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# 2 National Institute of Neurological Disorders and Stroke E1&(Z 8517 5 rTMS @ single train DEBRAZ LI

Intensity (% of MT)

Frequency
(Hz) 100 110 120 130 140 150 160 170 180 190 200 210 220
1 >1800 >1800 360 >50 >50 >50 >50 27 11 11 8 7 6
5 >10 >10 >10 >10 76 5.2 3.6 26 24 16 14 16 1.2
10 >5 >5 42 29 1.3 0.8 0.9 08 05 06 04 03 03
20 205 16 1 0.55 035 025 025 0.15 0.2 025 02 01 0.1
25 1.28 0.84 04 024 02 0.24 0.2 0.12 0.08 0.12 0.12 0.08 0.08

#£3 20HzLITOrTMS 10585 51 2O & Fl3E 0

BE O R

Inter-train

Stimulus intensity % of MT

interval (8} 100%  105%  110% 120%
5 Safe Safe Safe  Insufficient
data
1 Unsafe Unsafe Unsafe Unsafe
0.25 Unsafe Unsafe Unsafe Unsafe

WD, LIRS rTMS 2D IRTHE,
Inter-train interval @ ¥ 5 73 & ¥ T d» % W,
ITMS IZ KB WBED TANATEIEY X7 2EE
L (&4), 2OXOBAREIHIEENTHOE
M AR EEZTH 5.
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28 e 00 T B B R I K 9 % ESQURINELTG 7%

DOHEIMEIIESL SN TW W=D, B0
EOAIT 5. b N OESHFICBIT A2FHEON
JSERALIE, Cznb 5~6cmAMIITHY, 8DFE
IV OHLEZFDREIZEOEREZETS (¥
3). MERAAIANEIA TS % & FRIHITHIR
T HEETFERIL T WD, T1)LETRHM
FHIENZERET D (8 DF I A IR B ERIZE
S TRITH A8, MERIE 3L LM AR 4E
Ca8). HREICE->TRREAN, T4 —
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Subit Intensity Frequency Duration Inter-train
(% MT) (Hz) (8) interval (s)

Thn >100 16 10 Long"
IEHA 250 25 10 Long®
EHA 105 15 0.75 0.25
IEH A 110 25 0.8 1
E¥ A 120 15 25 Long®
E®A 120 15 2.7 >60
EHA 130 3 7 Long®
E#A 200 10 10 300600
2D 110 20 10 60
D DIR 90 10 10 60

Long' M@ E<TANPADEREFIEASN TN
(Chen R, et al. 1997, Wassermann EM. 1998, Conca A, et al. 2000k VD &%z])
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ZH) T EEREHTH D RITRT,
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EENFFIC BT AHME T TOREZITI B, #
BRI ST 2 70 & OEE) AR BAL 2 HFEH
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217D B A1, B Kindling O 28 WL #
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ATt BTy ThbE@EERD S AEE
(step : &) WET, EXFvThHSHEEERY
SEBEME T

H1E A7y TOEE

(step length)

Sk MEDLEEHEOIER (FEORER)
(step width)

FLFL2R BWURESH DX Ty TE
(cadence : #38)

Z PS5 K —BlDEE Y 5 BURAIOE, 12
(stride : BHES) (HWTHFT

Ead bt i B P

(cycle)

SZRHIHA EAHEIC DL T B EEE]

Lz RHIHA Bl 20

L4 pged ] — OB THE T T 555
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1676 Medical Practice v0l.27 no.10 2010
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TROWEATET, MEACHEITFET LI ICE®
. BRRIE L, REdEiET 5. HEIck5
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4. FB7 steppage gait
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CORRELATION OF MOTOR FUNCTION WITH TRANSCALLOSAL AND
INTRACORTICAL INHIBITION AFTER STROKE
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Objective: The inhibitory role of neuronal networks in motor
recovery after stroke remains to be elucidated. We examined
the influence of transcallosal inhibition and short intracorti-
cal inhibition on motor recovery after stroke. We also inves-
tigated the correlation between transcallosal inhibition and
mirror activity.

Design: A cross-sectional study.

Subjects: Thirty-eight chronic stroke patients.

Methods: Transcallosal inhibition was evaluated using sin-
gle transcranial magnetic stimulation, and short intracorti-
cal inhibition was assessed using paired-pulse transcranial
magnetic stimulation. Mirror activity was measured during
tonic contraction of the contralateral hand.

