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trained technicians. A neurologist or clinical neurophysiolo-

gist should supervise any investigation and provide a written

medical report. The risk of adverse effects is very small.
(b) Research studies (Class 3 studies and Class 2 studies) with sin-
gle-pulse, paired-pulse TMS, rTMS at <1 Hz and other conven-
tional or patterned rTMS which fall within known safety
margins (see Tables 3-6) on normal subjects and patients with
stable medical conditions can be carried out by trained profes-
sionals (MDs, Technicians, Psychologists, Physicists, Physio-
therapists, Engineers), under the responsibility of the
Principal Investigator, whose physical presence in the lab
is not required, but who should be immediately available.
He/she is also responsible of the training of TMS users. Med-
ical assistance is strongly recommended for Class 2 studies
on patients, for which personnel skilled in syncope and sei-
zure management should be present in the lab. In these
cases, a licensed physician should be identified as the med-
ically responsible clinician and should oversee screening
procedures, including assessment of risk factors, rTMS
parameters and application protocol, and monitoring of
subjects.
When rTMS is prescribed (by an MD) as treatment for any med-
ical condition (Class 1 studies), it is advisable that a licensed
physician, serving as medically responsible clinician, closely
supervises the rTMS application given the more likely med-
ical instability of the patients. The rTMS application can be
carried out by a properly trained medical assistant. All per-
sonnel have to be trained to recognize and to manage a sei-
zure or a syncope, and there should be full access to
emergency ftreatment and life-support equipment. The
responsible clinician should also make sure that the medical
assistant is properly trained in how to deal with potential
acute complications.

(c

—

Whenever monitoring is required by the type of study (see Sec-
tion 7.2.4), the research team should always include a qualified
clinical neurophysiologist to supervise the recording and interpre-
tation of electrophysiological data. A physician, a nurse or other
qualified personnel who has experience with rTMS and is skilled
in the management of first aid for seizures should be present in
the rTMS laboratory in these cases.

7.3.2. Training

To date, there is no official position about training requirements.
Itis however advisable that every TMS user, especially if he/she lacks
medical training, has basic knowledge of brain physiology, of basic
mechanisms of TMS, of the potential risks of the procedure, of the
physiological changes induced, etc. The Principal Investigator of
the study is responsible for guaranteeing the proper training of
TMS operators working with him/her. Such training should also in-
clude the ability and certification to deal with potential acute com-
plications of TMS. Training may vary according to the TMS use.

Teaching courses are not mandatory at the moment, but there
are some offered in different countries and organized by public
or private institutions, as well as by some national Societies of
Clinical Neurophysiology. It is clear that training requirements
will need to be consensual, and that different national guidelines
may eventually need to be developed. The IFCN has commis-
sioned a forthcoming paper on training requirements for TMS
use.

7.4. Contraindications and precautions

The bulk of TMS studies over the last decade following the 1998
published guidelines suggest that the following considerations can
be made, for which full consensus was reached:

1. The only absolute contraindication to TMS/rTMS is the presence
of metallic hardware in close contact to the discharging coil
(such as cochlear implants, or an Internal Pulse Generator or
medication pumps). In such instances there is a risk of inducing
malfunctioning of such implanted devices.

2. Conditions of increased or uncertain risk of inducing epileptic
seizure are:

a. Related to the protocol of stimulation:

i. Any “novel paradigm” (i.e., that is not a classical method of
high-flow-frequency rTMS, performed with a flat Figure 8 coil
and biphasic pulse waveform). Pre-conditioning (i.e., prim-
ing), TMS applied on more than a single scalp region, and pro-
longed PAS protocols are included in this category.

ii. Conventional high-frequency rTMS protocol with parameters
of stimulation (intensity, frequency, train length or intertrain
duration) exceeding the known safety limits reported in the
Tables 4-6 of Section 7.2.

b. Related to the disease or patient’s condition:

i. Personal history of epilepsy (untreated patients with one or a
few past episodes), or treated patients.

il. Vascular, traumatic, tumoral, infectious, or metabolic lesion
of the brain, even without history of seizure, and without
anticonvulsant medication

iii. Administration of drugs that potentially lower seizure thresh-
old (see Section 5.3 for a full list), without concomitant
administration of anticonvulsant drugs which potentially
protect against seizures occurrence

iv. Sleep deprivation, alcoholism

3. Conditions of increased or uncertain risk of other events are:
c. Related to patient’s condition:
i. Implanted brain electrodes (cortical or deep-brain electrodes)
(see Section 3.4)
ii. Pregnancy
iii. Severe or recent heart disease

4. No risk: none of the previous conditions and single- or paired-
pulse TMS or conventional low- or high-frequency rTMS proto-
col with parameters of stimulation (intensity, frequency, train
length or intertrain duration) within the “safety limits”
reported in the Tables 4-6 of Section 7.2.

7.5. A screening standard questionnaire for rTMS candidates

Investigators should consider using a standard questionnaire to
screen rTMS candidates. The following questions represent the ba-
sic information required. Additional information may change
according to particular demands. Consensus has been reached for
this questionnaire.

1. Do you have epilepsy or have you ever had a convulsion or a
seizure?

2. Have you ever had a fainting spell or syncope? If yes, please
describe in which occasion(s)

3. Have you ever had severe (i.e., followed by loss of conscious-
ness) head trauma?

4. Do you have any hearing problems or ringing in your ears?

5. Are you pregnant or is there any chance that you might be?

6. Do you have metal in the brain/skull (except titanium)? (e.g.,
splinters, fragments, clips, etc.)

7. Do you have cochlear implants?

8. Do you have an implanted neurostimulator? (e.g., DBS, epi-
dural/subdural, VNS)
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9. Do you have a cardiac pacemaker or intracardiac lines or
metal in your body?
10. Do you have a medication infusion device?
11. Are you taking any medications? (Please list)
12. Did you ever have a surgical procedures to your spinal cord?
13. Do you have spinal or ventricular derivations?
14. Did you ever undergo TMS in the past?
15. Did you ever undergo MRI in the past?

Affirmative answers to one or more of questions 1-13 do not
represent absolute contraindications to TMS, but the risk/benefit
ratio should be carefully balanced by the Principal Investigator of
the research project or by the responsible (treating) physician.
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ABSTRACT

Objective: To measure the conduction time from the motor cortex to the conus medullaris (cortico-conus
motor conduction time, CCCT) for leg muscles using magnetic stimulation.

