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Nonhypotensive Dose of Telmisartan Attenuates Cognitive
Impairment Partially Due to Peroxisome
Proliferator-Activated Receptor-y Activation in Mice With
Chronic Cerebral Hypoperfusion

Kazuo Washida, MD; Masafumi Thara, MD; Keiko Nishio, MD; Youshi Fujita, MD;
Takakuni Maki, MD; Mahito Yamada, MD; Jun Takahashi, MD; Xiaofeng Wu, MS;
Takeshi Kihara, MD; Hidefumi Ito, MD; Hidekazu Tomimoto, MD; Ryosuke Takahashi, MD

Background and Purpose—The effect of telmisartan, an angiotensin Il Type 1 receptor blocker with peroxisome
proliferator-activated receptor-y-modulating activity, was investigated against spatial working memory disturbances in

mice subjected to chronic cerebral hypoperfusion.

Methods—Adult C57BL/6J male mice were subjected to bilateral common carotid artery stenosis using external
microcoils. Mice received a daily oral administration of low-dose telmisartan (1 mg/kg per day), high-dose telmisartan
(10 mg/kg per day), or vehicle with or without peroxisome proliferator-activated receptor-y antagonist GW9662
(1 mg/kg per day) for all treatments for 30 days after bilateral common carotid artery stenosis. Cerebral mRNA
expression of monocyte chemoattractant protein-1 and tumor necrosis factor-a was measured 30 days after bilateral
common carotid artery stenosis, and postmortem brains were analyzed for demyelinating change with Kliiver-Barrera
staining and immunostained for glial, oxidative stress, and vascular endothelial cell markers. Spatial working memory

was assessed by the Y-maze test.

Results—Mean systolic blood pressure and cerebral blood flow did not decrease with low-dose telmisartan but significantly
decreased with high-dose telmisartan. Low-dose telmisartan significantly attenuated, but high-dose telmisartan
provoked, spatial working memory impairment with glial activation, oligodendrocyte loss, and demyelinating change in
the white matter. Such positive effects of low-dose telmisartan were partially offset by cotreatment with GW9662.
Consistent with this, low-dose telmisartan reduced the degree of oxidative stress of vascular endothelial cells and the
mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis factor-a compared with vehicle.

Conclusions—Anti-inflammatory and antioxidative effects of telmisartan that were exerted in part by peroxisome
proliferator-activated receptor-y activation, but not its blood pressure-lowering effect, have protective roles against
cognitive impairment and white matter damage after chronic cerebral hypoperfusion. (Stroke. 2010;41:1798-1806.)

Key Words: chronic cerebral hypoperfusion m oligovascular niche m oxidative stress m PPAR-y m telmisartan

rugs that target the renin-angiotensin system seem (o

have particular potential for prevention of dementias,
including Alzheimer discase and vascular dementia. The
Perindopril Protection Against Recurrent Stroke Study
(PROGRESS) has suggested a protective effect of angioten-
sin-converting enzyme inhibitors on cognitive function in
patients with stroke.! Moreover, the Study on Cognition and
Prognosis in the Elderly (SCOPE) trial demonstrated a
positive effect of the angiotensin IT Type 1 receptor blocker
(ARB), candesartan, in a subgroup of elderly hypertensive
patients with mild cognitive impairment.? Notably, a prospec-
tive cohort analysis of 819491 participants suggested that

ARBs are associated with a significant reduction in the
incidence and progression of dementia, even compared with
angiotensin-converting enzyme inhibitors.?

No benefit was found in cognitive performance after
administration of the ARB, telmisartan, at the subacute stage
(within 15 days) after stroke in the Prevention Regimen for
Effectively Avoiding Second Strokes (PRoFESS) study.*
However, in vitro studies have suggested that telmisartan, the
strongest peroxisome proliferator-activated receptor-vy
(PPAR-v) activator among ARBs,* may protect oligodendro-
cytes and neurons through a reduction of brain inflammation
through PPAR-y activation and AT, receptor blockade.
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Effect of Telmisartan on a2 Vascular Dementia Model
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Figure 1. Experimental protocol. Tel

{Low) indicates low-dose telmisartan

(1 mg/kg per day); Tel (High), high-dose
telmisartan (10 mg/kg per day); GW,
GW9662 (1 mg/kg per day); RT-PCR,
reverse transcriptase—~polymerase chain
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Telmisartan has structural similarities to the PPAR-y ligand
pioglitazone and thus could act as a partial agonist of
PPAR-v.> PPAR-y, one of the nuclear receptors, plays a
critical role in a variety of biological processes, including
angiogenesis, inflammation, oxidative stress, ghicose metab-
olism, and adipogenesis.® Moreover, PPAR-y activation in
the brain has been suggested as a protective effect against
Alzheimer discase through its multifaceted effects, including
anti-inflammation and amyloid-f clearance.® Therefore, in
the PROFESS study, excessive lowering of blood pressure
(BP) in the period with cercbrovascular autoregulatory dys-
function may have affected the cerebral circulation and
neuronal function, although other factors could also be
involved.