Results: Transcallosal inhibition from the contralesional to
the ipsilesional motor cortex correlated positively with mo-
tor function of the paretic hand; in contrast, transcallosal in-
hibition to the ipsilesional motor cortex correlated negatively
with mirror activity of the paretic hand in both cortical and
subcortical stroke patients. Short intracortical inhibition of
the ipsilesional motor cortex correlated negatively with mo-
tor function of the paretic hand in only the subcortical stroke
patients.

Conclusion: Transcallosal inhibition from the contralesional
to the ipsilesional motor cortex may inhibit mirror move-
ments in stroke patients with good motor function. The
weak transcallosal inhibition in patients after stroke with
poor motor function may be ineffective for inhibiting mirror
movement; however, it may have the advantage of facilitat-
ing motor recovery.
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ment; transcallosal inhibition; intracortical inhibition.

J Rehabil Med 2010; 42: 962-966
Correspondence address: Naoyuki Takeuchi, Department of
Rehabilitation Medicine, Hospital of Hokkaido University.

North 14 West 5 Sapporo 060-8648, Japan. E-mail: naoyuki@
med. hokudai.ac.jp

Submitted January 28, 2010; accepted September 1, 2010

INTRODUCTION

Stroke alters the neuronal function of the motor cortex adjacent
to or distant from the lesion through neuronal networks (1).
Transcranial magnetic stimulation (TMS) has been used to

J Rehabil Med 42

detect changes in neuronal function after stroke. Several stud-
ies have reported the loss of inhibition in the ipsilesional and
the contralesional motor cortex of stroke patients using TMS
(2, 3). A decrease in the inhibition contributes to the cortical
reorganization by unmasking the latent networks (4); however,
whether the disinhibition after stroke is caused by the lesion,
whether it reflects a compensatory mechanism, or both, is still
poorly understood (1). The change in transcallosal inhibition
(TCI) after subcortical stroke has also been assessed using
TMS (5). While a recent study has examined the changes in
both TCI and intracortical inhibition after stroke (6), it remains
unknown whether these neurophysiological parameters are
correlated with motor function in both cortical and subcorti-
cal stroke and whether the parameters of cortical stroke differ
from those of subcortical stroke.

In this study, we evaluated TCI and short intracortical inhibi-
tion (SICI) to determine whether these TMS parameters influ-
ence motor recovery in both cortical and subcortical stroke. It
has been demonstrated previously that although SICI may be
reduced in appearance, the inhibitory function may be normal
if the excitability function increases (7). Therefore, we meas-
ured not only SICI but also short interval cortical excitability
(SICE) to evaluate inhibitory and excitatory function in more
detail. In addition, we investigated the correlation between
TCI from the contralesional to the ipsilesional motor cortex
and the mirror activity of the paretic hand. We hypothesized
that the change in TCI to the ipsilesional motor cortex after
stroke could influence the mirror activity of the paretic hand
during non-paretic hand movement.

METHODS

The study population comprised 38 first-time chronic stroke patients.
Motor function was evaluated using the upper limb subset of the
Fugl-Meyer scale (FMS) (8). All the subjects gave written informed
consent, and the experimental protocol was approved by the local ethics
committee of Hokkaido University Graduate School of Medicine. The
patients were classified into the following two subgroups according
to brain computed tomography (CT) or MRI findings (Table I): (i) the
cortical group, which had stroke lesions involving the sensorimotor
cortex or both sensorimotor cortex and subcortical structure; and (i)
the subcortical group, which had lesions located caudal to the corpus
callosum, indicating that the corpus callosum was intact.

TCI was performed using a 70-mm figure-8 coil and Magstim 200
(Magstim Company, Dyfed, UK), and paired-pulse TMS was applied

© 2010 The Authors. doi: 10.2340/16501977-0628

Journal Compilation © 2010 Foundation of Rehabilitation Information. ISSN 1650-1977

— 338 —



Transcallosal and intracortical inhibition 963
Table 1. Clinical characteristics
*EMG activity of first dorsal
Gender Paretic side Duration after  Fugl-Meyer interosseous

Age, year Male  Female Right Left stroke, month  scale, Non-paretic, pV  Paretic pvV

