis using the cynomologus monkey model of TB. Vaccine 2007; 25: 2990.
- 21) Walsh GP, Tan EV, dela Cruz EC, et al. The Philip-

pine cynomolgus monkey (*Macaca fasicularis*) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat Med 1996; 2:430.

* * *

Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Novel prophylactic and therapeutic vaccine against tuberculosis

Masaji Okada^{a,*}, Yoko Kita^a, Toshihiro Nakajima^b, Noriko Kanamaru^a, Satomi Hashimoto^a, Tetsuji Nagasawa^b, Yasufumi Kaneda^c, Shigeto Yoshida^d, Yasuko Nishida^a, Hitoshi Nakatani^a, Kyoko Takao^a, Chie Kishigami^a, Yoshikazu Inoue^a, Makoto Matsumoto^e, David N. McMurray^f, E.C. dela Cruz^g, E.V. Tan^g, R.M. Abalos^g, J.A. Burgos^g, Paul Saunderson^g, Mitsunori Sakatani^a

- ^a Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, 1180 Nagasone, Kitaku, Sakai, Osaka 591-8555, Japan
- b Ikeda Laboratory, Genomidea Inc.,1-8-31 Midorigaoka, Ikeda, Osaka 530-0043, Japan
- ^c Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- ^d Department of Medical Zoology, Jichi-Med. Sch., 3311-1 Yakushiji, Minamikawachi-machi, Tochigi 329-0498, Japan
- e Otsuka Pharmaceutical Co. Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
- f Texas A & M University, System Health Science Center, College of Medicine, College Station, TX 77843-1114, USA
- ⁸ Leonard Wood Memorial, Jagobiao, Mandaue City, Cebu 6000, Philippines

ARTICLE INFO

Article history: Available online 5 February 2009

Keywords: HSP65+IL-12 DNA vaccine Tuberculosis Therapeutic effect

ABSTRACT

We have developed a novel tuberculosis (TB) vaccine; a combination of the DNA vaccines expressing mycobacterial heat shock protein 65 (HSP65) and interleukin 12 (IL-12) delivered by the hemagglutinating virus of Japan (HVJ)-envelope and -liposome (HSP65+IL-12/HVJ). This vaccine provided therapeutic efficacy as well as remarkable protective efficacy via CD8* T and CD4* T cells in murine models compared with the saline controls, on the basis of CFU of number of multi-drug resistant TB (MDR-TB), and survival of extremely drug resistant TB (XDR-TB) challenged mice. Furthermore, we extended our studies to a cynomolgus monkey model, which is currently the best animal model of human tuberculosis. This vaccine exerted therapeutic efficacy (survival and immune responses) in the TB-infected monkeys. These data indicate that our novel DNA vaccine might be useful against *Mycobacterium tuberculosis* including XDR-TB and MDR-TB for human therapeutic clinical trials.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Tuberculosis is a major global threat to human health, with about 2 million people dying every year from Mycobacterium tuberculosis (TB) infection. The only tuberculosis vaccine currently available is an attenuated strain of Mycobacterium bovis BCG (BCG), although its efficacy against adult TB disease remains controversial. Furthermore, multi-drug resistant tuberculosis (MDR-TB) and extremely drug resistant TB (XDR-TB) are becoming big problems in the world. In such circumstances, the development of therapeutic vaccine against TB as well as prophylactic vaccine against TB is required. Therefore, we have recently developed a novel TB vaccine, a DNA vaccine expressing mycobacterial heat shock protein 65 (HSP65) and interleukin-12 (IL-12) delivered by the hemagglutinating virus of Japan (HVJ)-liposome (HSP65 + IL-12/HVJ). This vaccine was 100-fold more efficient than BCG in the murine model on the basis of the elimination of M. tuberculosis mediated by the induction of CTL [1,2]. A nonhuman primate model of TB will provide

information for vaccine development. In fact, in the previous study we evaluated the protective efficacy of HSP65+IL-12/HVI in the

2. Materials and methods

DNA vaccines encoding M. tuberculosis HSP65 and human IL-12 were encapsulated into HVJ-envelope or HVJ-liposomes [5]. CTL activity was assessed by 51 C_r-release [1,6].

At 5 and 10 weeks after intravenous challenge of *M. tuberculosis* H37RV, the number of CFU in the lungs, spleen, and liver were counted and therapeutic efficacy of HVJ-envelope DNA vaccines was evaluated [1]. Therapeutic efficacy was also evaluated by chronic TB infection model of mice using aerosol challenge of TB

0264-410X/\$ – see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.vaccine.2009.01.064

cynomolgus monkey model, which is an excellent model of human tuberculosis [1,3]. Furthermore, we observed the synergistic effect of the HSP65+IL-12/HVJ and BCG using a priming-booster method in the TB-infected cynomolgus monkeys. The combination of the two vaccines showed a very strong prophylactic efficacy against *M. tuberculosis* (100% survival) as we have seen previously in the murine model of TB [4]. In the present study, we evaluated therapeutic effect and prophylactic effect of this vaccine on the MDR-TB infection and XDR-TB infection in murine and monkey models.

 ^{*} Corresponding author. Tel.: +81 72 252 3021; fax: +81 72 251 2153.
 E-mail address: okm@kch.hosp.go.jp (M. Okada).

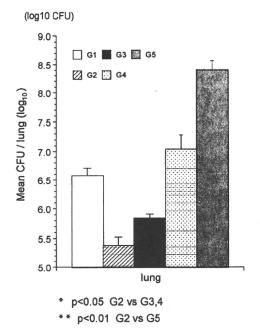


Fig. 1. The *in vivo* necessity of CD8 positive T cells and CD4 positive T cells for prophylactic efficacy of the HVJ-envelope/HSP65 DNA+IL-12 DNA vaccine. Anti-CD8 antibody and/or anti-CD4 antibody were injected i.p. every 5 days after the challenge of TB. BCG was used as a priming vaccine and this DNA vaccine was immunized 2 times (HVJ-envelope/HSP65 DNA 50 μ g+IL-12 DNA 50 μ g) as booster vaccine. 4 weeks after last immunization, 5×10^5 H37RV were challenged i.v. into mice. G1: without vaccine (\square). G2: vaccine (\square). G3: vaccine + anti-CD8 antibody (\square). G4: vaccine + anti-CD4 antibody (\square). G5: vaccine + anti-CD8 antibody + anti-CD4 antibody (\square) (G2-G3: P<0.05) (G2-G4: P<0.05) (G2-G5: P<0.01).

(15 CFU/mouse: Madison aerosol exposure chamber, University of Wisconsin). 5 weeks after aerosol infection of TB, the vaccine was administered to mice 6 times in 3 weeks.

Cynomolgus monkeys were housed in a BL 3 animal facility of the Leonard Wood Memorial Research Center. The animals were vaccinated 9 times with the HVJ-envelope with expression plasmid of both HSP65 and human IL-12 (HSP65+hIL-12/HVJ: 400 µg i.m.), 1 week after the challenge with the *M. tuberculosis* Erdman

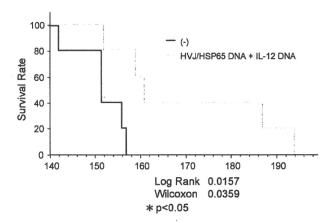


Fig. 2. Therapeutic efficacy of HVJ-envelope/HSP65 DNA+IL-12 DNA vaccine on the extremely drug resistant Mycobacterium tuberculosis (XDR-TB). The survival of DBA/1 mice treated with HVJ-envelope/HSP65 DNA (50 μg)+IL-12 DNA vaccine (50 μg) 3 times after 5 × 10⁵ XDR-TB, injection i.v. XDR-TB is resistant to RFP, INH, SM, EB, KM, EVM, TH, PAS, LEFX and PZA. XDR-TB is only sensitive to CS. Survival rate of mice treated with HVJ-envelope/HSP65 DNA+IL-12 DNA (圖). Survival rate of of mice without treatment (■). Kaplan-Meier's method (log rank test and Wilcoxon) was used to compare the survival of each group (G1–G2: log rank 0.0157 Wilcoxon 0.0359).

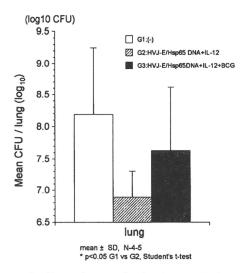


Fig. 3. Therapeutic efficacy of HVJ-envelope/HSP65 DNA+IL-12 DNA vaccine on MDR-TB TNF R gene disrupted DBA/1 mice were treated with HVJ-envelope/HSP65 DNA+IL-12 DNA vaccine 3 times after 5×10^5 MDR-TB injection i.v. CFU of MDR-TB in the lungs of mice, 4 weeks after MDR-TB injection, were assessed as described in Section 2. G1: (–) (\square). G2: treated with HVJ-envelope/HSP65 DNA+IL-12 DNA (\boxtimes). G3: treated with HVJ-envelope/HSP65 DNA+IL-12 DNA and BCG (\blacksquare). Student's *t*-test was used to compare the CFU of TB of each group (G1–G2: P<0.05).

strain (5×10^2) by intratracheal instillation. Immune responses and survival were examined as described in our previous studies [2,4].

