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FIG. 8. Object exploration by Grin/®#“/7#/+ and wild-type mice. (A)
Total time GrinI®&“!7?/+ and +/+ mice spent exploring the object. Student’s
t-test, g = 2.7, *P < 0.05. (B) The total number of times Grinl®&<!7* /4 and
+/+ mice made contact with the novel object. Student’s r-test, ;3 = =3.1,
*%P < 0.001. (C) Duration of each exploration by Grin/®*!’*/+ and +/+
mice. Student’s t-test, f;3 = 0.6, P > 0.5. Error bars represent the SEM. Male
mice, n = 10 of each genotype at 11 weeks of age.

no significant difference was observed in the time spent in the center
area of the open field (Student’s ¢test, f,3 =19, P> 0.069;
Fig. 6B).

Pharmacological analysis with MPH

A significant interaction effect between genotype and drug treatment
was detected in the open-field test (ANOVA, F|g36 = 210.549,
P <0.0001). Wild-type mice displayed increased locomotor activity
following administration of MPH 30 mg/kg (Fig. 9A; Fisher’s PLSD,
P < 0.0001), whereas a sustained reduction in locomotor activity was
observed in Grinl®¢“!7*/+ mice following MPH administration
(Fig. 9B; Fisher’s PLSD, P < 0.0001).

To determine how MPH alters neuronal activity, we immunohis-
tochemically examined the expression of an immediate—early gene,
c-Fos, in the brain and plotted (Fig. 10A) the c-Fos-immunoreactive
(IR) cells onto a brain atlas (Paxinos & Franklin, 1997). The
heterozygote exhibited a characteristic phenotype in the dorsal
striatum and prelimbic cortex. In the wild type, the number of
c-Fos-IR-cells significantly increased in the dorsal striatum, following
MPH administration (Fig. 10Aa and Ab; supporting Fig. S6Aa and
Ab), whereas the number increased to a lesser degree in the
heterozygote (Fig. 10Ac and Ad; supporting Fig. S6Ac and Ad). On
the other hand, although the number of c-Fos-IR cells in the prelimbic
cortex of the wild type increased significantly following MPH
administration (Fig. 10Aa and Ab; supporting Fig. S6Aa and Ab),
the basal level of c-Fos-IR cells was much higher in the prelimbic
cortex of the heterozygote and the number of c-Fos-IR cells in the
prelimbic cortex were decreased following MPH administration
(Fig. 10Ac and Ad; supporting Fig. S6Ac and Ad). To identify the
MPH-responsive neurons we stained for c-Fos immunoreactivity and
counterstained with Nissl reagent, and the results showed that c-Fos
was mainly expressed in the pyramidal cells of the prelimbic cortex
(supporting Fig. S6Be and Bf).
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FIG. 9. Effect of MPH on the locomotor activity of Grinl®&*'7*/+ and +/+
mice. The distance traveled by (A) wild-type and (B) Grin/®#*/7*/+ mice in
the open field 80 min after saline or MPH injection. Error bars represent the
SEM. Male mice, n = 10 of each genotype at 11 weeks of age.

Significant effects of genotype, MPH treatment, and interaction
between genotype and MPH treatment were detected in the dorsal
striatum (Fig. 10B). The basal levels of c-Fos expression in the wild
type and heterozygote were similar. MPH treatment increased c-Fos
expression in both the wild-type and heterozygous mice. c-Fos
expression in the dorsal striatum of the MPH-treated heterozygote was
lower than in the MPH-treated wild type. There was a significant effect
of genotype and MPH treatment on c-Fos expression in the prelimbic
cortex (Fig. 10C), and a significant interaction between genotype and
MPH treatment was also detected. More c-Fos-IR cells were present in
the prelimbic cortex of saline-treated heterozygotes than of the wild
type. MPH treatment significantly increased c-Fos expression in the
wild-type prelimbic cortex but suppressed c-Fos expression in the
prelimbic cortex of the heterozygote.