Mean (SD) n n n n Mean (SD) Mean (SD) Mean (SD) Mean (SD)
gl":“;%‘;] group 61.7 (10.1) 12 8 12 8 463 (342)  680(23.4)  350.8(2102)  155.0(140.8)
f‘:i’cl‘;r)“ca' g0 616(103) 11 7 10 8 56.9(51.9)  639(21.7)  3954(220.1)  154.6(155.5)

*Mean rectified EMG activity during maximal tonic contraction.
SD: standard deviation; EMG: electromyography.

using the same coil and a Bistim device (Magstim Company) that trig-
gered two magnetic stimulators. The coil was placed tangentially over
the motor cortex at an optimal site for the first dorsal interosseous (FDI)
muscle. The optimal site was defined as the location where stimulation
at a slightly suprathreshold intensity elicited the largest motor-evoked
potentials (MEPs) in the FDI. The resting motor threshold (rMT) was
determined separately for each stimulator and defined as the lowest
stimulator output that could activate MEPs with a peak-to-peak am-
plitude greater than 50 pV in at least half of the 10 trials. We excluded
patients for whom MEPs were not detected in the ipsilesional hemi-
sphere from the ipsilesional TMS study section, i.e. patients in whom
MEPs were not induced even at 100% stimulator output.

We performed paired-pulse TMS at inter-stimulus intervals (ISIs)
of 2, 3, 10 and 15 ms. The intensity of the first conditioning stimulus
was 80% rMT and that of the test stimulus was 120% rMT. Ten trials
were performed for each ISI and unconditioned trials (controls) were
recorded during complete relaxation. The paired stimulation with
each ISI was randomly mixed with the control stimulation. The mean
peak-to-peak amplitude of the control MEPs and paired MEPs at each
ISI was calculated. The mean amplitudes of paired MEPs at ISIs of
2 and 3 ms were averaged to obtain a representative value for SICI
and that at ISIs of 10 and 15 ms intervals for intracortical facilitation
(ICF). SICI is expressed as the percentage of the degree of inhibition
(1 — (paired/control)), and ICF is expressed as the percentage increase
(paired/control) in MEPs amplitude. SICE was measured using paired-
pulse TMS at an ISI of 2 ms. The intensity of the conditioning stimulus
varied between 30% and 80% of MT and was administered randomly
at 10% increments; whereas, the intensity of the test stimulus was
the same as that for the SICI measurement. MEPs amplitudes at each
conditioning stimulus in SICE were expressed as a percentage of the
mean amplitude of the control MEPs.

In the TCI procedure, each hemisphere was stimulated 20 times
(intensity, 150% rMT) during unilateral maximal tonic contraction of
the ipsilateral FDI, while keeping the contralateral upper limb relaxed
as described previously (9). Twenty electromyography (EMG) signals
of the FDI were rectified and averaged for evaluation of TCI. The mean
amplitude of EMG signals prior to the stimulus for 100 ms was defined
as the background activity. TCI was quantified by the period of relative
EMG suppression after the stimulus, i.e. from the point at which the
EMG activity clearly decreased below the background activity to that

Table II. Transcranial magnetic stimulation parameters

at which the EMG activity again increased to equal the background
activity. The area of suppressed EMG activity was also averaged. TCI
was then defined as the percentage of this mean suppressed activity
in the background activity. This indicates that the greater the EMG
activity suppression, the greater the TCI.

Mirror activity was calculated from the data in the TCI section to
avoid the fatigue of stroke patients by additional tests. We rectified
and averaged 20 EMG signals of the contralateral FDI muscles (mirror
condition) prior to TMS for 100 ms during a maximal tonic contrac-
tion of the FDI muscle (active condition). Finally, mirror activity was
expressed as a percentage of the mean amplitude of the mirror condition
in the mean amplitude of the active condition at the same FDI.

Clinical data were compared between the cortical and subcortical
groups by using the Mann-Whitney U test or the x? test, depending on
the type of variable assessed. For the comparison of TMS parameters,
the Kruskal-Wallis test was used. The changes in SICE were evalu-
ated using analysis of variance (ANOVA) for repeated measures, with
INTENSITY as a within-subjects factor and STIMULATION SITE
as a between-subjects factor. A post-hoc analysis was performed with
Bonferroni’s correction. Possible correlations among the various pa-
rameters were determined using the Spearman’s correlation test.