The present study is therefore designed to explore the
multifaceted effects of telmisartan on cognitive disturbances
in a mouse model of vascular dementia by administering a
hypotensive or a nonhypotensive dose of telmisartan. This
model of chronic cerebral hypoperfusion, which is produced
by placing microcoils bilaterally on the commeon carotid
arteries, invariably exhibits glial activation, oxidative stress,
inflammation, demyelinating change, and axonal loss in the
white matter with resultant spatial working memory defi-
cits.”® This in vivo system will help determine whether
telmisartan affects vascular autoregulatory function and
whether and how telmisartan exents its protective effect
against cognitive impairment related to white matter damage.

Materials and Methods

Experimental Protocol

The experimental protocol is shown in Figure 1. Nine-week-old male
C57BL/6J mice (weighing 24 to 29 g; CLEA, Tokyo, Japan) were
fed with the pelleted chow (MF) containing low-dose telmisartan (1
mg/kg per day), high-dose telmisartan (10 mg/kg per day), or vehicle
with or without PPAR~y antagonist GW9662 (I mg/kg per day;
Sigma-Aldrich) for all treatments, beginning from 7 days before the
bilateral common carotid artery stenosis (BCAS) surgery until 30

days post-BCAS. Immediately after spatial working memory was
assessed by the Y-maze test, mice were euthanized for histological
and real-time reverse transcriptase—polymerase chain reaction exam-
ination 30 days post-BCAS,

Surgical Procedure of BCAS

Under anesthesia with halothane (2%), both common carotid arteries
were exposed through a midline cervical incision, and a microcoil
with an inner diameter of 0.18 mm was applied to the bilateral
common carotid arteries. See Supplemental Method I for details
(available at http://stroke.ahajournals.org).”®

Systolic BP and Cerebral Blood

Flow Measurements

Various doses of telmisartan (0 to 100 mg/kg per day) were
administered and the BP measured for determining nonhypotensive
and hypotensive doses of telmisartan, Then, in mice receiving the
predetermined nonhypotensive or hypotensive dose of telmisartan or
vehicle, systolic BP and cerebral blood flow (CBF) were monitored
at 7 days before BCAS (before starting telmisartan treatment),
immediately before BCAS, and 2 hours, 1 day, 3 days, 7 days, 14
days, and 30 days after BCAS. See Supplemental Method II for
details.

Histochemical Evaluation of White Matter
Lesions, Glial Activation, and Oxidative Stress

The mouse brains were analyzed for demyelinating change with
Klitver-Barrera staining and immunostained for glial fibrillary acidic
protein (a marker of astrocyte), ionized calcium binding adaptor
molecule-1 (Iba-1; microglia), glutathione S-transferase-m (GST-;
oligodendrocyte), 8-hydroxy-deoxyguanosine (8-OHdG; oxidative
stress), and CD31 (vascular endothelial cell). See Supplemental
Method III for details.”

Quantitative Real-Time Reverse
Transcriptase-Polymerase Chain Reaction

Cerebral mRNA levels of monocyte chemoattractant protein-1
(MCP-1) and tumor necrosis factor-c¢ (TNF-a) were assessed by
quantitative real-time reverse transcriptase—polymerase chain reac-
tion pre-BCAS and 30 days post-BCAS. Detailed procedures are
described in Supplemental Method IV,
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Y-Maze Test for Spatial Working
Memory Assessment

Spatial working memory was assessed by the Y-maze test. The detail
of the Y-maze test protocol is described in Supplemental Method V.

Blood Concentration of Telmisartan
See Supplemental Method VI for details.

Statistical Analysis

All values are expressed as means®=SEM in the text and figures.
One-way analysis of variance was used to evaluate significant
differences among groups except when otherwise stated. When a
statistically significant effect was found, a post hoc Tukey test or
Tukey-Kramer test was performed to detect the difference between
the groups. Temporal profiles of sysiolic BP and CBF were analyzed
by 2-way repeated-measures analysis of variance followed by a post
hoc Tukey test. Differences with P<0.05 were considered statisti-
cally significant in all statistical analyses used.

Results

Systolic BP and CBF After
Telmisartan Administration
Treatment with telmisartan, =1 mg/kg per day, did not result
in a significant reduction in BP, whereas treatment with
telmisartan =3 mg/kg per day resulted in a significant
reduction in BP (Figure 2A). CBF was not significantly
reduced =1 mg/kg per day but began to decrease at 3 mg/kg
per day (Figure 2B). A nonhypotensive dose of 1 mg/kg per
day or a hypotensive dose of 10 mg/keg per day was
subsequently administered. Temporal profiles of systolic BP
and CBF were not affected by administration of a nonhypo-
tensive dose of telmisartan or addition of GW9662 (Figure
2C-E). CBF gradually recovered after BCAS in mice with
vehicle or a nonhypotensive dose of telmisartan but not in
those with a hypotensive dose of telmisartan (Figure 2E).
The mortality rates were 10% at =1 mg/kg per day in the
telmisartan-treated group after BCAS surgery. The mortality
rate increased to 30% at 3 mg/kg per day in the telmisartan-
treated group and 50% at 10 mg/kg per day in the telmisartan-
treated group. Eighty percent at 50 or 100 mg/kg per day in
the telmisartan-treated group died within 3 days post-BCAS.