Methods: Motor evoked potentials (MEPs) were recorded from tibialis anterior muscles in 51 healthy vol-
unteers. To activate spinal nerves at the most proximal cauda equina level or at the conus medullaris
level, magnetic stimulation was performed using a MATS coil. Transcranial magnetic stimulation of the
motor cortex was also conducted to measure the cortical latency for the target muscle. To obtain the
CCCT, the latency of MEPs to conus stimulation (conus latency) was subtracted from the cortical latency.
Results: MATS coil stimulation evoked reproducible MEPs in all subjects, yielding CCCT data for all stud-
ied tibialis anterior muscles.

Conclusions: MATS coil stimulation provides CCCT data for healthy subjects.

Significance: This novel method is useful for evaluation of corticospinal tract function for leg muscles
because no peripheral component affects the CCCT.

© 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Magnetic stimulation enables us to evaluate the corticospinal
tract function non-invasively by measuring the central motor con-
duction time (CMCT) (Rossini et al., 1994; Chen et al., 2008). The
CMCT is usually obtained by subtracting the motor evoked potential
(MEP) latency to magnetic stimulation over the spinal enlargement
(spinal latency) from that to magnetic stimulation over the primary
motor cortex (cortical latency). Magnetic stimulation over the spinal
enlargement activates the spinal nerve at the neuro-foramina level
(Ugawaetal., 1989b). Therefore, the CMCT described above includes
the conduction time through the spinal nerves running in the spinal
canal (Rossini et al., 1994; Chen et al., 2008).

Maccabee et al. reported that an 8-shaped coil can activate the
most proximal cauda equina at around the conus medullaris (Mac-
cabee et al., 1996). They proposed the possibility that this stimula-
tion method might enable us to measure the conduction time from
the motor cortex to the conus medullaris [cortico-conus motor
conduction time (CCCT)]. The CCCT necessarily reflects the cortico-
spinal tract function more correctly than the conventional CMCT
because peripheral components (some conduction time within

* Corresponding author. Address: Department of Neurology, Division of Neuro-
science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8655, Japan. Tel.: +81 3 5800 8672; fax: +81 3 5800 6548.

E-mail address: hideyukimatsumoto@mail.goo.ne.jp (H. Matsumoto).

the cauda equina) do not contribute to CCCT, especially in patients
with peripheral neuropathy. The CCCT, however, has not been
widely used yet.

A few alternative methods can be used to measure the proximal
spinal nerve conduction time, such as F-wave measurement and
high-voltage electrical stimulation (Ugawa et al., 1988a,b, 1989a,
1995; Claus, 1990; Eisen and Shtybel, 1990). However, F-wave
measurement provides no information about the lesion sites, and
high-voltage electrical stimulation is often associated with severe
pain. Especially, high-voltage electrical stimulation is not tolerated
by patients with skin problems (Matsumoto et al., 2005, in press).

We have developed a new method to activate the most proxi-
mal cauda equina at around the conus medullaris level using a spe-
cially devised coil [magnetic augmented translumbosacral
stimulation (MATS) coil] (Matsumoto et al., 2009a,b).

The aim of this paper is to apply the MATS coil to CCCT mea-
surement. The relation between MEP latency and body height
was also studied.

2. Materials and methods
2.1. Subjects
Subjects were 51 healthy volunteers (25 men and 26 women).

Their mean age and body height were 42.1 + 15.5 (mean + standard
deviation (SD); range 24-78) years and 163.9 + 9.3 (144-185) cm.

1388-2457/$36.00 © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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Fig. 1. Histogram of body height. There is no extremely skewed distribution of body
height in our study.

The histogram of body height is shown in Fig. 1. No extremely
skewed distribution of body height was observed.

Informed consent to participate in this study was obtained from
all subjects. The protocol was approved by the Ethics Committee of
the University of Tokyo. The experiments were conducted in accor-
dance with the ethical standards of the Declaration of Helsinki.

2.2. Stimulation, recording and analysis

During the examination, MEPs were recorded from the tibialis
anterior muscle (TA) as subjects sat comfortably on a bed. The TA
muscle was selected because this muscle could be easily con-
tracted and recorded compared to other leg muscles. Disposable
silver-silver chloride disc electrodes of 9 mm diameter were
placed in a belly tendon montage over TA. Signals were amplified
with filters set at 20 Hz and 3 kHz and recorded using a computer
(Neuropack MEB-9100; Nihon Kohden Corp., Japan).

Magnetic stimulation was conducted using a monophasic stim-
ulator (Magstim 200; The Magstim Co. Ltd., UK). For cortical mag-
netic stimulation, a double-cone coil (The Magstim Co. Ltd., UK)
was placed over the Cz (international 10-20 system), with induced
currents flowing mediolaterally over the contralateral leg motor

Fig. 2. MATS coil stimulation method. This figure shows positions of MATS coil
when MEPs are recorded from right TA. For the most proximal cauda equina
stimulation, the edge of MATS coil is positioned over the first lumbar spinous
process for inducing currents to flow upward. For neuro-foramina level stimulation,
the edge of the MATS coil is positioned over the fifth lumbar spinous process for
inducing currents to flow 45° downward from a herizontal direction.

area (Terao et al,, 1994, 2000). The MEP onset latency was mea-
sured in the active condition (cortical latency).

Fig. 2 portrays the placement of MATS coil (diameter 20 cm,
0.98 T; The Magstim Co. Ltd., UK) when recording MEPs from the
right TA. The MATS coil was always placed from the midline to
the contralateral side of the body (the opposite side from the re-
corded muscle) to prevent some non-target parts of the coil from
activating distal peripheral nerves for the target TA. The most prox-
imal cauda equina at around the conus medullaris was .activated
using the MATS coil, whose edge was positioned over the first lum-
bar (L1) spinous process for inducing currents to flow upward in
the body (Matsumoto et al, 2009b). For the neuro-foramina level
stimulation, the edge of MATS coil was positioned over the fifth
lumbar (L5) spinous process for inducing currents to flow 45°
downward from horizontal direction (Matsumoto et al., 2009a).
This direction of induced currents (45°) was optimal to elicit MEPs
because the induced currents should flow along the anatomical
course of spinal nerves (Ugawa et al., 1989b; Epstein et al., 1991;
Mills et al., 1993; Maccabee et al,, 1996; Ruohonen et al.,, 1996;
Matsumoto et al., 2009a). In L1 and L5 level stimulation, the onset
latencies of MEPs were measured in the relaxed condition (L1 and
L5 level latencies).

To obtain the minimal and reproducible MEP latency, the stim-
ulus intensity was increased gradually and several MEPs evoked by
stimulation at several different intensities were superimposed. The
CCCT, conventional CMCT, and cauda equina conduction time
(CECT) were obtained (92 sides). The CCCT was obtained by sub-
tracting the L1 level latency from the cortical latency, the conven-
tional CMCT by subtracting the L5 level latency from the cortical
latency, and the CECT by subtracting L5 level latency from L1 level
latency. Linear regression analysis was conducted to investigate
the relation between each conduction time and body height.