RESULTS

There was no significant difference between the cortical and sub-
cortical groups with regard to age, gender, paretic side, duration
after stroke, FMS, EMG activity of non-paretic, or EMG activ-
ity of paretic (Table I). Table II shows TMS parameters of each
hemisphere in the subcortical and cortical groups. We obtained
ipsilesional TMS data from 9 patients in the cortical group and 9
patients in the subcortical group. There was no significant differ-
ence between the 4 stimulation sites with regard to rM T, amplitude
of MEPs, SICI, ICF, or TCI (Table II).

Table IIT shows the correlations between TMS parameters
and motor function of the paretic hand. SICI of the ipsilesional
motor cortex was negatively correlated with the FMS score

Amplitude of
™T, % MEPs, pV SICI, % ICF, % TCL %
Stimulation site Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Ipsilesional hemisphere in cortical group (n=9) 52.8(12.2) 921.9 (463.6)  38.4 (50.6) 169.2 (71.8) 50.1 (14.0)
Ipsilesional hemisphere in subcortical group (7=9) 50.9 (9.7) 556.8 (348.7)  23.6 (41.7) 182.6 (160.8)  53.7(14.3)
Contralesional hemisphere in cortical group (n=20) 51.9(9.1) 895.0 (451.7)  25.7(65.8) 192.2 (93.6) 46.2 (15.1)
Contralesional hemisphere in subcortical group (n=18) 52.9 (8.6) 813.6 (670.0)  22.0 (49.6) 239.6 (139.5) 58.7 (14.6)

rMT: resting motor threshold; MEPs: motor evoked potentials; SICI: short intracortical inhibition; ICF: intracortical facilitation; TCI: transcallosal

inhibition; SD: standard deviation.
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Table III. Correlations between transcranial magnetic stimulation parameters (TMS) and Fugl-Meyer scale (correlation coefficient and p-values)

Fugl-Meyer scale

Ipsilesional hemisphere (stimulation site)

Contralesional hemisphere (stimulation site)

TMS parameters Cortical (n=9) Subcortical (n=9)

Cortical (n=20) Subcortical (n=18)

tMT ~0.497 (0.173) -0.033 (0.933)
MEPs 0.267 (0.488) ~0.183 (0.637)
SICI ~0.483 (0.187) ~0.783 (0.013)*
ICF 0.300 (0.433) 0.550 (0.125)
TCI ~0.200 (0.606) ~0.250 (0.516)

0.038 (0.873) 0.143 (0.570)
~0.251 (0.285) ~0.060 (0.813)
~0.121 (0.612) ~0.162 (0.521)

0.403 (0.078) 0.054 (0.832)

0.502 (0.024)* 0.649 (0.004)**

*p<0.05; *£p<0.01.

rMT: resting motor threshold; MEP: motor-evoked potentials; SICI: short intracortical inhibition; ICF: intracortical facilitation; TCI: transcallosal

inhibition.

of the paretic hand in the subcortical (Fig. la; r=-0.783,
p=0.013), but not the cortical group (r=-0.483, p=0.187).
TCI from the contralesional to the ipsilesional motor cortex
was positively correlated with the FMS score of the paretic
hand in both the cortical (Fig. 1b; r=0.502, p=0.024) and
the subcortical groups (Fig lc; ¥=0.649, p=0.004). There
was a negative correlation between TCI to the ipsilesional
motor cortex and mirror activity of the paretic hand in both
the cortical (Fig. 2a; r=-0.508, p=0.022) and the subcortical
groups (Fig 2b; r=—-0.600, p=0.009). There was no significant
correlation between TCI from the ipsilesional to the contral-
esional motor cortex and mirror activity of the non-paretic
hand in either group.

Fig. 3 shows the change in SICE in the cortical and the sub-
cortical group. A repeated-measures ANOVA for SICE showed
no significant interaction between INTENSITY and STIMULA-
TION SITE (F (15, 260)=0.884, p=0.582) or STIMULATION
SITE (F (3, 52)=0.142, p=0.935), but a significant effect of
INTENSITY (F (5, 260)=21.462, p<0.001), reflecting that
SICE had not been influenced by the stimulation site. Post-hoc
analysis revealed that a strong conditioning stimulus could
reduce SICE (Fig. 3).

DISCUSSION

This study revealed that the inhibitory function of the ipsile-
sional motor cortex correlated negatively with motor func-
tion of the paretic hand in subcortical stroke patients. The
inhibition from the contralesional to the ipsilesional motor
cortex correlated positively with motor function of the paretic
hand; in contrast, the inhibition from the contralesional to the
ipsilesional motor cortex correlated negatively with mirror
activity of the paretic hand in both cortical and subcortical
stroke patients.