In the nucleus accumbens, there was a significant effect of MPH
administration and a significant interaction between the MPH effect
and genotype on the pERK2 level (Fig. 11). Fisher’s PLSD test was
used to clarify the rank relationship between the baseline group and
other groups statistically. The pERK2 level in the nucleus accumbens
of the MPH-treated wild type was significantly greater than baseline
level. The baseline pERK level in the heterozygote was higher than in
the wild type, but the pERK2 level in the MPH-treated heterozygote
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cortex; CPu, caudate-putamen (striatum); M, motor cortex; PrL, prelimbic cortex; S, somatosensory cortex. The diagram was modified from the brain atlas of
Paxinos & Franklin (1997). (a) Saline-treated wild type, (b) MPH-treated wild type, (c) saline-treated heterozygote, and (d) MPH-treated heterozygote. (B and C)
Quantification of ¢-Fos-IR cells in the dorsal striatum and prelimbic cortex (E). Error bars represent the SEM. ***P < 0.0001, Fisher’s PLSD test. Male mice, n = 7
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F1G. 11. Phospho-ERK levels after intraperitoneal administration of MPH
30 mg/kg to wild-type and heterozygous mice. (A) Immunoblotting of pERK 1
and 2 in nucleus accumbens extracts following MPH administration. (B)
Quantitative analysis of the relative band density of pERK2. The baseline level
of pERK2 was calculated as the average ratio pERK2/ERK2 prepared from
saline-treated wild-type mice, and the data were normalized by using the
following formula: pERK level = (band density of pERK2)/(band density of
ERK2)/(baseline level). Male mice, n = 5 in each group at 12 weeks age. Error
bars represent the SEM. ANOVA, effect of genotype, F) 3, = 0.271, P> 0.6;
effect of MPH administration, F, 3, = 9.8, P < 0.004; interaction between the
MPH effect and genotype, F,i, =169, P <0.0004. *P <0.05 and
**P < (0.01, Fisher’s PLSD test.

was not upregulated in comparison with the saline-treated heterozy-
gote (Fig. 11).

Discussion

1 Rgsc174

Phenotype comparison between Grin and other Grin1

mutants

The following Grin/ mutant mice have been reported previously:
Grinl null mutants (Forrest et al., 1994; Li et al., 1994), Grinl™?5"
with reduced glycine affinity (Kew et al., 2000; Ballard et al., 2002),
Grinl™! 7% with reduced single-channel conductance (Single et al.,
2000), and Grinl knockdown mutants (Mohn ef al., 1999; Duncan
et al., 2006). We observed common phenotypes, including fearfulness,
embryonic lethality of homozygote, and social avoidance, in
Grin1®¢!7? /1 and known Grinl mutants (Forrest et al., 1994; Li
et al., 1994; Mohn et al., 1999; Kew et al., 2000; Single et al., 2000;
Ballard et al., 2002; Duncan et al., 2006). Increased anxiety is a
common finding in known Grinl mutant mice (Kew et al., 2000;
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Labrie et al., 2009), but measurements of time spent in the center area
of the open field and the results of the light-dark transition test
revealed no increase in anxiety in Grinl®*/’#/+ mice. The increased
novelty-seeking behavior and the absence of increased anxiety are
phenotypes unique to the Grinl®*“'’# mutant.

Functional change in GRIN1 protein

The missense mutation R844C 1is located in the intracellular
C-terminal domain of NMDARI1, which is referred to the CO domain.
The CO domain spans amino acid residues 834-863 (Akyol et al.,
2004). Previous reports have indicated that the CO domain is an
important regulatory domain of GRIN/ protein (Holmes et al., 2002;
Leonard et al,, 2002). The cystein in the wild-type allele that is
replaced by arginine in the mutant is very hydrophobic, whereas
arginine is a positively charged hydrophilic amino acid and binds to
negatively charged amino acid groups. This change in the CO domain
should produce an alteration in the conformation and function of the
CO domain in GRINI protein and, in fact, we observed that after
NMDA stimulation calcium influx was increased and prolonged in
cortical neurons from the Grinl®*“/”* mutant.