The MEP sizes were compared between the simulation posi-
tions (60 sides). The base-to-peak amplitude of MEP was mea-

263 ms
Cort
o A
15.5ms
L1 Fi
(MATS coil)
123 ms
Ls
(MATScoil)] 4
2mV
10ms

Fig. 3. Representative MEPs in a normal subject. The conventional CMCT is
obtained by calculating the latency difference between MEPs to cortical and L5
level stimulation. Similarly, the CCCT is obtained by calculating the latency
difference between MEPs to cortical and L1 level stimulation,
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sured. At L1 and L5 levels, the intensity was increased gradually to
the maximal stimulator output (100%). The amplitudes of maximal
MEPs were compared between two level stimulation positions
(maximal MEP means an MEP to supramaximal stimulation or
MEP to submaximal stimulation with maximal stimulator output).
The MEP amplitudes of the two level stimulation positions were
compared using Wilcoxon's signed rank test; p values less than
0.05 were considered statistically significant.

3. Results

No subjects experienced any intolerable discomfort during
MATS coil stimulation. No side effect was noted. Fig. 3 shows rep-
resentative MEPs in a normal subject. The conventional CMCT was
obtained using the MEPs to cortical and L5 level stimulation
(14.0 ms). Moreover, L1 level stimulation evoked discernible MEPs.
The CCCT was 10.8 ms, and the CECT 3.2 ms.

In all subjects, L1 level MATS coil stimulation evoked reproduc-
ible MEPs. The L1 level latency was longer than L5 level latency.
The mean latencies and conduction times are presented in Table 1.

The correlations between each conduction time and body
height are depicted in Fig. 4. Significant and positive linear rela-
tions were found between the conventional CMCT and body height
(p<0.001; conventional CMCT=0.045 x body height + 7.166,
R=0.366), and between CECT and body height (p =0.001; laten-

Table 1
Normal values of latencies (51 subjects, 92 sides).

Mean £ SD (ms)

Cortical latency 26.1£16
L1 level latency 14014
L5 level latency 11.5+£0.9
cccr 123%1.2
Conventional CMCT 146%1.2
CECT 26+09

CCCT, cortico-conus motor conduction time; CMCT, central motor conduction time;
CECT, cauda equina conduction time; SD, standard deviation.

16
15 R
g“ T :ﬁ“":
= 13 ot e gpad
8 28° e §° :
O 12 ch sn ’ o
11 e o e
10 °
140 150 160 170 180 190
BH (cm)
5
4
Es
g 2
1 e
5 —

H. Matsumoto et al. /Clinical Neurophysiology 121 (2010) 1930-1933

¢y =0.032 x body height — 2.602, R =0.331). No significant corre-
lation was found between CCCT and body height (p = 0.298).

The MEPs to L1 level stimulation (median: 1.0 mV, 25-75 per-
centiles: 0.5-1.8 mV) were significantly smaller than MEPs to L5
level stimulation were (1.3 mV, 1.0-3.5) (p < 0.001).

4. Discussion

In all subjects, L1 level MATS coil stirmulation elicited discern-
ible MEPs to measure onset latency. It enabled us to obtain CCCTs.
The CCCT is more suitable for evaluating the corticospinal function
for leg muscles than the conventional CMCT because no cauda equ-
ina conduction component contributes to CCCT. Another superior
point of this stimulation method is the evaluation of conduction
through the cauda equina using CECT. The authors have earlier re-
ported some utility of this stimulation method for evaluating cau-
da equina conduction in patients with peripheral neuropathy
(Matsumoto et al., 2010).

In this study, the CECT was found to be 2.6 + 0.9 ms, which is
similar to previously reported values obtained using an 8-shaped
coil (2.3 or 2.6 ms) (Maccabee et al., 1996; Maegaki et al., 1997).
Therefore, L1 level MATS coil stimulation does activate the cauda
equina at the root exit site from the conus medullaris, as described
in previous reports (Maccabee et al., 1996; Maegaki et al., 1997;
Matsumoto et al., 2009b), namely at the conus medullaris level.
Therefore, the latency difference between cortical and L1 level
stimulation was designated as the cortico-conus motor conduction
time (CCCT).

Regarding the relation between each conduction time and body
height, the conventional CMCT and CECT had significant correla-
tion with body height, but the CCCT did not. These results are
not completely consistent with those of previous reports (Chu,
1989; Ugawa et al., 1989a; Claus, 1990; Furby et al., 1992). Previ-
ous reports have described that the conventional CMCT for lower
extremities is significantly affected by the body height (Chu,
1989; Furby et al., 1992), according with our results. On the other
hand, the correlation between the CCCT and body height is contro-
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Fig. 4. Relation between each conduction time and body height. The CCCT is not significantly correlated with body height (p = 0.298). A significant and positive linear relation
was found between the conventional CMCT and body height (p < 0.001; conventional CMCT = 0.045 x body height + 7.166, R = 0.366). Similarly, a significant correlation was
found for CECT (p = 0.001; latency = 0.032 x body height — 2.602, R = 0.331). P, prediction interval; CI, confidence interval.
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versial. Ugawa et al. reported that the cortical-L1 conduction time
measured using high-voltage electrical stimulation was not signif-
icantly correlated with body height (Ugawa et al., 1989b). In con-
trast, Claus reported that the cortical-L1 conduction time
measured using transcranial magnetic stimulation and high-volt-
age electrical stimulation had a significant correlation with body
height (Claus, 1990). The results in this study were similar to that
in the former report. One plausible explanation of this discrepancy
might be the difference in the body height of subjects. The average
(range) of body height in the paper of Ugawa et al. was about 163
(151-178) cm and that in Claus was about 173 (156~191) cm. The
body height in this study was almost same (164 cm) as that in the
paper of Ugawa et al. The difference in body height seems to be due
to the difference between Japanese and European peoples. What-
ever the difference, this study demonstrates that the CCCT is rela-
tively independent of body height compared to the conventional
CMCT and CECT.

The relative independence of the CCCT from the body height
might be mainly explained by the disproportion between growths
in length of the spinal cord and the vertebral column (Kunitomo,
1918; Vettivel, 1991). The spinal cord length does not elongate
proportionally to body height, although the cauda equina elongates
concomitantly with the spine growth proportionally to body
height. Large variability of the conduction velocity of the cortico-
spinal tracts between subjects might also explain the lack of signif-
icant relation between CCCT and body height. Indeed, the
conduction velocity in awake human estimated by Ugawa et al.
(1995) ranged from 62.0 to 79.0 m/s, and that in anesthetized hu-
man by Fujiki et al., (1996) ranged from 50.5 to 72.7 m/s (Ugawa
et al,, 1995; Fujiki et al., 1996).