Several studies have reported disinhibition of the ipsilesional
motor cortex in the acute stage of both cortical and subcortical
stroke (2, 10). However, whether the inhibitory function of the
ipsilesional motor cortex normalizes or remains decreased in
the chronic stage remains controversial (11, 12). The correlation
between inhibitory function and motor function is also poorly
understood. In this study, we have revealed that the inhibi-
tory function of the ipsilesional motor cortex was correlated
negatively with the motor function of the paretic hand in only
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Fig. 1. Correlation between inhibitory function and motor function.
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Fig. 3. Shortinterval cortical excitability. The strong conditioning stimulus
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cortical excitability in all groups. A significant reduction in the amplitude
of the MEPs is indicated by asterisks. Error bar: standard deviation.

subcortical stroke patients, but not cortical stroke patients, in
the chronic stage. Considering these findings, the continuous
disinhibition of the ipsilesional motor cortex in subcortical
stroke patients may promote the best possible recovery of motor
function by facilitating the plasticity of the non-damaged motor
cortex in the ipsilesional hemisphere (4); in contrast, the inhibi-

tory function of the ipsilesional motor cortex in cortical stroke
patients may be influenced more by direct cortical damage than
compensatory mechanisms in the chronic stage.

The problem with the SICI methods is that it was difficult
to decide whether a reduced SICI indicated weak inhibitory
or strong excitatory cortical function solely on the basis of the
SICI paradigm. To avoid this problem, we used the SICE para-
digm that could evaluate the inhibitory and excitatory circuits
in more detail. The influence of the excitatory function has
been shown to be superior to that of the inhibitory function at a
strong conditioning stimulus in the SICE paradigm (7). If only
the excitatory function increases and the inhibitory function
remains unchanged, the amplitude of SICE is small at a weak
conditioning stimulus and large at a strong conditioning stimulus
(7). However, the amplitude of SICE was reduced according to
the intensity of the conditioning stimulus in this study. Therefore,
the reduction in SICI of the ipsilesional motor cortex implies the
loss of inhibitory function and not an epiphenomenon caused by
modified neuronal circuits shifting toward excitatory activity.

TCI from the contralesional to the ipsilesional motor cortex
was more prominent in patients with greater motor function dur-
ing movement. This finding is not consistent with that of previ-
ous study, which reported a negative correlation between TCI
at pre-movement and the motor function of the paretic hand (5).
These differences may have resulted from the differing methods
and TCI mechanisms employed in our and previous study (13).
A recent study reported that TCI could inhibit unwanted mirror
activity during intended unimanual motor tasks (14). Consistent
with this report, TCI to the ipsilesional motor cortex was cor-
related negatively with the mirror activity of the paretic hand in
our study. Therefore, TCI to the ipsilesional motor cortex during
movement may play a neurophysiological role in the inhibition of
mirror movement of the paretic hand. To clarify this hypothesis,
further studies are required to evaluate the change in mirror activ-
ity when TCI to the ipsilesional motor cortex is reduced by using
inhibitory repetitive TMS over the contralesional motor cortex
(14). We propose that TCI to the ipsilesional motor cortex may
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be important for mirror movement of the paretic hand; however,
we agree with the hypothesis that TCI to the ipsilesional motor
cortex may inhibit motor function in some stroke patients (5).
Considering these findings, TCI to the ipsilesional motor cortex
may be influenced by a balance between motor function and
mirror movement in the paretic hand during the process of re-
organization after stroke. That is to say, TCI to the ipsilesional
motor cortex may be strong to inhibit mirror movement in patients
with good motor function; in contrast, TCI in patients with poor
motor function may be weak to improve motor function without
inhibition of mirror movement.