3. Results

The purpose of this study was to elucidate the therapeutic efficacy of a TB vaccine we have developed in a murine and nonhuman primate TB model [1,3].

The in vivo necessity of CD8 positive T cells as well as CD4 positive T cells to exert the prophylactic efficacy of the HVJ-

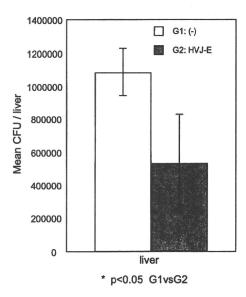
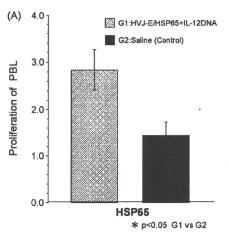



Fig. 4. Therapeutic efficacy of HVJ-envelope/HSP65 DNA+IL-12 DNA, using *in vivo* humanized immune models of IL-2 receptor γ -chain disrupted NOD-SCID mice (SCID-PBL/hu). Groups of animals were treated with 3 times with HVJ-envelope/HSP65 DNA+IL-12 DNA (50 μg i.m.) 10 days after the third vaccination, mice were sacrificed and CFU of TB in the liver of mice were accessed as described in Section 2 (1, 2). 1×10^7 PBL from a healthy human volunteer were injected i.p. into IL-2 receptor γ -chain disrupted NOD-SCID mice. 21 days after injection of PBL, mice were challenges with 5×10^5 H37RV i.v. and then treated with the vaccine. G1: (–) control (□). G2: treated with HVJ-envelope/HSP65 DNA+IL-12 DNA (■). Student's *t*-test was used to compare the CFU of TB of each group (G1–G2: P<0.05).

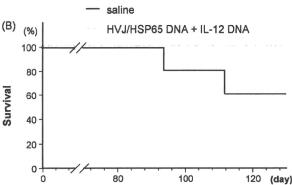


Fig. 5. (A) Therapeutic efficacy of HVJ-envelope/HSP65 DNA+IL-12 DNA vaccine using cynomolgus monkey. Five cynomolgus monkeys were treated with HVJ-envelope/HSP65 DNA+IL-12 DNA vaccine 9 times after 5×10^2 MTB intratrachea instillation. Stimulation index of the proliferation of PBL from these monkeys and that from five control monkeys (saline injected) were assessed by the stimulation with HSP65 antigen. G1: HVJ-envelope/HSP65 DNA+IL-12 DNA treatment () G2: saline (control) (). Tukey-Kramer's HSD tests were used to compare proliferative responses of PBL between groups (G1-G2: P < 0.05). (B) Survival periods of 5 monkeys treated with HVJ-envelope/HSP65 DNA+IL-12 DNA vaccine 9 times after TB challenge were shown (). Survival periods of 5 monkeys treated with saline (control) were shown ().

envelope/HSP65 DNA+IL-12 DNA vaccine was demonstrated in mice. Anti-CD8 antibody alone or anti-CD4 antibody alone treatment during the whole immunization period induced the increase in the number of TB in the mice immunized with the vaccine (Fig. 1). Both anti-CD8 antibody and anti-CD4 antibody treatment increased in the number of TB synergistically.

Fig. 2 shows the survival of vaccinated mice after XDR-TB (extremely drug resistant TB). All mice in the control group died of TB within 160 days after XDR-TB infection. In contrast, mice treated with HVJ-envelope/HSP65 DNA+IL-12 DNA prolonged the survival periods significantly by statistical analysis (*P*<0.05). It was demonstrated that this vaccine had a therapeutic activity against XDR-TB.

At 5 and 10 weeks after intravenous challenge of MDR-TB, the CFU in the lungs, spleen, and liver were counted and therapeutic efficacy of HVJ-envelope DNA vaccine was evaluated.

As shown in Fig. 3, HVJ-Env/HSP65 DNA+IL-12 DNA vaccine treatment significantly reduced the bacterial loads as compared to saline control group (P<0.05).

Therapeutic efficacy of HVJ-envelope/HSP65 DNA+IL-12 DNA was also observed, using in vivo humanized immune models of IL-2 receptor γ -chain disrupted NOD-SCID mice constructed with human PBL (SCID-PBL/hu) [7,8].

Fig. 4 shows the results of bacterial loads 5 weeks after TB infection. Therapeutic vaccination with HVJ-Env/HSP65 DNA+IL-

12 DNA group resulted in significantly therapeutic activity even in SCID-PBL/hu mice which exerted human T cell immune responses.

Furthermore, the therapeutic activity of this vaccine was evaluated in a nonhuman primate model infected with *M. tuberculosis*.

Fig. 5A shows the results of immune responses of cynomolgus monkey at 11 weeks after challenge of M. tuberculosis Erdman strain (5×10^2) by intratracheal instillation. The proliferation of PBL in therapeutic vaccination of monkeys in the group with HVJ-Env/HSP65 DNA+IL-12 DNA was augmented. This vaccine also improved the survival of monkeys, compared to the saline (control) group, during the period between 0 weeks and 19 weeks after TB challenge (Fig. 5B).

4. Discussion

The HSP65+hIL-12/HVJ vaccine exerted a significant therapeutic effect against TB, as indicated by: (1) extension of survival of mice infected with XDR-TB, (2) decrease in the CFU of TB in lungs, liver and spleen of mice infected with MDR-TB as well as drugsensitive TB (H37RV), (3) decrease in the CFU of TB in these organs of mice challenged with TB in the *in vivo* humanized immune model of SCID-PBL/hu and (4) augmentation of immune responses, in a cynomologus monkey model which closely mimics human TB disease. It is important to evaluate the survival of monkey [6,7]. During the period between 0 weeks and 19 weeks after TB challenge, increase in the survival rate of the monkeys treated with this vaccine were observed, compared to the control monkeys treated with saline.

MDR-TB and XDR-TB are becoming big problems in the world. About 500,000 new patients with MDR-TB are shown every year. However, the effective drugs against MDR-TB are few.

The HVJ-envelope/HSP65 DNA+IL-12 DNA vaccine exerted the therapeutic activity even against XDR-TB, which is resistant to RFP, INH, SM, EB, KM, EVM, TH, PAS, LEFX and PZA and only sensitive to CS. Thus, our results with the HVJ-envelope/HSP65 DNA+IL-12 DNA vaccine in the murine therapeutic model and cynomologus monkey therapeutic model should provide a significant rationale for moving this vaccine into clinical trial. Furthermore, we have established chronic TB disease model using mouse infected with TB in the aerosol chamber (data not shown) [9]. By using this model, therapeutic efficacy of this vaccine was also observed.

Thus, we are taking advantage of the availability of multiple animal models to accumulate essential data on the HVJ-envelope DNA vaccine in anticipation of a phase I clinical trial.

Acknowledgements

This study was supported by a Health and Labour Science Research Grant from MHLW (H11-shinko-2, H14-shinko-1, H17-shinko-5, H20-shinko-14), international collaborative study grants from Human Science foundation and Grant-in-Aid for Scientific Research(B) from the Ministry of Education, Culture, Sports, Science and Technology Japan, and Grant of Osaka Tuberculosis Foundation.

References

- [1] Yoshida S, Tanaka T, Kita Y, Kuwayama S, Kanamaru N, Muraki Y, et al. DNA vaccine using hemagglutinating virus of Japan-liposome encapsulating combination encoding mycobacterial heat shock protein 65 and interleukin-12 confers protection against Mycobacterium tuberculosis by T cell activation. Vaccine 2006;24:1191-204.
- [2] Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, et al. Evaluation of a novel vaccine (HVJ-liposome/HSP65 DNA+IL-12 DNA) against tuberculosis using the cynomologus monkey model of TB. Vaccine 2007;25(16):2990-3.
- [3] Walsh GP, Tan EV, dela Cruz EC, Abalos RM, Villahermosa LG, Young LJ, et al. The Philippine cynomolgus monkey provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat Med 1996;2(4):430–6.

- [4] Kita Y, Tanaka T, Yoshida S, Ohara N, Kaneda Y, Kuwayama S, et al. Novel recombinant BCG and DNA-vaccination against tuberculosis in a cynomolgus monkey model. Vaccine 2005;23:2132–5.