One point of caution related to this method is the MEP ampli-
tude. The MEPs evoked by L1 level stimulation were often smaller
than those by L5 level stimulation in normal subjects, which sug-
gests that an amplitude comparison between L1 and L5 level stim-
ulation is not useful for evaluation of the conduction block within
the cauda equina even though the latencies are good parameters
for evaluation of motor conduction. Another point of caution is
the difference of CCCT between target muscles. If another muscle
is selected, the normal value of CCCT should be made for each tar-
get muscle.

In conclusion, we propose that the MATS coil is useful for the
accurate evaluation of corticospinal tract function for leg muscles.
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Abstract: Progressive supranuclear palsy (PSP) rarely
shows cerebellar signs and symptoms even though the cere-
bellar dentate nuclei are involved pathologically. This study
evaluates cerebellar function using transcranial magnetic
stimulation (TMS) to determine whether subclinical cerebel-
lar involvement is present in PSP patients. We studied 11
patients with PSP, 11 patients with Parkinson’s disecase
(PD), and 10 age-matched controls. Patients were examined
with their usual medications and in their relative on state.
Motor evoked potentials (MEPs) were recorded from the
hand muscle. Cerebellar function was evaluated using sup-
pressive effects of TMS over the cerebellum on MEPs eli-
cited by TMS over the contralateral motor cortex, which we

call cerebellar inhibition (CBI). Interstimulus intervals
(ISIs) of 4 to 8 ms were used, and the time course of CBI
was analyzed. The CBI was reduced in PSP patients. By
contrast, the CBI was normal in PD patients in their on
state. Although the CBI in their off state should be exam-
ined in future studies, the results described herein suggest
that Purkinje cells or the dentato~-thalamo-cortical pathway
assessed by CBI is involved in PSP. Our results are compat-
ible with the pathological findings showing severe dentate
nucleus degeneration in PSP patients. © 2010 Movement
Disorder Society

Key words: progressive supranuclear palsy; cerebellum;
transcranial magnetic stimulation

INTRODUCTION

Progressive supranuclear palsy (PSP) is a syndrome
that is typically characterized by postural imstability
and supranuclear gaze palsy.' Although a recent study
reported pathologically confirmed PSP patients devel-
oping cerebellar ataxia as the initial and principal
symptom.” clinical signs of cerebellar dysfunction are
usually considered rare. In contrast, involvement of the
cerebellar dentate nucleus has been well documented
to be the cardinal neuropathological findings in PSP."
With this background, neurophysiological evaluation of
cerebellar functions in PSP would be an interesting
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approach to clarify the presence of subclinical cerebel-
lar dysfunctions, but such investigations have not been
well documented.

Transcranial magnetic stimulation (TMS) is a nonin-
vasive technique to stimulate the human brain. Cere-
bellar function can be studied using the paired-pulse
paradigm; a preceding TMS over the cerebellum
decreased the size of motor evoked potentials (MEPs)
elicited by TMS over the contralateral primary motor
cortex (M) at interstimulus intervals (ISTs) of 5 to 7
ms.” The suppressive effect is likely to be derived
from activation of Purkinje cells that inhibit or disfaci-
litate the dentato-thalamo—cortical pathway. For de-
scriptive purposes only. in this article, we refer to this
inhibition as cerebellar inhibition (CB]).4

This study evaluated cerebellar function using this
technique in PSP patients. For comparison, we also
studied patients with Parkinson’s disease (PD). in
which some brain structures common to PSP are
involved.
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METHODS

Participants

We studied 11 patients with probable PSP according
to the National Institute of Neurological Disorders and
Stroke and the Society for PSP, (NINDS-SPSP) crite-
ria,” 11 patients with PD according to the United King-
dom Parkinson’s Disease Society Brain Bank clinical
diagnostic criteria.® and 10 healthy  right-handed
healthy volunteers (Table 1). No participants had any
contraindication to TMS.” No patients showed pyrami-
dal signs or cerebellar ataxia. All participants gave
their written informed consent. This study was
approved by the Institutional Review Board. Severity
of the discase was assessed using the Hoehn and Yahr
staging and the Unified Parkinson’s Disease Rating
Scale (UPDRS) Part I (Table 1). Dopaminergic medi-
cations were expressed as levodopa (L-dopa) equivalent
daily dose (LEDD) as reported elsewhere™ | mg of
pergolide = 1 mg of pramipexole = 5 mg ol ropinir-

Recording

A surface electromyogram (EMG) was recorded
from the first dorsal interosseous (FDI) muscle using a
belly tendon montage on the more affected side with
larger summed score of items 23 to 25 of the UPDRS
Part 11l in PD and PSP patients. and on the right side
in healthy subjects. Responses input to an amplifier
(Biotop: GE  Mauarquette  Medical  Systems,  Japan)
through tilters set at 100 Hz and 3 kHz were digitized

TABLE 1. Clinical featires and basic electrophysiological

valies
PSp PD Control £ value
Female: male () 4.7 4.7 9: 1
Age at exam® (yr) 727 =738 684 =87 640 £ 64 0.06
Disease 45+ 27 159+ 97 0.001
duration™ (yr)
Hoehn and 0.06
Yahr stage (1)
2 0 N
3 6 3
4 4 3
5 | 0
UPDRS HI" 27 (9-75) 22 (13-5h 0.77
Test MEP 0.52 = 015 0.62 £ 022 050 £ 016 0.27
sizet (mV)
CMCT" (ms) 6.3 5 038 65 £072 670064 045

Values are shown as mean = SD.

"Values are shown as median (range).
PSP, progressive  supranuclear  palsy:  PD. Parkinson’s  discase:
UPDRS. unified Parkinson’s disease rating scale: MEP. motor evoked
potential; CMCT, central motor conduction time.

Movement Disorders, Vol 25, Noo 14, 2016

and stored in a computer for later offline analyses
(TMS bistim tester; Medical Try System, Japan).

Transcranial Magnetic Stimulation

For TMS over the cerebellum (conditioning stimu-
lus, CS). a double-cone coil (110 mm mean diameter)
was centered over the midpoint between the inion and
the mastoid process ipsilateral to the recording side.
Current in the coil was directed downward (that is,
upward current was induced in the cerebellum).® The
M1 was stimulated using a round coil (90 mm mean
diameter) centered over the vertex (test stimulus, TS).
Current in the coil was directed anteroposteriorly over
the target M1 (posteroanterior current in the target M1).
Monophasic TMS pulses were delivered using two mag-
netic stimulators (Magstim 200: The Magstim).