The neurophysiological results of this study may help
improve individualized rehabilitation strategies after stroke.
Recent study has reported that inhibitory neuromodulation of
the contralesional motor cortex could improve the motor func-
tion of the paretic hand by a reduction in TCI to the ipsilesional
motor cortex (9). Therefore, inhibitory neuromodulation of the
contralesional motor cortex may be especially effective for
stroke patients with good motor function who had strong TCI,
although the mirror activity of the paretic hand may increase.
In addition, for subcortical stroke patients with disinhibition of
the ipsilesional motor cortex, intense use of the paretic limb,
such as constraint-induced movement therapy, may promote
motor recovery by inducing use-dependent reorganization (15).
In contrast, inhibitory neuromodulation of the contralesional
motor cortex may be less effective in stroke patients with poor
motor function, because these patients already have weak TCI
before the neuromodulation interventions. The functional im-
aging study has reported that the contralesional motor cortex
is engaged during paretic hand movements in stroke patients
with poor motor function (16). Therefore, therapy aimed at
increasing the excitability of the contralesional motor cortex
may be effective for motor recovery of stroke patients with
poor motor function. However, to our knowledge, there is no
report that a neuromodulatory approach that increases the
excitability in only the contralesional motor cortex can en-
hance motor recovery, ignoring the importance of the balance
between bilateral hemispheres (17). If excitability is increased
only in the contralesional motor cortex, the weak TCI to the
ipsilesional motor cortex in stroke patients with poor motor
function may become strong and inhibit the function of the ip-
silesional motor cortex. Therefore, bilateral movement training
that engages and balances both hemispheres may be effective
for stroke patients with poor motor function (18).
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The effects of human tobacco smoking and nicotine on pain-related brain activities were
investigated. EEG responses evoked by a painful laser beam (laser evoked potentials; LEPs),
and the plasma nicotine concentration (PNC) were measured. There were two sessions, one
after smoking (Smoking session), and the other in no smoking (Control session). Subjective
ratings of pain perception were also measured using the visual analog scale (VAS). Two major
components, N2 and P2 of LEPs, were recorded. The amplitude of P2 was significantly smaller
Pain in the Smoking session than in the Control session. A significant negative correlation was

Keywords:
Electroencephalography

Smoking found between PNC and the amplitude of N2 as well as P2. The results were consistent with

Event-related potential the hypothesis that smoking and/or nicotine have an antinociceptive effect, which supports

Nicotine most non-human studies and some human studies. Smoking of a single tobacco cigarette did
not show a subjectively perceivable extent of reduction in the intensity of evoked pain.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction the threshold of pain in mice and rabbits. The antinocicep-

tive effect of nicotine was shown to involve nervous systems

Nicotine has been demonstrated to have various psychophys-
iological effects in humans. The effects of smoking or nicotine
on event related potentials (ERPs) have been explored by
numerous groups (Friedman et al., 1974; Houlihan et al., 2001,
Knottetal.,, 1999; Woodson et al., 1982; for reviews, Knott et al,,
1995 and Pritchard et al., 2004). Most of these studies reported
increased amplitudes and/or decreased latencies supporting
the notion that nicotine enhances brain processing.

On the other hand, non-human studies demonstrated an
antinociceptive effect of nicotine. Mattila et al. (1968)
reported that nicotine injected subcutaneously increased

with various neurotransmitters including p-opioid (Berren-
dero et al., 2002; Biala and Weglinska, 2006), serotonin, and
epinephrine (Cucchiaro et al., 2005; Cucchiaro et al.,, 2006,
Iwamoto, 1991).

The effect of nicotine on pain perception in humans has
also been explored by some groups, but the results of these
studies have not been consistent. Pomerleau et al. (1984)
reported that smoking increased the pain threshold time for
arm immersion into ice water, whereas Mueser et al. (1984)
found no significant effect of smoking on the perception of
painful electric stimulation. Scott et al. (2007) explored effect
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of smoking on p-opioid receptor-mediated neurotransmission
using positron emission tomography (PET). They reported that
tobacco smoking enhanced p-opioid receptor-mediated neu-
rotransmission in the right anterior cingulate cortex and
suppressed in the left amygdala, left ventral basal ganglia, and
right thalamus after tobacco smoking, suggesting a possible
role of smoking and nicotine on pain perception in humans
through these brain areas, which are important in pain
processing (Kakigi et al., 2005).

Pain-related evoked potentials are commonly used in
studies that objectively evaluate pain-related brain activities
in humans. N2 and P2 are the two major components
constantly recorded in pain-related evoked potentials. They
are thought to reflect the activities of operculoinsular and
cingular cortices, respectively (Tarkka and Treede, 1993;
Bromm and Chen, 1995; Valeriani et al., 1996; lannetti et al.,
2003; Kakigi et al,, 2005). Their amplitudes are shown to be
correlated to the magnitude of subjectively perceived pain
(Kakigi et al., 1989; Bromm and Treede, 1991; Garcia-Larrea et
al., 1997). Knott (1990) and Knott and De Lugt (1991) recorded
pain-related evoked potentials after electrical stimulation, but
the results did not consistently support the notion that
smoking attenuates their amplitude.