 [5] Saeki Y, Matsumoto N, Nakano Y, Mori M, Awai K, Kaneda Y. Development and
- characterization of cationic liposomes conjugated with HVJ (Sendai virus). Hum Gene Ther 1997;8(17):2133-41.
- [6] Okada M, Yoshimura N, Kaieda T, Yamamura Y, Kishimoto T. Establishment and characterization of human T hybrid cells secreting immunoregulatory molecules. Proc Natl Acad Sci USA 1981;78(12):7717–21.
- [7] Okada M, Okuno Y, Hashimoto S, Kita Y, Kanamaru N, Nishida Y, et al. Develop-
- ment of vaccines and passive immunotherapy against SARS corona virus using SCID-PBL/hu mouse models. Vaccine 2007;25:3038-40.

 [8] Tanaka F, Abe M, Akiyoshi T, Nomura T, Sugimachi K, Kishimoto T, et al. The antihuman tumor effect and generation of human cytotoxic T cells in SCID mice given human peripheral blood lymphocytes by the *in vivo* transfer of the interleukin-6 generating adequating vector Capper Res 1007:57(7):1335-42 gene using adenovirus vector. Cancer Res 1997;57(7):1335-43.
- [9] Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol 2001;19:

A NOVEL THERAPEUTIC AND PROPHYLACTIC VACCINE (HVJ-ENVELOPE/HSP65 DNA+IL-12 DNA) AGAINST TUBERCULOSIS USING THE CYNOMOLGUS MONKEY MODEL

*Masaji Okada¹⁾, Yoko Kita¹⁾, Noriko Kanamaru¹⁾, Satomi Hashimoto¹⁾, Yasuko Nishida¹⁾, Hitoshi Nakatani¹⁾, Kyoko Takao¹⁾, Chie Kishigami¹⁾, Shiho Nishimatsu¹⁾, Yoshikazu Inoue¹⁾, Toshihiro Nakajima²⁾, Tetsuji Nagasawa²⁾, Yasuhumi Kaneda³⁾, Shigeto Yoshida⁴⁾, Makoto Matsumoto⁵⁾, Paul Saunderson⁶⁾, Esterlina V.Tan⁶⁾, E.C.Dela Cruz⁶⁾, David McMurray⁷⁾, Mitsunori Sakatani¹⁾

¹⁾National Hospital Organization Kinki-chuo Chest Medical Center, ²⁾Genomidea Co., ³⁾Osaka University, ⁴⁾Jichi Medical School, ⁵⁾Otsuka Pharmaceutical Co., ⁶⁾Leonard Wood Memorial Institute, ⁷⁾Texas A&M University.

[Abstract]

We have developed a novel tuberculosis (TB) vaccine; a combination of the DNA vaccines expressing mycobacterial heat shock protein 65 (HSP65) and interleukin 12 (IL-12) delivered by the hemagglutinating virus of Japan (HVJ)-envelope and -liposome (HSP65 + IL-12/HVJ). An IL-12 expression vector (IL-12DNA) encoding single-chain IL-12 proteins comprised of p40 and p35 subunits were constructed. This vaccine provided remarkable protective efficacy in mouse and guinea pig models compared to the BCG vaccine on the basis of C.F.U of number of TB, survival, an induction of the CD8 positive CTL activity and improvement of the histopathological tuberculosis lesions. This vaccine provided therapeutic efficacy against multi-drug resistant TB (MDR-TB) and extremely drug resistant TB (XDR-TB) (prolongation of survival time and the decrease in the number of TB in the lung) as well as protective efficacy in murine models. Furthermore, we extended our studies to a cynomolgus monkey model, which is currently the best animal model of human tuberculosis. This novel vaccine provided a higher level of the protective efficacy than BCG based upon the assessment of mortality, the ESR, body weight, chest X-ray findings and immune responses. All monkeys in the control group (saline) died within 8 months, while 50% of monkeys in the HSP65+hIL-12/HVJ group survived more than 14 months post-infection (the termination period of the experiment). combination of HSP65 + IL-12/HVJ and BCG by the priming-booster method showed a synergistic effect in the TB-infected cynomolgus monkey (100% survival). In contrast, 33% of monkeys from BCG Tokyo alone group were alive (33% survival). Furthermore, this vaccine exerted therapeutic efficacy (survived and immune responses) in the TB-infected monkeys. These data indicate that our novel DNA vaccine might be useful against Mycobacterium tuberculosis including XDR-TB and MDR-TB for human therapeutic clinical trials.

[Introduction]

Tuberculosis is a major global threat to human health, with about 2 million people dying every year from M.tuberculosis (TB) infections. The only tuberculosis vaccine currently available is an attenuated strain of M.bovis BCG (BCG), although its efficacy against adult TB disease remains controversial. Furthermore, multi-drug resistant tuberculosis (MDR-TB) and extremely drug resistant TB (XDR-TB) are becoming big problems in the world. In such circumstances, the development of therapeutic vaccine against TB as well as prophylactic vaccine against TB is required. Therefore, we have recently developed a novel TB vaccine, a DNA vaccine expressing mycobacterial heat shock protein 65 (Hsp65) and interleukin-12 (IL-12) delivered by the hemagglutinating virus of Japan (HVJ)-envelope (liposome) (HSP65+IL-12/HVJ). In order to explore the preclinical use of tuberculosis DNA vaccine combinations of IL-12 DNA with Hsp65 DNA, we choose the viral-based hybrid antigen delivery system hemagglutinating virus of Japan (HVJ)-liposome because this delivery system results in a high transfection efficacy, repeated gene transfection without reduction of gene transfer efficiency in vivo, and no apparent toxicity. The vaccine was 100 fold more efficient than BCG in the mouse model on the basis of the elimination of M. tuberculosis mediated by the induction of CTL [1]. A nonhuman primate model of TB will provide critical information for vaccine development. In fact, in the previous study we evaluated the protective efficacy of HSP65+IL-12/HVJ in the cynomolgus monkey model, which is an excellent model of human tuberculosis [2,3]. Furthermore, we observed the synergistic effect of the HSP65 + IL-12/HVJ and BCG using a priming-booster method in the TB-infected cynomolgus monkeys. The combination of the two vaccines showed a very strong prophylactic efficacy against M. tuberculosis (100% survival) as we have seen previously in the murine model of TB [4]. In the present study, we evaluated therapeutic effect and prophylactic effect of this vaccine on the MDR-TB infection and XDR- TB infection in murine and monkey models.

[Materials and Methods]

DNA vaccines encoding *M.tuberculosis* HSP65 and human IL-12 were encapsulated into HVJ-Envelope or HVJ-liposomes [5].

At 5 and 10 weeks after intravenous or aerosol intratracheal challenge of *M.Tuberculosis* H37RV, the number of CFU in the lungs, spleen, and liver were counted and therapeutic efficacy of HVJ-Envelope DNA vaccines was evaluated [1].

Cynomolgus monkeys were housed in a BL 3 animal facility of the Leonard Wood Memorial Research Center. The animals were vaccinated nine times with the HVJ-envelope with expression plasmid of both HSP65 and human IL-12 (HSP65 + hIL-12/HVJ: 400ug i.m.), one week after the challenge with the *M.tuberculosis* Erdman strain (5×10²) by intratracheal instillation. Immune responses and survival were examined as described in our previous studies [2,4].

[Results]

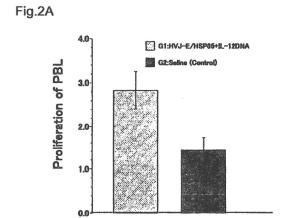
The protective efficacy of the HSP65+IL-12 /HVJ and BCG using the priming-booster method in the TB infected cynomolgus monkeys was very strong. All four monkeys from the group of BCG-priming and the DNA vaccine (HVJ-liposome/HSP65+IL-12 DNA vaccine) booster were alive more than 12 months post-infection (Fig,1). In contrast, only 2 monkeys out of 6 from the BCG Tokyo group were alive (33% survival). 50% of the monkeys from the saline control group and DNA vaccine-priming and the BCG Tokyo vaccine booster group, respectively, were alive more than 12 months in the study. In addition, both HSP65+hIL-12/HVJ improved ESR and chest X-ray findings. IL-2 and IFN-γ production were augmented in the group vaccinated with HSP65+hIL-12/HVJ (data not shown). Furthermore, proliferation of PBL was strongly enhanced. Taken together, these results clearly demonstrate that BCG priming and the HSP65+hIL-12/HVJ booster could provide extremely strong protective efficacy against M. tuberculosis in the cynomolgus monkey model.