EXPERIMENTAL DESIGN

The CBI was examined as described previously
We first determined the active motor threshold (AMT)
for pyramidal tract activation at the brainstem with the
double-cone coil centered over the inion.” CS was
fixed at an intensity of 95% AMT and given at 4, 5, 6.
7. and 8 ms before the test stimulus. The intensity of
the TS was adjusted to elicit MEPs of 0.5 mV on aver-
age when given alone. The experiment was performed
with the target muscle relaxed, as confirmed by an os-
cilloscope monitor. Seven trials recorded for each IS]
(i.e.. conditioned trials) were randomly intermixed with
10 trials in which TS was delivered alone (i.e., uncon-
ditioned trials) with an intertrial interval of 10 s. When
recording was contaminated by voluntary EMG, such
trials were discarded from the analyses. When neces-
sary, we briefly stopped the session to maintain the
resting state of the target muscle. We also evaluated
the central motor conduction time (CMCT), as
described previously.m The patients on medications
were studied when they were in the relative on state:
that is. they took their medications as usual. and the
experiments were  performed ~2 hours after their

3

morning or noon dose.

Data analyses

We used one-way analysis of variance (ANOVA)
for comparisons of the following parameters among
the groups (i.e.. PSP, PD. and controls): the age at ex-
amination, test MEP size, and CMCT. Student’s £ test
was used to compare the disease duration. and Mann-
Whitney U test was used to compare the Hoehn and
Yahr stages and UPDRS Part III scores between the
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TABLE 2. Clinical features of each patient
Case Age Disease UPDRS UPDRS item 20 UPDRS item 21 LEDD
No. (yr) duration {yr) H & Y stage part I (rest tremor) (postural tremor) (mg)
PSP 1 61 5 3 19 0 0 0
PSP 2 76 7 4 40 0 1 300
PSP 3 57 1 3 29 0 0 0
PSP 4 78 4 3 9 0 0 0
PSP 5 84 4 3 9 0 0 0
PSP 6 73 3 3 14 0 0 0
PSP 7 71 7 4 45 0 0 100
PSP 8 75 2 4 45 0 0 0
PSP 9 78 2 3 20 0 0 0
PSP 10 77 5 4 27 0 0 0
PSP 11 70 10 5 75 0 0 300
PD1 72 19 3 25 3 0 405
PD2 52 9 2 20 0 0 750
PD3 75 3 2 15 0 0 0
PD 4 81 10 4 36 5 2 500
PD S 64 23 3 22 0 0 700
PD 6 70 21 4 51 7 2 515
P 7 72 3 2 19 1 1 200
PD 8 60 35 2 5 0 0 975
PD 9 66 12 2 13 0 0 425
PD 10 79 24 4 36 0 0 350
PD 11 61 16 3 28 5 0 625

H & Y stage, Hoehn and Yahr stage: LEDD, levodopa equivalent daily dose: PD, Parkinson’s disease, PSP. progressive supranuclear palsy;

UPDRS, unified Parkinson’s disease rating scale.

two disease groups. To evaluate the time course of
CBI among groups, the ratio of the mean peak-to-peak
amplitude of the conditioned MEPs to that of uncondi-
tioned MEPs was calculated for each ISI in each sub-
ject. These individual mean ratios from all subjects in
each group were then averaged to produce a grand
mean ratio for that group. We analyzed the CBIs in
different groups using two-way repeated measures
ANOVA with GROUP (PSP, PD, or control) as the
between-subject factor and with ISI as the within-sub-
ject factor. Bonferroni’s post hoc tests were used for
additional analyses.

To further investigate the relations between CBI and
other demographic or clinical features, average size ra-
tio (ASR) was calculated for each participant by averag-
ing the MEP ratio across ISIs of 5 to 7 ms."" The corre-
lation of age with the ASR was tested for each group of
the subjects using linear regression analyses. Possible
relations between the CBI and disease severity in the
patient groups were analyzed in two manners. First,
one-way ANOVA was conducted for each patient group
to analyze effect of Hoehn and Yahr stage. Second, the
correlation between ASR and UPDRS part 11l score was
investigated using linear regression analyses. Difference
in the ASR between PD patients with and without
tremor was studied using the Student’s ¢ test. Influence
of the dopaminergic medication in PSP patients was
assessed by comparing the mean ASR of the PSP

patients with medications to that of the PSP patients
without medications, using the Student’s ¢ test. We did
not conduct such analyses for PD patients, because all
but one patient was taking dopaminergic medication.

A P-value < 0.05 was considered significant. Data
were analyzed using a commercial software (SPSS for
Windows ver. 13; SPSS, Chicago, IL, USA).

RESULTS
No significant age difference was found among
groups, but it tended to be higher in the PSP group.
Disease duration differed significantly between PD and
PSP (Table 1). Neither the amplitude of test MEP size
nor CMCT differed significantly among groups (Table
1). Test stimulus intensity expressed as %maximal
stimulator output (%2MSO) was 55.6% * 11.9% (mean
+ standard deviation; range 38-72%) in the PSP
group, 51.6% =+ 17.1% (range 28-80%) in the PD
group, and 554% * 16.6% (range 39-90%) in the
healthy controls. AMT for pyramidal tract activation at
the brainstem was 54.3% * 11.6% MSO (range 38—
70%) in the PSP group, 63.2% =* 19.1% (range 38—
100%) in the PD group, and 45.4% * 13.5% (range
27-70%) in the healthy controls.
Table 2 shows clinical details of the PSP and PD
patients. Three PSP patients were on dopaminergic
medication.

Movement Disorders, Vol. 25, No. 14. 2010
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FIG. 1L Representative responses from a - single subject of  cach
group. Traces show averaged motor evoked potentials (MEPs) rom
one PSP patient. one PD patient. and one healthy volunteer. The top
row shows unconditioned responses (averaged over 10 trials). The
lower rows demonstrate conditioned responses for cach ISI (averaged
over seven trials). In a PSP patient, the suppression was reduced at
ISTs of 6 and 7 ms. No suppression was present at 1SIs of 3 and 8
ms. In contrast, MEPs were inhibited at ISIs of 5 to 8 ms in a PD
patient and a healthy volunteer.