In the present study, we measured evoked potentials after
painful laser stimulation (laser evoked potentials; LEPs) in
smoking and non-smoking conditions. Painful laser stimula-
tion activates A6 fibers but not Ap fibers; electrical stimulation
activates both. Laser stimulation enables one to evaluate the
brain activities related to Ab fiber mediated pain information
without confounded by Ap fiber mediated tactile information.
To evaluate the effect of smoking on LEPs over time, LEPs were
measured in five runs in each of the two sessions on separate
days (Smoking and Control sessions), which followed a 12-
hour abstinence from smoking. Subjects smoked one cigarette
after the first run in the Smoking session. Plasma nicotine and
cotinine concentration (PNC and PCC) were also measured just
before each run. We tested the correlation between ampli-
tudes of LEPs and PNC, which rapidly decrease after smoking.
Cotinine is the main metabolite of nicotine, which remains in
the plasma with a t;, of about 18 hours. It is used to assess
current smoking status of subjects. To our knowledge, there
have been no reports on the effect of smoking or the plasma
nicotine concentration on laser-evoked potentials (LEPs).

2. Results
2.1. Plasma nicotine and cotinine concentrations

For all the 10 subjects, the PNC in the Control session and Pre
in the Smoking session was less than 7 ng/ml, indicating that
all the subjects had been abstinent from smoking before each
session as instructed. Mean values and standard errors are
shown in the results. The mean PNC for each run averaged
over subjects was highest at 5 min after smoking in the
Smoking session (29.8+6.9 ng/ml) and decreased as time
passed in the following runs.

The mean PCC at Pre in the Control and Smoking sessions
averaged over all subjects was 61.9+24.3 ng/ml and 74.0+
23.1 ng/ml, respectively. The PCC in 4 of the 10 subjects was

below the limit of detection in the Control session. For three of
these four subjects, the PCC at Pre was also below the limit of
detection in the Smoking session.

2.2.  Amplitudes and latencies of N2 and P2

Fig. 1 shows superimposed waveforms of a representative
subject in each run in each session. The N2 and P2
components of LEPs were consistently observed in each
subject with a peak latency at around 200 and 300 ms,
respectively. Fig. 2 shows the grand-averaged LEP waveforms
for each run in the Smoking and Control sessions. The mean
amplitudes of N2 and P2 averaged over subjects for each run
are shown along with the PNC in Figs. 3a and b. The mean N2
amplitude, N2 latency, P2 amplitude, and P2 latency averaged
over all subjects and all runs were 10.6+0.6 uV, 216+2 ms,
16.6+0.7 pV, and 330+2 ms, respectively. The amplitude of N2
is shown as a positive value.

In a two-way repeated-measures ANOVA (Session and Run)
on the amplitude of P2, we found a significant interaction
(F(4, 36)=3.1, p=0.049) and a significant main effect of Session
(F(1,9)=11.0,p=0.01). In a post hoc paired t-test for each run, the
amplitude of P2 was found to be smaller in the Smoking session
than in the Control session for the run 5 min after smoking
(t(9)=3.5, p=0.03). The difference in the P2 amplitude between
Runs in the Smoking session was not significant in a one-way
repeated measures ANOVA (F(4, 36)=2.53, p=0.10). We did not
find a significant interaction of Session and Run, or a significant
main effect of Session or Run on the amplitude of N2 (F(4, 36)=
1.7, p=0.19, F(1, 9)=0.96, p=0.35, and F(4, 36)=2.7, p=0.07,
respectively), or on the latency of N2 or P2 in two-way repeated
measures ANOVAs (Session and Run). PNC was negatively
correlated to N2 amplitude (R=-0.29, p<0.01, Fig. 4a) and P2

Amplitude (V)

600 ms

Fig. 1 - Superimposed waveforms of a representative subject
in each run in the Control (black) and Smoking (gray)
sessions. The waveforms of 600 ms from stimulus onset are
shown. Each sweep represents the averaged waveform of 10
artifact-free epochs in a run. Each waveform is adjusted
using the 100-ms prestimulus period as a baseline. N2 and P2
deflections (labeled with arrows) were constantly recorded
throughout the experiment.
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