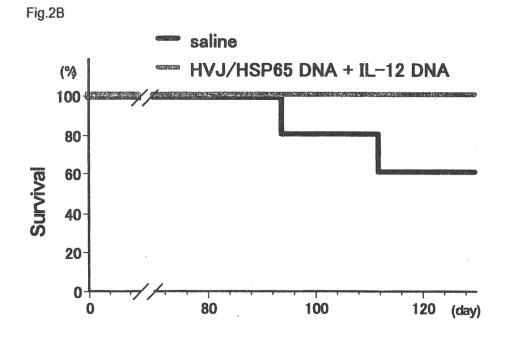
Fig.2A shows the results of immune responses of cynomolgus monkey at 11 weeks after challenge of *M.tuberculosis* Erdman strain (5×10²) by intratracheal instillation. The proliferation of PBL in therapeutic vaccination of monkeys in the group with HVJ-Env/HSP65 DNA +IL-12 DNA was augmented. This vaccine also improved the survival of monkeys, compared to the saline (control) group, during the period between 0 weeks and 19 weeks after TB challenge(Fig.2B).

[Discussion]

The HSP65+hIL-12/HVJ vaccine exerted a significant therapeutic effect against TB, as indicated by: (1) extension of survival of mice infected with XDR-TB, (2) augmentation of immune responses, in a cynomologus monkey model which closely mimics human TB disease. It is important to evaluate the survival of monkey [2,3,4]. During the period between 0 weeks and 19 weeks after TB challenge, increase in the survival rate of the monkeys treated with this vaccine were observed, compared to the control monkeys treated with saline [6]. Thus, our results with the HVJ-Envelope/HSP65 DNA+IL-12 DNA vaccine in the murine therapeutic model and cynomologus monkey therapeutic model should provide a significant rationale for moving this vaccine into clinical trial. Furthermore, we have established chronic TB disease model using mouse infected with TB in the aerosol chamber (data not shown). By using this model, therapeutic efficacy of this vaccine was also observed.

In the present study, it was demonstrated that BCG vaccine priming and HSP65+h IL-12/HVJ booster could provide extremely strong (100% survival) efficacy against M.Tuberculosis compared to BCG alone (33% survival) in the cynomologus monkey model. Thus, we are taking advantage of the availability of multiple animal models (mouse, guinea pig, and monkey) to accumulate essential data on the HVJ-envelope DNA vaccine in anticipation of a Phase I clinical trial.


[Acknowledgements]


This study was supported by a Health and Labour Science Research Grant from MHLW (H11- shinko-2, H14-shinko-1, H17-shinko-5, H20-shinko-14), international collaborative study grants from Human Science foundation and Grant-in-Aid for Scientific Research(B) from the Ministry of Education, Culture, Sports, Science and Technology Japan, and Grant of Osaka Tuberculosis Foundation and Grant-in Aid for Clinical Research from the National Hospital Organization.

[References]

- [1] Yoshida S, Tanaka T, Kita Y, Kuwayama S, Kanamaru N, Muraki Y, et al. DNA vaccine using hemagglutinating virus of Japan-liposome encapsulating combination encoding mycobacterial heat shock protein 65 and interleukin-12 confers protection against *Mycobacterium tuberculosis* by T cell activation. Vaccine 2006;24:1191-1204.
- [2] Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, et al. Evaluation of a novel vaccine(HVJ-liposome/ HSP65 DNA+IL-12 DNA) against tuberculosis using the cynomologus monkey model of TB. Vaccine 2007; 25(16):2990-3
- [3] Walsh GP, Tan EV, dela Cruz EC, Abalos RM, Villahermosa LG, Young LJ, et al. The Philippine cynomolgus monkey provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat Med 1996;2(4):430-6.
- [4] Kita Y, Tanaka T, Yoshida S, Ohara N, Kaneda Y, Kuwayama S, et al. Novel recombinant BCG and DNA-vaccination against tuberculosis in a cynomolgus monkey model. Vaccine 2005;23:2132-2135.
- [5] Saeki Y, Matsumoto N, Nakano Y, Mori M, Awai K, Kaneda Y. Development and characterization of cationic liposomes conjugated with HVJ (Sendai virus). Hum Gene Ther. 1997;8(17):2133-41.
- [6] Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, et al. Novel prophylactic and therapeutic vaccine against Tuberculosis. Vaccine. (in press)

Fig.1 G1:BCG Tokyo + HVJ-liposome/Hsp65 DNA + IL-12 DNA G2:HVJ-liposome/Hsp65 DNA + IL-12 DNA + BCG(Tokyo)boost G3:HVJ-liposome/Hsp65+IL-12 DNA G4:BCG Tokyo BCG→HVJ/DNA 100-80-HVJ/DNA Survival Saline HVJ/DNA→BCG BCG 20-150 200 days

連載

わが国の結核対策の現状と課題(7) 「結核予防ワクチンの開発状況とその応用の可能性」

国立病院機構近畿中央胸部疾患センター 臨床研究センター長 岡田 全司

1 はじめに

いまだに世界の 1/3 の20億人が結核菌に感染して おり、その中から毎年880万人の結核患者が発症し、 200万人が毎年結核で死亡している,最大の感染症 の一つである (WHO レポート2007年)^{1,2)}。結核症 に対する宿主の抵抗性細胞性免疫といって過言では ない。とくに獲得免疫(キラーT細胞と Th₁ ヘル パーT細胞)が重要である。1998年,米国 CDC は 結核に対し,政府・学術機関・企業が一体となって 新世代の結核ワクチン開発の必要性を強く主張する 発表をした。また、ACET は国民の健康に対する 大敵である結核撲滅のためには、BCG に代わる有 効なワクチンが必要であることを示した。しかしな がら、BCG に代わる結核ワクチンは欧米でも臨床 応用には至っていない。我々は BCG よりもはるか に強力な DNA ワクチンやリコンビナント BCG ワ クチンの開発に成功した(図 1)3~6)。新しい抗結核 ワクチン開発状況とその応用の可能性について述べ る⁷⁾。

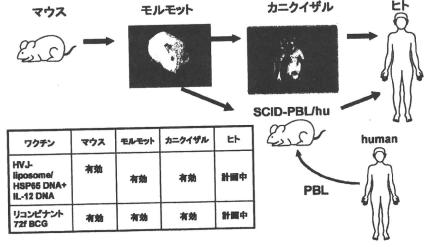
| 結核と免疫

1. マクロファージ (Mφ)

結核菌の増殖場所は Mφ 内である。一方, Mφ は 異物貪食能と細胞内殺菌能及び抗原提示能をもつ。 したがって結核菌が優位に立つか, ヒト(生体)が 優位に立つかの戦争でもある。(詳細は岡田結核文 献¹⁾参照)

2. キラー T 細胞 (CD8 陽性 T 細胞)

CD8 陽性 T 細胞はマウスで抗結核免疫に重要である^{1,2,9-11)}。


キラーTの一つの役割として IFN- γ を分泌して 抗結核免疫に寄与するが、結核感染 $M\phi$ を殺し て、結核菌の増殖の場をなくし結核菌を殺す役割の 方が重要である。 CD8 陽性 T 細胞が結核菌で感染 した $M\phi$ を Fas-independent, granule (granulysin) dependent の機構で溶かし、最終的には結核菌を殺 すことが報告されている。

 キラーT細胞分化とサイトカイン(キラー T細胞分化因子)

筆者らは CD8 陽性キラー T 細胞(Tc)の誘導に

図 1

新しい結核ワクチンの開発

はヘルパー T 細胞(Th 細胞)から産生されるサイトカインが必要であることをはじめて明らかにした。 IL-6,IFN-y がキラー T 細胞分化因子として強力なキラー T 分化を誘導することを明らかにした 11 。

Ⅲ BCG ワクチン

1940年代後半から BCG の結核予防効果に関する 野外調査の報告がみられる⁷⁾。とくに10万人を超す 南インド農民を対象として実施された大規模な controlled trial (Chingleput study) では,全く有効 性が否定される結果となった。この結果を元に W,HO は BCG ワクチンは成人の結核に無効である と世界中に勧告した。日本も WHO の勧告に従っ た。一方,小児における結核性髄膜炎や粟粒結核な ど播種性のものには BCG は十分な予防効果がある。

Ⅳ 新しい結核ワクチンの開発状況

1. 新しい結核ワクチン

結核ワクチンは①サブユニットワクチン,② DNA ワクチン,③リコンビナント BCG ワクチン (弱毒化結核菌を含む),その他に大別される。

- 1) DNA ワクチン
- (1) BCG ワクチンより 1 万倍強力な結核予防ワ クチン

マウスの結核感染系ではBCGワクチンをはるかに凌駕する新しい結核ワクチンは極めて少ない。我々はHsp65 DNA+IL-12 DNA(HVJ-エンベロープベクター)のワクチンはBCGワクチンよりも1万倍強力な結核予防ワクチンであることを世界に先駆けて明らかにした。このワクチンでマウスを免疫して結核菌を投与すると、マウス肺の結核菌数がBCGワクチン投与の1万分の1以下となった。これを1万倍強力という。