Figure | presents representative responses in a single
participant from each group. In a healthy volunteer, the
conditioned response at an ISI of 4 ms was similar in
size to the unconditioned response. In contrast, the
conditioned MEPs were smaller than the unconditioned
MEP at ISIs of 5 to 8 ms. Similar results were
obtained in a PD patient, indicating normal CBL In a
PSP patient, in contrast, the inhibition at ISIs of 5 to 8
ms was reduced. The mean time courses of CBI are
depicted in Figure 2. They also demonstrated reduced
CBI in PSP patients. The statistical comparisons dis-
closed an effect of GROUP (F (229) = 7.703, P =
0.002) and an effect of ISI (F (4,116) = 7.206, P <
0.001). Post hoc analysis revealed that PSP showed
reduced CBI than PD (P = (L.003) or controls (P =
0.008), but no significant dilference between PD and
controls. Furthermore, a significant ditference between
PSP and PD was found at ISIs of 5, 6, and 7 ms (P =

Maovement Disovders, Vol 25, No. 14,2010

0.017, 0.029. and 0.005, respectively). No significant
difference was found between PD and controls at any
ISIs.

We found no significant correlation between the CBI

0.034. P = 0.61 in the control group, R* = 0.012, P
= 0.75 in the PSP group, and R? = 0.001. P = 0.90
in the PD group). One-way ANOVA with regard to the
Hoehn and Yahr stages revealed significant main effect
of disease severity on CBI in the PSP group (P =
0.007. Fig. 3A). but not in the PD group (P = 0.70,
Fig. 3B). Furthermore, we found a significant correla-
tion between the ASR and UPDRS part III score in the
PSP group (R* = 0.76, P < 0.001. Fig. 3C). but not in
the PD group (R® = 0.006. P = 0.81, Fig. 3D). We
found normal CBI in PD patients. irrespective of the
presence or absence of tremor. ASR was 0.66 * 0.08
in PD patients with tremor: and 0.60 * 0.16 in those
without (P = 0.49). CBI was abnormally reduced
(ASR 0.90) in one PSP patient showing tremor (patient
No. PSP 2 in Table 2). The ASR of PSP patients with
medication was .14 = (.29, and that of PSP without

Conditioned/unconditioned MEP

0.5 1
~&--PSP
——PD
. —e— Control

4 5 6 7 8
Interstimulus interval (ms)

FIG. 2. Mean time courses ol CBL in each group. The averaged
time courses of CBI showed decreased CBI in a PSP group (rectan-
gles) and normal CBI at ISIs of 5 to 8 ms i a PD group (triangles).
A control group is shown by diamonds. The abscissa denotes ISL
The ordinate shows the MEP size ratio. Error bars represent SE.
“indicates statistical significance between PSP and PD (P < 0.05
with Bonferroni's correction).

— 299 —



CEREBELLAR DYSFUNCTION IN PSP REVEALED BY TMS

PSP .
u
- | |
1 I ]
L}
0 T T y r d
0 1 2 3 4 5
H & Y stage
G PSP .
1.4 4
1.2 4
1
[+4
V) 0.8 4
<
0.6 4
0.4 4
0.2 4
0 T T T 1
G 20 40 60 80

UPDRS part HI

2417

B

PD
1
i
SN
A A
0 T T T T 1
G 1 2 3 4 5
H & Y stage
1D PD
1.4 4
1.2 1
] R?=0.006
[+
T0] L
0.4 1 a l
0.2
] T ¥ T ]
0 20 40 60 30
UPDRS part Il

FIG. 3. Corelations between the degree of CBI and disease severity. (A,B) The degree of CBI expressed as average size ratio (ASR) was plotted
against Hoehn and Yahr stage (H & Y stage) for each patient for each disease group. In the PD group {B), ASR is similar among the H & Y
stages of 2 1o 4. In contrast, PSP patients with higher H & Y stage showed more decreased CBI, that is, larger ASR (A). {C,D) For each patient.
ASR was plotied against UPDRS part I total score. In PSP patients (C), there is a significant correlation between ASR and UPDRS part 11l total
score (R? = 0.76, P < 0.001). PD patients (D) did not show any significant correlation (R* = 0.006. P = 0.81).

medication was 0.89 * 0.19. They did not significantly
differ from each other (P = 0.14).

DISCUSSION

The results showed that CBI was significantly
reduced in PSP patients, although it was normal in PD
patients. TMS over the cerebellum has been proposed
to activate Purkinje cells that inhibit the dentate nu-
cleus, which in turn engenders suppression of contra-
lateral M1°. Consequently, the present results suggest
that Purkinje cells or the dentato-thalamo—cortical
pathway is involved in PSP patients, although no clini-
cal cerebellar sign was observed.

Qur results are consistent with previous pathological
and radiological findings of PSP. Pathologically, the
cerebellar dentate nucleus and superior cerebellar
peduncle (SCP), which connects the cerebellar dentate
nucleus with the thalamus, are severely involved in
PSP.'*!'? A study using magnetic resonance imaging
also demonstrated atrophy of the SCP quantitatively."

It is also consistent with a recent report that 3 of 22
pathologically confirmed PSP patients showed cerebel-
lar ataxia as an initial and cardinal symptom.”

Our present results also agree with the following
issues. It has been proposed recently that PSP should
be divided into several subtypes'*: Richardson’s syn-
drome (RS) is the classical type, as reported in the
original article. PSP-parkinsonism (PSP-P) resembles
idiopathic PD in some respects such as asymmetric
symptoms at onset, presence of tremor, lack of supra-
nuclear gaze palsy at an early stage, and moderate
responsiveness to L-dopa. Dentate nucleus degeneration
was severer in RS than in PSP-P."> Because our
patients were all classified as RS based on the clinical
criteria, the significant reduction in CBI revealed in
this study is compatible with such pathological find-
ings. Whether the CBI of PSP-P is different from that
of RS warrants further investigation.

Can dysfunction of neural systems other than the
cerebellum or some other confounding factors account
for the present findings? Four possibilities might be

Movement Disorders, Vol 25, No. 14, 2010
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discussed. First, given that PSP patients sometimes
show severe corticospinal tract degeneration and fron-
tal lobe degeneration,' dystunction of the corticospinal
tract or M1 might be responsible for our findings.
However, the lack of pyramidal sign in the PSP
patients suggested that this possibility is less likely.
Second. some other changes in the motor cortex excit-
ability, which might be revealed by investigations ol
motor threshold, short-interval intracortical inhibition,
or intracortical facilitation, could possibly have an
influence on the present results. Third, dopaminergic
medications which may affect motor cortex excitabil-
ity'” might be responsible for the present findings.
However, the PSP patients showed reduced CBI irre-
spective of medication. Thus, this leads us to conjec-
ture that dopaminergic drugs had no significant influ-
ence on the degree of CBI in PSP. Considering the
tact that PD patients took more dopaminergic medica-
tions, however, we cannot exclude a possibility that
PD patients without medication or in their off state
may have abnormal CBI. Finally, there was a trend for
difference in age among groups. But, this factor is
again unlikely to explain the reduced CBl in PSP
patients because we did not find any significant corre-
lation between CBI and age. These issues raised above
should be addressed in more detail in future studies
because our sample size may be oo small to draw any
firm conclusions.