Altered interaction between NMDARs and dopamine receptors
may be responsible for the phenotypes of the Grin1795¢174
mutant

NMDAR and dopamine (DA) receptor functions are co-regulated by
direct (Lee et al., 2002) and indirect (Cepeda & Levine, 2006)
interactions. Morphological evidence suggests that glutamate receptors
and DA receptors interact in synaptic complexes or triads in cortical
pyramidal neurons (Goldman- Rakic et al., 1989). This type of
arrangement is found in striatal neurons (Smith & Bolam, 1990) and
provides a morphological basis for close DA receptor—glutamate
receptor interaction. As MPH has been reported to be involved in
activation of DA signaling, we used MPH to compare the altered DA
signaling in the wild-type and Grinl%¢*“/”*/+ mice. The basal level of
c-Fos expression in the prelimbic cortex and striatum was very low in
the wild type, and MPH administration significantly increased c-Fos
expression in both areas. Increased c-Fos expression was observed in
the prelimbic cortex of Grinl/®*“!”*/+ mice at the basal level, and
MPH paradoxically reduced c-Fos expression in the prelimbic cortex.
Phosphorylation of ERK2, a DA signaling-related protein, was
increased in the nucleus accumbens of Grinl®&*“/’?/+ mice at the
basal level, and little change was observed even after the high dose of
MPH (30 mg/kg). Thus, NMDAR dysfunction in these regions should
underlie the aberrant DA signaling and result in the behavioral
phenotypes of Grin1*&*!7# /+ mice. In the present study, the difference
in MPH-induced behavioral difference between the wild type and
Grinl mutant was detected only at the high dose of MPH
(108 umol/kg). Taking into consideration that K; of MPH for the
mouse dopamine transporter is < 0.3 uM (Chen et al., 2005), the effect
of the high dose of MPH in the present study is considered to be due not
to the specific action on the DA transporter but to the effect on any
other receptors or transporters that crosstalk with DA signaling system.

Grin1M9%¢7* mutant as an animal model of psychiatric disorders

The implication of mutations in NMDAR has been suggested in
schizophrenia by human association study (Georgi et al.,, 2007,
Galehdari, 2009). The increased locomotor activity observed in the
Grin®&'"" /+ mice may represent fearfulness, and the mutant also
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exhibited social isolation in the social interaction test. Thus, the
phenotype’s fearfulness and social isolation observed in a schizophre-
nia model (Mohn et al., 1999) were also exhibited by this mutant.
MPH is one of the main therapeutic agents used to treat attention
deficit hyperactivity disorder (AD/HD) and narcolepsy patients.
However, the mechanism of action of MPH is still unclear. According
to previous reports, spontaneously hypertensive rat (SHR), a well
validated animal model of AD/HD, was found to exhibit the three
major characteristics of AD/HD (hyperactivity, impulsivity and poor
sustained attention) in a comparison with their progenitor Wistar—
Kyoto rat strain, and SHR has been shown to lack responsiveness to
MPH in several behavioral tests (Van den Bergh ef al., 2006). The
Grinl mutant mouse described here also exhibited altered pharmaco-
logical reactions to MPH. In view of the fact that SHR also exhibits
altered glutamatergic functions (Jensen ef al., 2009), Grin®&!7*
mice may be a useful model for gaining insight into the mechanism of
action of MPH on behavioral disorders in regard to DA receptor-
glutamate receptor interactions.

These phenotypes of GrinI®#!7 indicate that this mutant displays
some of the signs and symptoms of psychiatric disorders and may be a
useful tool for elucidating the molecular mechanisms of abnormal
behaviors and the actions of therapeutic agents.
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Summary

Fyn’s function: learning, emotion, dopamine signaling

Introduction

Fyn kinase is a key mediator of the

Fyn protein levels were decreased

Blood fyn mRNA | in sch'izoph'rénria g crosstalk between D2-R and NMDA-R in schizophrenic platelets.
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Drug target to rescue
NMDA-R reduction?

V: Vehicle
H: Haloperidol
C: Clozapine
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O: Olanzapine
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