さらに、結核菌に対するCD8陽性キラーT細胞

の分化誘導を増強した4)。

この新しい結核ワクチンの開発研究が高く評価され、WHO STOP TB Partnership および WHO STOP TB WGND (Working Group on New Drugs) に選出された。

一方、Huygen らは、Ag85A の DNA ワクチンを 用い、BCG 免疫と同等の防御効果が得られること を明らかにした。

(2) リコンビナント BCG ワクチン

BCG 東京菌に、遺伝子を導入しリコンビナントBCG を 作 製 し た 。 我 々 は Ag85A + Ag85B + MPB51、リコンビナントBCG は BCG よりも強力なワクチンであることを明らかにした 50 。さらに、サブユニットワクチンの Mtb72f 融合タンパク質の $^{13)}$ DNA を導入し72f リコンビナントBCG の作製に成功した。この72f rBCG はサルでも結核予防効果を示した(図 1) 80 。

2. 新しいヒト生体内抗結核免疫解析モデル SCID-PBL/hu

我々が世界に先駆けて開発した SCID-PBL/huの系で結核患者リンパ球を SCID マウスに生着させ、画期的な、ヒト結核ワクチン効果解析モデルを開発した^{4,5)}。

3. Stop TB Partnership

Stop TB Partnership (WHO) は2008年に現在進行中で、しかも臨床応用に有望な新しい結核ワクチン開発のリストを発表した。

我々の HVJ/Hsp65DNA+IL-12DNA ワクチンも 候補の一つとしてその中に推奨されている (表 1, 2, 3)。 表内で太字で示したワクチンが評価されて いる

2006-2015年 Global Plant to Stop TB として新しい有効な結核ワクチン開発。

2050年までに結核撲滅。が WHO の目標である。

表 1

A. Priming, Pre-Exposure

- 1. Phase I: 現在-2008年
 - a. rBCG30
 - b. rBCG30\DeltaureC: Hly (VPM1002)
 - c. AERAS-407
 - d. rBCG30ARMF, rBCG Mtb B30, rBCG h IFNy
 - e. Nas L3 / Htk BCG
 - f. mc²6220, mc²6221, mc²6222, mc²6231
 - g. mc²5059
- 2. Phase I 2009 or Later
 - a. HBHA (heparin-binding haemagglutinin)
 - b. Attenuated Live Vaccine based on Phop
 - c. paBCG (pro-apoptotic BCG)

特徵

リコンビナント 85B BCG

リコンビナント listeriolysin BCG

リコンビナント perfringiolysin

リコンビナント 85B BCG

鼻粘膜ワクチン/heat killed whole BCG コペンハーゲン株 nor-replicating, M. Tuberculosis strain (Δlys A Δpan CD) replicating pro-apoptotic M.bovis BCG 株 (ΔnuoG)

メチル化21-K Da 蛋白

弱毒化ヒト結核菌(virulence gene の pho P の不活性) anti-apoptotic 酵素活性を減弱

表2

B.	POOSTING	PRE-Exposure
D.	BOOSTING,	FRE-Exposure

- 1. Phase I: 現在-2008年
 - a. MVA85A
 - b. M72
 - c. AERAS-402
 - d. SSI Hybrid-1
 - e. SSI HyVac4/AERAS-404
 - f. AERAS-405
 - g. r30
 - h. Nas L3/Htk BCG
- 2. Phase I: 2009 or Later
 - a. Hsp CTM TB Vaccine
 - b. HBHA (heparin-binding haemagglutinin)
 - c. NasL3/AM85B conjugate
 - d. PP1, PP2, PP3
 - f. AC2SGL Diacylated Sulfoglycolipids
 - g. HVJ-liposome/Hsp65 DNA+IL-12 DNA

特徴

リコンビナント MVA(Ag85A を発現した)

Mtb32+Mtb29の fusion 蛋白

Replication-incompetent adenovirus 35 vector expressing M. Tuberculosis antigens Ag85A, Ag85B, and TB 10.4.

fusion 蛋白(Ag85B-ESAT-6)

fusion 蛋白(Ag85B-TB10.4)

Shigella-delivered recombinant double-stranded RNA nucleocapsid (Ag85A, 85B, Rv3407, latency antigen)

リコンビナント Ag85B 蛋白

Heat shock protein antigen complexes (Hsp Cs)

Nasal vaccine/Man capped

Arabinomonnan oligosaccharide

BCG boosting

AC₂ SGL Mycobacterial lipids

M.Okada, 国立病院機構近畿中央胸部疾患センター

表3

C. POST EXPOSURE-Immunotherapy

- 1. Phase I: 現在-2008年
 - a. Mycobacterium vaccae Heat-Killed
 - b. MVA85A
 - c. RUTI
 - d. Nas L3/Htk BCG
- 2. Phase I: 2009 or Later
 - a. NasL3/AM85B conjugate
 - b. hspDNA vaccine
 - c. HG856A
 - d. HBHA (heparin-binding haemagglutinin)
 - e. HG856-BCG
 - f. HG856-SeV
 - g. TB Vax
 - h. F36, F727
 - i. Mycobacterium vaccae Heat-Killed
 - j. Ac2SGL Diacylated Sulfoglycolipid

特徵

Fragmented M.Tuberculosis cells

naked hsp 65 DNA vaccine

Chimeric ESAT6/Ag 85A DNA ワクチン

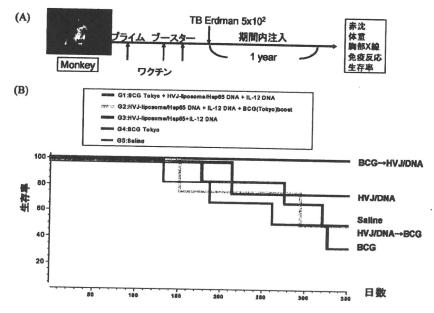
Recombinant BCG overexpressing chimeric ESAT6/Ag85A fusion protein

Recombinant Sendai virus overexpressing chimeric ESAT6/Ag85A fusion protein

Epitope-based DNA-prime/peptide-boost vaccine. (liposome と CpG アジュバント)

これらのワクチンについて概略する。

1. 結核ワクチンの方法

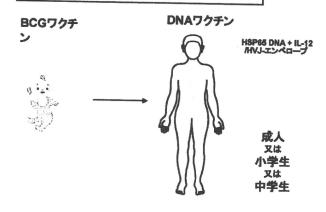

- ① Prevent infection, ② Prevent disease, ③ Prevent reactivation of latent TB infection④ Shorten the course and improve the response to chemotherapy
- 2. 三つのカテゴリーに結核ワクチンは分類される
 ①Priming, Pre-Exposure, (表 1) ②Boosting, Pre-Exposure, (表 2) ③Post Exposure-Immunotherapy (表 3)

VI 結核ワクチンの応用の可能性

1. 新しい結核ワクチンの臨床応用

カニクイザル(cynomolgus monkey,最もヒトの 肺結核に近いモデル,Nature Medicine 2,430,1996 参照)を用い BCG よりもはるかに強力な予防ワクチン効果(生存率,血沈,体重,肺の組織)を示す ワクチン二種を開発した⁸⁾。すなわち,現在最も有力なものとして HVJ リポソーム/HSP65 DNA + IL-12 DNA ワクチンおよび,r72f BCG ワクチンが

図2 ヒトの結核感染に最も近いカニクイザルを用いた HVJ-リポソーム/HSP-65 DNA+IL12 DNA ワクチンの結核予防効果


あげられる。事実、我々はカニクイザルで結核感染 後1年で、コントロール群(生食投与群)では0% 生存。HSP65 DNA + IL-12 DNA ワクチン投与群 は50%生存, r72f BCG ワクチンで75%生存を認め た。Ag85B-ESAT-6 融合タンパク質(Anderson 博 士ら) も報告されているが、モルモット、サルでは 効果は不明である。一方 Huygen の Ag85A DNA ワ クチンはマウス・モルモットで有効であったがサル の結核感染予防に対し有効でなかったという。72f 融合タンパクサブユニットワクチン、ワクシニアウ イルスに85A DNAを導入したワクチンやr85B BCG(Horowitz ら)は第 I 相 clinical trial となって いる¹⁴⁾。A. Hill Dr. らのワクシニアウイルスー85A DNA ワクチンは,アフリカでの第 I 相 clinical trial では、85A DNA 蛋白に対する免疫応答増殖が認め られた。

2. プライミングーブースター法(乳幼児 BCG-成人 HVJ/HSP65 DNA+IL-12 DNA ワクチ ン)

さらに BCG ワクチンをプライムし、新しいワクチンをブースターする方法を用いた。このプライミングーブースター法で100%の生存を示した³⁾(図2)。一方,BCG ワクチン単独投与群は33%の生存率であった³⁾。このように、ヒトの結核感染に最も近いカニクイザルを用いた実験系で、強力な新しい結核ワクチンを我々は世界に先駆けて開発した。すなわち、本邦では乳幼児に BCG 接種が義務づけられていることにより、プライミングワクチンとしてBCG ワクチンを用い、成人ワクチン(中学生、成人、老人)としてこの DNA ワクチンをブースター

図3

新しい結核予防ワクチン(案) (DNAワクチン)

ワクチンとして用いる結核ワクチンの臨床応用案である(図3)。

Ⅶ おわりに

HSP65DNA+IL-12DNA/HVJ エンベロープワクチンが優れていることより、このワクチンが結核の発症予防や治療に役立つ日を夢見ている。厚生科研、文部科研、大阪結核予防会研究費等により支援を受けた。

煵 文

1) 岡田全司. 結核 "分子予防環境医学:生命科学研究 の予防・環境医学への統合"(分子予防環境医学研究 会編). 東京:本の泉社,2003,pp.150-161.