CBI was reduced in PSP. but none of our patients
showed cerebellar symptoms and signs. Why do PSP
patients rarely show limb ataxia even though cerebellar
structures are involved? A plausible explanation is that
other symptoms of PSP such as akinesia or rigidity
would mask clinical cerebellar signs. Indeed, cerebellar
dysfunction is sometimes masked by parkinsonian
symptoms. "'

In the present study, PSP patients tended to be clini-
cally severer than PD patients. Can disease severity
affect the results? First, in PD patients. we did not find
any relation between CBI and disease severity: patients
with different Hoehn and Yahr stages showed similar
ASR (Fig. 3B). and UPDRS part 1II did not correlate
with ASR (Fig. 3D). In contrast, more advanced PSP
patients showed larger ASR. that is, more abnormal
CBI (Fig. 3A.C). These results suggest that neural struc-
ture which is affected in PSP but not in PD can explain
the reduced CBI shown here. One of the candidates for
such neural structures may be the cerebellum. Further
studies, however. are needed to confirm the possible
relation between CBI and disease severity in PSP.

A shortcoming of our study is that the diagnosis was
based solely on clinical findings and was not confirmed

Movement Disorders. Vol 25, Noo 14, 2010

pathologically. The clinical criteria we used, however,
can diagnose PSP or PD with a high positive predictive
value.” Another issuc relates to the technical proce-
dure. Although we have monitored participant’s volun-
tary EMG activity using oscilloscope and discarded the
trials contaminated by voluntary EMG, we did not re-
cord the degree of EMG activity quantitatively. Then,
some small difference in the muscle state may explain
the present results. In future studies, this point may
need to be controlled more quantitatively.

In conclusion, although the PSP patients showed no
clinical cerebellar signs. the results described herein sug-
gest that Purkinje cells or the dentato—thalamo-cortical
pathway assessed by CBI is involved in PSP. Our results
are compatible with the pathological findings showing
severe dentate nucleus degeneration in PSP patients.
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Shirota Y, Hamada M, Terrao Y, Matsumoto H, Ohminami S,
Furubayashi T, Nakatani-Enomoto S, Ugawa Y, Hanajima R.
Influence of short-interval intracortical inhibition on short-interval
intracortical facilitation in human primary motor cortex. J Neuro-
physiol 104: 1382-1391, 2010. First published May 26, 2010,
doi:10.1152/jn.00164.2010. Using the paired-pulse paradigm, trans-
cranial magnetic stimulation (TMS) has revealed much about the
human primary motor cortex (M1). A preceding subthreshold condi-
tioning stimulus (CS) inhibits the excitability of the motor cortex,
which is named short-interval intracortical inhibition (SICI). In con-
trast, facilitation is observed when the first pulse (S1) is followed by
a second one at threshold (S2), named short-interval intracortical
facilitation (SICF). SICI and SICF have been considered to be
mediated by different neural circuits within M1, but more recent
studies reported relations between them. In this study, we performed
triple-pulse stimulation consisting of CS-S1-82 to further explore
putative interactions between these two effects. Three intensities of
CS (80—-120% of active motor threshold: AMT) and two intensities of
S2 (120 and 140% AMT) were combined. The SICF in the paired-
pulse paradigm exhibited clear facilitatory peaks at ISIs of 1.5 and 3
ms. The second peak at 3 ms was significantly suppressed by triple-
pulse stimulation using 120% AMT CS, although the first peak was
almost unaffected. Our present results obtained using triple-pulse
stimulation suggest that each peak of SICF is differently modulated by
different intensities of CS. The suppression of the second peak might
be ascribed to the findings in the paired-pulse paradigm that CS
mediates SICI by inhibiting later I waves such as 13 waves and that the
second peak of SICF is most probably related (o I3 waves. We
propose that CS might inhibit the second peak of SICF at the
interneurons responsible for 13 waves.

INTRODUCTION

Transcranial magnetic stimulation (TMS) is a useful tool to
stimulate the human brain noninvasively (Day et al. 1989). A
single electrical stimulation of the primary motor cortex (M1)
elicits periodic, multiple discharges or multiple descending
volleys in the corticospinal tract in animals (Patton and Amas-
sian 1954). Similarly, TMS over M1 elicits multiple descend-
ing volleys in humans (Day et al. 1989; Di Lazzaro et al.
1998a). The first response is called a D (direct) wave; the later
waves are designated as I (indirect) waves. The [ waves follow
the D wave periodically at intervals of ~1.5 ms and are named
[1-13 waves in the order of their latency. The D wave is
probably evoked by direct activation of the pyramidal tract
neurons or their axon, and I waves are considered to be
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produced by activation of interneurons within M1, which in
turn activate pyramidal tract neurons (Patton and Amassian
1954). A single pulse TMS evokes | waves preferentially (Day
et al. 1989; Nakamura et al. 1997).

Furthermore, the paired-pulse paradigm enables us to inves-
tigate inhibitory and facilitatory circuits within M1 (Kujirai et
al. 1993; Tokimura et al. 1996; Ziemann et al. 1998) probably
by modulating different components of | waves. Short-interval
intracortical inhibition (SICI) can be elicited by a conditioning
stimulus (CS) followed by a test stimulus (S1) (Di Lazzaro et
al. 1998b; Hanajima et al. 1998; Kujirai et al. 1993; Ziemann
et al. 1996b). At interstimulus intervals (ISIs) of 1-5 ms, the
motor evoked potential (MEP) produced by S1 is inhibited by
CS. Furthermore, at ISIs of 2—4 ms, SICI is evident for the 13
wave, and to a lesser extent, the 12 wave but not for the 11 wave
(Di Lazzaro et al. 1998b; Hanajima et al. 1998). The SICI at
these ISIs are considered to reflect synaptic inhibition within
M1 (Fisher et al. 2002; Hanajima et al. 2003; Roshan et al.
2003), which is mediated by gamma-aminobutyric acid
(GABA) (Kujirai et al. 1993; Ziemann et al. 1996a). Interest-
ingly, variation in the CS intensity results in the U-shaped SICI
curve with the most enhanced SICI occurring at CS intensity of
90-110% active motor threshold (AMT) (Orth et al. 2003;
Peurala et al. 2008; Ziemann et al. 1996b).