- Flynn JL, Chan J. Immunologyof Tuberculosis. Annu Rev Immunol 2001; 19: 93-129.
- Okada M, Kita Y, Nakajima T, et al. Evaluation of a novel vaccine (HVJ-liposome/HSP65 DNA + IL-12 DNA) against tuberculosis using the cynomolgus monkey model of TB. Vaccine 2007; 25: 2990-2993.
- 4) Yoshida S, Tanaka T, Kita Y, et al. DNA vaccine using hemagglutinating virus of Japan-liposome encapsulating combination encoding mycobacterial heat shock protein 65 and interleukin-12 confers protection against Mycobacterium tuberculosis by T cell activation. Vaccine 2006; 24: 1191-1204.
- 5) 岡田全司. 新しい結核ワクチンの開発. Jpn J Clin Immunol 2008; 31(5): 356-368.
- 6) Kita Y, Tanaka T, Yoshida S, et al. Novel recombinant BCG- and DNA-vaccination against tuberculosis in a cynomolgus monkey model. Vaccine 2005; 23: 2269-2272.
- 7) 岡田全司. 結核ワクチン. 泉 孝英, 網谷良一, 編. 結核 第4版. 東京: 医学書院, 2004.
- Okada M, Kita Y, Nakajima T, et al. Novel prophylactic and therapeutic vaccine against Tuberculosis. Vaccine (in press).
- 9) Tanaka F, Abe M, Akiyoshi T, et al. The anti-human tumor effect and generation of human cytotoxic T cells in SCID mice given human peripheral blood lymphocytes

- by the in vivo transfer of the Interleukin-6 gene using adenovirus vector. Cancer Res 1997; 57: 1335-1343.
- Okada M, Yoshimura N, Kaieda T, et al. Establishment and characterization of human T hybrid cells secreting immunoregulatory molecules. Proc Natl Acad Sci USA 1981; 78: 7718-7721.
- 11) Okada M, Sakaguchi N, Yoshimura N, et al. B cell growth factors and B cell differentiation factor from human T hybridomas. Two distinct kinds of B cell growth factor and their synergism in B cell proliferation. J Exp Med 1983; 157: 583-590.
- 12) 岡田全司. 平成20年度厚生労働科学研究費補助金 (新興·再興感染症研究) 統括研究報告書 輸入感染 症としての多剤耐性結核の対策・制御に関する研究 (主任研究者 岡田全司), 2009; 1-250.
- 13) Skeiky YA, Alderson MR, Ovendale PJ, et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 2004; 172 (12): 7618-7628.
- 14) McShane H, Pathan AA, Sander CR, et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 2004; 10 (11): 1240-1244.

就業状況別の在留外国人結核の推移とその背景

1星野 斉之 1大森 正子 2岡田 全司

要旨: [目的] 先進国では外国人結核が課題である。日本の現状を検討することを目的とした。〔方法〕 在留外国人の就業状況別患者数と罹患率の推移を解析した。〔結果〕1998年以降の労働者と学生の患 者数は増加傾向を示し,要因として母数としての労働者と学生の増加が示唆された。家事従事者の 患者数に一定の傾向はなく,永住者数は増加傾向だったが,配偶者等の数は横ばいであり,永住者 数の影響は小さいと考えられた。罹患率の推移は,労働者は不変で,学生と家事従事者は低下傾向 にあり,罹患率の変化が患者数増加の要因ではなかった。なお,罹患率低下の要因として,長期在 留者の増加や出身国の罹患率の低下が示唆された。〔考察〕在留外国人の罹患率は低下傾向にあるが, 同じ就業状況の日本人の罹患率の数倍を示しており,患者の早期発見は重要な課題である。具体的 には、学生、労働者(特に臨時・日雇い),家事従事者に対する定期健診の普及や有症状時における 医療機関受診の勧奨が挙げられる。また、出身国の結核蔓延状況の改善が、在留外国人の罹患率に 影響する可能性があるので、周辺国への対策支援による日本国内の外国人の結核対策への寄与が期 待される。

キーワーズ: 結核, 外国人, 就業状態, 罹患率

はじめに

外国人(外国出生または外国国籍)の登録結核患者数 は、米国や西欧の一部(英国、スウェーデン、オランダ、 デンマーク,ベルギー,スイス,ノルウェー等)では年 間登録患者の半数以上を占めており、高い罹患率、低い 治療成功率や高い薬剤耐性率などの課題が指摘されてい る1~3)。日本でも同様に、高い罹患率、受診の遅れ、低 い治療成功率などが結核対策上の課題として報告されて きた4~6。日本では、結核登録者情報調査(2006年まで は結核発生動向調査)に1998年から国籍に関する入力 項目が入り、外国国籍の者(以下、在留外国人)の結核 登録者の状況が把握できるようになり、2007年からは 出身国別の分析も可能になった。在留外国人の登録結核 患者数は,730人(1998年)から次第に増加を続け,945 人(2008年)に達している。また,治療成績では,日 本国籍の者に比して死亡率は低いが、脱落率が高い傾向 などが指摘されているか。本報告では、1998年以降の在 留外国人結核患者数の推移を就業状況別に検討し、その 背景を解析した。

方 法

就業状況(労働者,学生,家事従事者等)別の在留外国人結核患者数と,該当する就業状況にある在留外国人の人数を各種の統計から入手して推移の検討を行った。就業状況別の在留外国人結核患者数は,結核登録者調査年報から入手した。外国人労働者数の推計〔就労目的外国人(専門的・技術的分野),技能実習生,留学生のアルバイト,日系人労働者,不法就労者等の和〕,は外国人労働者数の推移(http://www2.ttcn.ne.jp/honkawa/3820.html)から得た。

学生(留学生と就学生),配偶者,定住者,永住者等の人数は,在留外国人統計(http://www.immi-moj.go.jp/toukei/index.html)から得た。また,近年における在留外国人結核患者の就業状況別の状況を検討するために,結核登録者調査年報から,2007年から2008年の外国籍

¹結核予防会結核研究所,²国立病院機構近畿中央胸部疾患センター臨床研究センター

連絡先:星野斉之,結核研究所,〒204-8533 東京都清瀬市松 山3-1-24 (E-mail: hhoshino@jata.or.jp) (Received 18 Dec. 2009/Accepted 15 Jun. 2010)

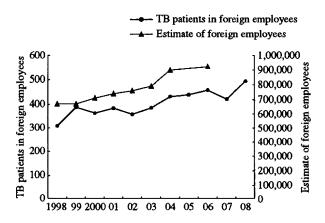


Fig. 1-1 Number of TB patients among foreign employees and estimate of foreign employees

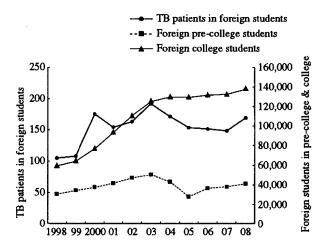


Fig. 1-2 Number of TB patients in foreign students, foreign pre-college students, and foreign college students

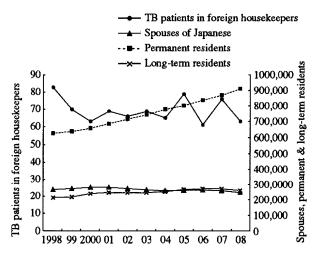


Fig. 1-3 Number of TB patients in foreign housekeepers, spouses of Japanese, permanent and long-term residents

結核患者の情報を用いて、就業状況別に、性比、在留年数、発見方法、国籍を検討した。また、上記の就業状況別の結核患者数と推計した在留外国人数を用いて罹患率を計算し、その推移を分析した。なお、家事従事者の母数の推計については、外国人の労働力率が66.8%(http://www.stat.go.jp/data/kokusei/2005/gaikoku/index.htm)なので、在留外国人統計における配偶者等と定住者と永住者の和の33.2%を分母に用いた。

結 果

Fig. 1 に就業状況別(労働者、学生、家事従事者)の在留外国人結核患者数の推移と、それぞれの母数と考えられる就業状態の外国人数(推計外国人労働者、就学生および留学生、配偶者、定住者、永住者)の推移を示す。労働者では推計労働者数の増加に伴って結核患者数も増加を示した(Fig. 1-1)。学生については、就学生(主に日本語学校生)の増減と結核患者数の増減は対応していたが、留学生とは対応していなかった(Fig. 1-2)。家事従事者では結核患者数は一定の傾向はなく、増加を続ける永住者とは対応しなかった(Fig. 1-3)。

Tableに2007~2008年の2年間に登録された在留外国 人結核患者について就業状況別に性比,在留年数,発見 方法,国籍の分布を示す。就業状況別の在留期間を見る と,常勤労働者と臨時日雇いは在留5年以内の者が多く, 学生は在留5年以内が大半を占め、家事従事者は在留5 年以上が多く, 無職・その他も在留5年以上が多い。発 見方法では、医療機関受診が全体の71.3%を占めて最も 多い。就業状況別では,学生では学校健診が最も多く次 いで医療機関受診であり、労働者では医療機関が最も多 く次に職場健診となっている。家事従事者や無職・その 他は医療機関受診が大半を占めている。外国人結核患者 における就業状況別の発見方法の推移を見るために、 1998年, 2003年, 2007~08年間で比較すると, 学生では, 学校健診発見が常に最も多く(43.8%, 43.8%, 50.9%), 次いで医療機関受診が多い(32.4%, 35.4%, 36.2%)。 常勤労働者では医療機関受診(73.3%, 70.3%, 72.5%), ついで職場健診(16.8%, 20.9%, 20.5%)であった。臨 時・日雇いでは医療機関受診 (78.5%, 85.8%, 76.5%), ついで職場健診 (9.3%, 6.6%, 16.2%) であり、常勤労 働者より医療機関受診が多かった。家事従事者では医療 機関受診が大半を占めており(84.2%, 86.4%, 95.7%), 住 民健診発見例は毎年数例にとどまった。各就業状況につ いて調査期間中に発見方法の分布に大きな変動はなかっ た。

2007~2008年登録者に関する国籍別分布では、常勤労働者では、中国(26.8%)、フィリピン(21.3%)、インドネシア(8.7%)、ブラジル(7.4%)の順であり、臨時・

日雇いではフィリピン (25.8%), 中国 (25.4%), ブラジル (10.8%),インドネシア (7.7%)と若干順位が変わった。学生では中国 (50%), 次いで韓国 (16.3%), 家事従事者では、フィリピン (55.4%), 次いで中国 (15.8%)である。無職・その他でもフィリピンが最も多く (32.2%),次いで中国 (17.3%), 韓国 (16.7%) が続いた。

また,就業状況別の全結核罹患率の推移を検討した (Fig. 2)。推計罹患率 (人口10万対) の推移では,労働者 (分母は推計外国人労働者数) については46.3 (1998年) から49.5 (2006年) と不変であったが,学生(分母は在留外国人統計の就学生と留学生の和) では116.2 (1998年) から94.0 (2008年) と低下していた。また,家事従事者(分母は在留外国人統計における配偶者等と定住者と永住者の和の33.2%) の推計罹患率は22.7 (1998年) から13.4 (2008年) と低下していた。なお,喀痰塗抹陽性肺結核罹患率では,労働者は19.7 (1998) から19.0 (2006) であり,学生は16.6 (1998) から13.9 (2008) であり,家事従事者の低下傾向と労働者の停滞傾向は同様に見られた。

考察

就業状況別の患者数や罹患率について,在留外国人人口の増減,患者発見方策の変化,出身国の罹患率の変化,在留期間の分布などの影響を検討し,今後の方策について考察した。

在留外国人数

在留外国人の増加に伴って外国人結核患者数が増加す る現象は、米国や英国でも見られている2318。日本の在 留外国人登録者数%は、1998年末の151.2万人から2008 年末では221.7万人に増加した。 就業状況別に見ても Fig. 1-1から1-3で示したように、労働者、留学生、就 学生,永住者が増加した。また,国勢調査 (http://www. stat.go.jp/data/kokusei/2005/index.htm) における外国人数 でも114.0万人(1995年)から155.6万人(2005年)と 増加しており、就業状況別でも、労働力人口は19.2万人、 通学者は1.2万人、家事従事者は4.4万人増加した。1998 年以降について就業状況別の在留外国人結核患者数と在 留外国人数の関係について見ると, 労働者については, 在留外国人数の増加と結核患者数の増加が対応してい る。また、学生については、就学生数に結核患者数の推 移が対応している。以上より、1998から2008年における 労働者と学生における結核患者数の増加の要因に、在留 外国人数の増加があると考えられる。なお、家事従事者 については、結核患者数に一定の傾向はなく、外国人配 偶者と定住者数は不変だった。よって、母集団の一部で ある永住者の増加の結核患者数への影響は小さいと思わ

Table Characteristics of tuberculosis patients with alien citizenship

		5		D	D d		Mode of	Mode of case-detection				ט	tizenship	Citizenship of country		
	Total		Sex rano M : F	Kesidence Kesid	xesidence > 5 years	Out-patient department	School health exam.	Company health exam.	Contact survey	Others/ unknown	China]	Philippines	Korea	Indonesia	Brasil	Others
Regular employee (%)	619 6) 100	327	292 : 47.2	360 58.2	259 41.8	449 72.5	0.2	127 20.5	24 3.9	18 2.9	166 26.8	132 21.3	41 6.6	54 8.7	4.7 4.7	180 29.1
Temporary/daily employee (9	2 60 (%) 100	118	142 54.6	157 60.4	103 39.6	199 76.5	1 0.4	42 16.2	2 0.8	16 6.2	66 25.4	67 25.8	15 5.8	20 7.7	2 8 10.8	64 24.6
Self-employed (9	38 (%) 100	3 21 55.3	17 7.44	16 42.1	22 57.9	27 71.1	0	2 5.3	5 13.2	4 10.5	4 10.5	10 26.3	9 23.7	0	1 2.6	14 36.8
Attending schools (9	326 (%) 100		161 : 49.4	261 80.1	65 19.9	118 36.2	166 50.9	2 0.6	14 4.3	26 8.0	163 50.0	2.1	53 16.3	6 1.8	2 0.6	9 5 29.1
Housekeepers (%)	139 6) 100		136 : 97.8	44 31.7	95 68.3	133 95.7	0	1 0.7	2 1 2 4.1	3 2.2	22 15.8	77 55.4	12 8.6	.5 3.6	3	20 14.4
Children < 6 year-old (9	6 (%) 100	5 3	: 503	5 83.3	1 16.7	4 66.7	0	00	2 33.3	00	00	3 50.0	00	1 16.7	00	2 33.3
Jobless & others (%)	323 6) 100	108 33.4	215 : 66.6	134 41.5	189 58.5	283 87.6	$\frac{1}{0.3}$	7 2.2	10 3.1	22 6.8	56 17.3	104 32.2	54 16.7	10 3.1	10 3.1	89 27.6
Unknown (9	76 (%) 100	35 46.1	41 : 53.9	28 36.8	48 63.2	61 80.3	0	2 2.6	2 2.6	11 14.5	10 13.2	29 38.2	5 6.6	1.3	2 2.6	29 38.2
Total (9	17 8 7 (%) 100	780	. 56.4 56.4	1005 56.2	782 43.8	1274 71.3	169 9.5	183 10.2	61 3.4	100 5.6	487 27.3	429 24.0	189	97 5.4	92 5.1	493 27.6