By contrast, short-interval intracortical facilitation (SICF) is
elicited by a test stimulus (S1) followed by a second pulse (S2)
set at around the resting motor threshold (RMT) (Tokimura et
al. 1996). Three peaks of facilitation were observed: ISIs of
[.1-1.5, 2.3-2.9, and 4.1-4.4 ms (Ziemann et al. 1998). Be-
cause the intervals between the successive peaks are ~1.5 ms,
SICF is considered to represent an interaction between I waves;
in fact, we previously showed that additional 12 waves were
elicited at the first peak of SICF (Hanajima et al. 2002).
Another study showed that the SI and S2 pulses interacted
along the later I wave pathway (Ilic et al. 2002). According to
the notion that the later I wave pathway consists of chains of
interneurons (Amassian et al. 1987). both authors propose that
the second pulse excites the interneurons that are hyperexcit-
able or subliminally depolarized in the presence of S1. Al-
though the information available is insufficient, the second or
the third peak of SICF might represent additional production of
later I waves; e.g., I3 or [4 waves are elicited additionally at the
second or the third peak of SICF. These two peaks become
greater when the intensity of the S2 increases (Chen and Garg
2000).

The SICI and SICF are commonly considered to be mediated
by different neural circuits (Chen and Garg 2000; Ortu et al.
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2008), but their effects converge on the pyramidal tract neu-
rons or some interneurons to elicit MEP. Thus we can specu-
late that there is some interaction between these effects. In fact,
some studies reported some relations between SICI and SICF
using the paired-pulse paradigm. Peurala et al. (2008) demon-
strated that measurement of SICI was contaminated by SICF
when CS of higher intensity was used. Similarly, Ortu and
colleagues (2008) showed that they can only assess net inhi-
bition or facilitation by the paired-pulse paradigm because
SICI and SICF were mixed when stimulus intensity became
higher.

More recently, to further elucidate the putative interaction
between SICI and SICF, Wagle-Shukla et al. (2009) used the
triple-pulse stimulation of CS, S1, and S2. They showed that
CS facilitated the peaks of SICF (Wagle-Shukla et al. 2009).
Although they studied the third peak of SICF intensively, only
one stimulus intensity was used for S2 and the other peaks
were tested using one stimulus intensity for CS and for S2.
Because the stimulus intensity and ISIs are crucial for the
paired-pulse paradigm, the same might hold true in the triple-
pulse paradigm. Therefore we studied a wider range of time
course of SICF using several stimulus intensities for CS and S2
to clarify stimulus intensity dependency of the effect of CS on
SICF under the triple-pulse paradigm. Our original hypothesis
is that each peak of SICF would be modulated differently by a
preceding CS and CS intensity would affect this modulation.

METHODS
Farticipants

Participants were 10 right-handed healthy volunteers [1 woman, 9
men; 27-46 yr old, 36.2 = 6.6 (SD) yr old], who gave their written
informed consent to participate in the experiments. No participant had
neurological, psychiatric, or other medical problem, or had any
contra-indication to TMS (Rossi et al. 2009; Wassermann 1998). The
protocol was approved by the Ethics Committee of the University of
Tokyo Hospital and was conducted in accordance with the ethical
standards of the Declaration of Helsinki.

Recordings

Participants were seated on a comfortable chair. MEPs were re-
corded from the right first dorsal interosseous muscle (FDI). Pairs of
Ag/AgCl surface cup electrodes (9 mm diam) were placed over the
muscle belly (active} and the metacarpophalangeal joint of the index
finger (reference). Responses were input to an amplifier (Biotop; GE
Marquette Medical Systems) through filters set at 100 Hz and 3 kHz;
they were then digitized and stored in a computer for later off-line
analyses (TMS Bistim Tester; Medical Try System).

™S

TMS was given over the hand area of the motor cortex using a
hand-held figure-eight coil (9 cm external diameter at each wing;
Magstim, Whitland, Dyfed, UK) placed tangentially over the scalp
with the handle pointing backward at ~45° laterally, which is per-
pendicular to the central sulcus. Monophasic TMS pulses were deliv-
ered using a magnetic stimulator (Magstim 200*, Magstim). The
optimal site for eliciting MEPs in the right FDI muscle (i.e., hot spot)
was determined before each experiment. The hot spot was defined as
the site at which the largest responses were elicited. This position was
marked using a blue pen on the scalp for repositioning the coil.
Placing the coil over this position, the RMT was determined as the
lowest intensity that evoked a response of =50 wV in the relaxed FDI

in =5 of 10 consecutive trials (Rossini et al. 1994). The AMT was
defined as the lowest intensity that evoked a small response (>>100
V) when the participant maintained a slight contraction of the right
FDI (5-10% of the maximum voluntary contraction) observing an
oscilloscope monitor, in >5 of 10 consecutive trials. The experiments
were performed separately on several days, and RMT and AMT were
determined every experimental day.

Paired- and triple-pulse stimulation procedures
Paired- or triple-pulse stimuli were delivered using two or three

magnetic stimulators (Magstim 200% Magstim) connected with a
specially designed combining module (Magstim). This device com-

[Paired pulse]
Experiment 1
S1 N o~ i
I E— ‘i, ~—— Unconditioned
¥
ESnSt .~ Conditioned

Lrl

IS1=-3ms

Experiment 2 S1 AL
-+--~—J%.‘ / “— Unconditioned

[
1 82 [
5.:;;5 } | | > Conditioned
IS =1.5-5.0 ms | I’
v
[Triple pulse]
Experiment 3 1
_1‘/\ /\\ ;/\,_ Unconditioned
€S, 81~ CSalone (=SIC)
N
Si=-3ms |
CSJE}B\EWAE /- CSand 2
{ Y (Triple pulse)

~'181 =1.5-5.0 ms

Experiment 4 . Unconditioned

CS alone (= SICI)

. CSand S2
(Triple pulse)

FiG. 1. Experimental procedures. The experimental design is exhibited
schematically. In the Ist 2 experiments using paired-pulse stimulation (i.e.,
experiments | and 2), conditioned responses are compared with unconditioned
ones. In experiment I, conditioning stimulus (CS) is followed by the Lst pulse
(S1) to examine short-interval intracortical inhibition (SICI). Experiment 2
used S1 followed by the 2nd pulse (S2) to study short-interval intracortical
facilitation (SICF). The other 2 experiments (experiments 3 and 4) constitute
triple-pulse stimulations of CS-51-S2 compared with paired-pulse stimulations
of CS-S1 (SICI paradigm). Interstimulus intervals (ISIs) between CS and S1
take negative values such as —3 and —5 ms because they precede S1.
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