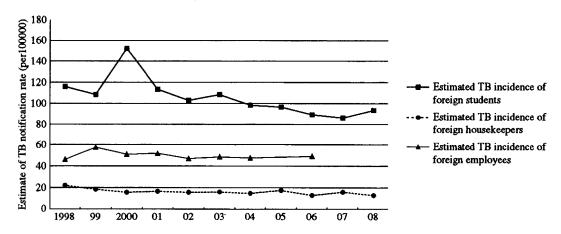


Fig. 2 Trend of estimated TB notification rate of foreigners by labor status

れる。今後, 就業状況別の在留外国人人口の動向に留意 しながら, 各就業状況別の外国人結核対策の整備や強化 を行うことが重要と考えられる。

患者発見活動の動向

学生では入学時に健康診断が行われており, 労働者で は常勤労働者について就職年度とその後は毎年度に健康 診断が行われている。家事従事者が対象に含まれる住民 対象の結核健診は、2004年までは15歳以上、2005年か らは65歳以上を対象として、胸部X線検査が行われて きた。また、医療機関における結核発見は、調査期間中 に大きな変化はなく行われてきた。結果に示した発見方 法の分布の推移から、常勤労働者と学生については患者 発見状況に大きな変化はなく、結核患者数の増加の要因 ではないと考えられた。家事従事者について、住民健診 による患者発見数が低い理由としては、該当する年齢層 の低健診受診率(女性の25~34歳では45.8%)(平成16 年国民生活基礎調查 http://www.mhlw.go.jp/toukei/saikin/ hw/k-tyosa/k-tyosa04/3-7.html) があり、健診対象年齢の 変更は、外国人家事従事者の発見状況には影響しなかっ たと思われる。以上より、調査期間中における患者発見 状況に大きな変動はなく、発見患者数や罹患率の変化の 要因ではないと考えられる。なお、全結核罹患率の就業 状況間の違いは、健診発見割合の違い(高いほうから学 生>労働者>家事従事者の順番) が影響している可能性 がある。また、塗抹陽性肺結核罹患率で見ると、学生と 労働者の差が縮まることも、健診発見の影響を示唆する 知見であると考えられる。以上より学生の高い罹患率の 背景には健康診断による積極的な患者発見の影響があ り、家事従事者の低い罹患率には健康診断を受診する機 会の少なさが影響している可能性が示唆された。

出身国の罹患率の推移

主要な出身国の罹患率について、母国の推計罹患率 (人口10万対)の推移(1990年と2007年)を世界保健機

関の年次報告10から検討した。中国(116から98へ低下), フィリピン (393から290へ低下), ブラジル (84から48 へ低下),韓国(165から90へ低下),インドネシア(343 から228へ低下)であり、日本への入国者数が多い国は すべて推計罹患率が低下傾向にある。これらの国の結核 蔓延状況の改善が、在留外国人における結核罹患率低下 の要因の一つである可能性が示され、日本の周辺国への 対策支援が、間接的に日本国内の結核状況の改善に貢献 する可能性が示唆された。米国については、出身国の結 核対策への支援が、本国の結核蔓延状況の改善に寄与す るというモデルも報告されているい。罹患率は低下傾向 にあるが、日本人の同じ就業状況の罹患率の数倍を示し ており口、それぞれの就業状況における患者発見の推進 の努力は、今後も重要な方策である。具体的には、学生 や労働者(特に臨時・日雇い)への定期健康診断の普及 や、家事従事者が有症状時に早期医療機関受診できる体 制整備、そして長期滞在予定者に対するOFT検査によ る潜在結核感染者の積極的な発見・治療の有効性の検討 が考えられる。なお、家事従事者や労働者の罹患率が出 身国(中国,フィリピン,ブラジル)の罹患率よりも低 いが, その要因の1つとして, 来日前の健康診断等によ る入国者の選別の影響が考えられる。しかし,その実態 (健診の実施状況やその質) 把握はできなかった。

出身国別の患者分布

1998~2008年における出身国の分布は2007年以降しか得られないので、1993年の在留外国人結核患者の調査結果¹³⁾と比較すると、出身国の罹患率が比較的高い中国、フィリピンの結核患者数および割合が増加し、罹患率が比較的低い韓国やブラジルの人数は微増にとどまった。また、国勢調査を用いて就業状況別出身国別人数の変化(1995年と2005年)を見ると、労働者では中国の増加、ブラジル、フィリピンの漸増、韓国・朝鮮の漸減が、通学者では中国の増加と韓国・朝鮮の低下が、家事従事

者では中国とフィリピンの増加と韓国・朝鮮の低下が見られた。以上より、どの就業状況でも罹患率が比較的高い国が増加し、罹患率が比較的低い国は減少しているので、学生と家事従事者の罹患率の低下に出身国の分布の変化が影響している可能性は低い。なお、労働者における罹患率の停滞は、出身国罹患率の低下と患者分布の変動(中国出身者の増加と韓国・朝鮮出身者の減少)が相殺している可能性はある。

在留期間の影響

在留期間の差異による影響については、米国の研究で は、入国後の期間が長くなるほど罹患率が低下すること が観察されており、その要因として入国前の感染と発症 が指摘されている1915の現在日本に在住する外国人の在 留期間を把握することは難しいが、永住許可に関する実 務的な条件に、10年以上日本に継続して滞在すること が含まれるので、永住者(特別永住者を除く)の推移か ら推察が可能である。在留外国人統計を用いて1998年 末と2008年末を比較すると、永住者の人数、割合とも 増加している。また, 国別に在留外国人中の永住者 (特 別永住者を除く)割合を見ると、中国(11.6%から21.7 %)、韓国・朝鮮(11.6%から21.7%)、フィリピン(11.6% から21.7%)と3国とも増加している。また、家事従事 者の母数となる配偶者と定住者と永住者(特別永住を含 む) の総計における永住者割合でも, 56.8% (1998年末) から64.4%(2008年末)に増加していた。また、入国時 年齢の分布がほぼ不変であることから、1998年末と 2008年末で在留外国人の年齢分布を, 在留外国人統計 を用いて比較すると、全体では40歳以上が31.5%から 34.2%に増加しており、在留外国人の多い3国について は、中国は22.2%から20.4%に漸減しているが、韓国は 47.1%から56.0%に増加し、フィリピンは8.9%から30.2 %と大幅に増加していた。また、国勢調査の外国人統計 (15歳以上対象) で1995年, 2000年, 2005年を比較す ると、外国人家事従事者では、40歳以上の者の割合が 37.3%, 41.9%, 45.9% と増加していたが, 学生と労働者 ではそのような傾向は見られなかった。なお、学生につ いては、日本語学校生は1.5万人(1998年)から3.5万 人(2008年)に2.0万人増加したが、留学生数(その 60%が日本語学校を修了して進学する者)数は,5.1万 人(1998年)から12.4万人(2008年)に7.3万人増加し ており(留学生の増加数および伸び率 http://www.jasso. go.jp/statistics/intl_student/ref07_01.html), 外国人学生の 滞在期間は延びている可能性がある。また、結果で見た ように、5年以上滞在している結核患者の割合でみると、 家事従事者では68.3%を占めており、学生(同19.9%) や常勤労働者(同41.8%)に比して高かった。以上より、 外国人家事従事者については,長期に在留する外国人割 合の増加と、長期在留による結核罹患率の低下が、罹患率低下の要因になっていると思われる。また、星野らの報告でも、在留外国人の家事従事者の結核罹患率は年齢が上がるほど低下しており、これらの考察の傍証となると思われる¹³⁾。なお、長期在留者の増加の影響は、外国人学生では可能性が示されるにとどまり、労働者では否定的であった。

まとめ

- 1. 在留外国人の結核患者数は増加傾向にあり、在留外 国人数(主に労働者と学生)の増加が主な要因と考え られた。今後、就業状況別の在留外国人人口の動向に 対応して、外国人結核対策を強化することが望まれる。
- 2. 就業状況別の罹患率では、学生、労働者、家事従事者の順であり、健康診断の受診状況、在留期間の違いが要因として示唆された。
- 3. 学生と家事従事者の罹患率を1998年と2008年で比較 すると、低下しており、母国の罹患率の低下傾向、在 留期間の長い者の増加が要因として考えられた。
- 4. 罹患率は低下傾向にあると言っても、日本人の同じ 就業状況の罹患率の数倍を示しており、それぞれの就 業状況における患者発見の推進の努力は、今後も重要 な方策となると思われる。特に、罹患率の高い外国人 学生や労働者(特に臨時・日雇い)に対する定期の健 康診断の実施や外国人家事従事者が有症状時に早期 に医療機関を受診できる体制作り、そして長期滞在予 定者に対するQFT検査による潜在結核感染者の積極 的な発見・治療の有効性の検討等が望まれる。
- 5. 出身国の結核蔓延状況の改善が,入国者の結核罹患率の低下に寄与している可能性がある。周辺国(中国,韓国,フィリピン等)への結核対策の技術的支援が,日本国内の在留外国人の結核対策に寄与する可能性がある。

铭 樾

本調査は、平成21年度厚生労働省厚生労働科学研究 費補助金(新型インフルエンザ等新興・再興感染症研究 事業)「輸入感染症としての多剤耐性結核の対策・制御 に関する研究」(岡田全司班)より助成を頂きました。 深謝致します。

- WHO Collaborating Center for the Surveillance of Tuberculosis in Europe Surveillance of Tuberculosis in Europe Euro TB Report on tuberculosis cases notified in 2006. 2008.
- 2) Cain KP, Benoit SR, Winston CA, et al.: Tuberculosis among foreign-born persons in the United States. JAMA.