Effects of Telmisartan on Glial Activation,
Oligodendrocyte Restoration, and White Matter
Lesion in Mouse Brain With Chronic

Cerebral Hypoperfusion

Immunohistochemical analysis showed that in response to
ischemic insults, resting astrocytes and microglia appeared to
enter a reactive state due to apparent morphological changes
characterized by thick dendritic formation. Such morpholog-
ical changes, however, were attenuated by a nonhypotensive
dose of telmisartan (Figure 3; compare 3A and 3C and
compare 31 and 3K). Both the number of glial fibrillary acidic
protein-positive astrocytes and Iba-1-positive microglia were
significantly reduced in both the corpus callosum and anterior
commissure from a nonhypotensive dose of telmisartan-
treated BCAS mice compared with the vehicle-treated BCAS
mice (Figure 3G-H, O-P). Such effects of low-dose telmis-
artan were partially offset by cotreatment with GW9662
(Figure 3; compare 3C and 3D and compare 3K and 3L).

Next, a hypotensive dose of telmisartan was examined to
assess whether it ameliorated glial activation in BCAS-treated
mice. In contrast to a nonhypotensive dose, a hypotensive dose
of telmisartan caused substantial glial activation in the white
matter (Figure 3; compare 3C and 3E and compare 3K and
3M). Cotrecatment with GW9662 did not lead to additional
glial changes in the white matter of mice with vehicle
(Figure 3; compare 3A and 3B and compare 31 and 3J) or
high-dose telmisartan (Figure 3; compare 3E and 3F and
compare 3M and 3N).

Kliiver-Barrera staining showed that white maitex lesions
were significantly attenuated in the nonhypotensive group com-
pared with the vehicle group (Figure 4; compare 4A and 4C).
Although patterns in oligodendrocytes arrangement could not be
seen in the vehicle-treated mice (Figure 4A), alignment in a row
formation could be seen in the group given a nonhypotensive
dose of telmisartan (Figure 4C). Such effects of low-dose
telmisartan were also partially offset by GW9662 (Figure 4
compare 4C and 41) with significant differences (Figure 4G-H).
In contrast, high-dose telmisartan did not attenuate white matter
lesions (Figure 4; compare 4A and 4E). There were no signifi-
cant histological differences between vehicle and high-dose
telmisartan-treated mice with or without GW9662. In addition,
administration of GW9662 had no effects on morphology of the
white matter in sham-operated mice (data not shown), vehicle-
treated, BCAS-operated mice (Figure 4; compare 4A and 4B),
and high-dose telmisartan-treated, BCAS-operated mice (Figure
4; compare 4F and 4F). White matter lesion Grade 3 (disappear-
ance of myelinated fibers) was only partially (approximately
10% of the white matter) observed in mice with vehicle or
high-dose telmisartan,

In addition, the number of GST-m-positive oligodendro-
cytes of the vehicle-treated mice were significantly decreased
in the white matter compared with that of mice treated with a
nonhypotensive dose of telmisartan (Figure 41-K).

Telmisartan Attenuates mRNA Expression of
Inflammatory Cytokines in Mouse Brain With
Chronic Cerebral Hypoperfusion

Cerebral mRNA expression of inflammatory cytokines such
as MCP-1 and TNF-a was significantly increased after the
BCAS but significantly attenuated by a nonhypotensive dose
of telmisartan 30 days post-BCAS (Figure 41-M).

Vascular Endothelial Oxidative Stress in Mouse
Brain With Chronic Cerebral Hypoperfusion Was
Ameliorated by Telmisartan

To further explore the antioxidative effect of telmisartan,
8-OHdG-positive vascular endothelial cells of the brain were
assessed. The number of CD31-positive vascular endothelial
cells positive for 8-OHAG was markedly reduced by a nonhy-
potensive dose of telmisartan (Figure 5; compare SA and 5C).
The difference was statistically significant as assessed by
8-OHAG/CD31-positive area (%; the percentage of 8-OHdG-
positive area to CD31-positive area; Figure 5J). Such antioxida-
tive effects of low-dose telmisartan were partially offset by
cotreatment with GW9662 (Figure 5; compare 5C and 5D). By
contrast, high-dose telmisartan showed an attenuated antioxida-
tive effect in comparison to low-dose telmisartan (Figure 5;

Downloaded from stroke.ahajournals.org at Kyoto University on January 11, 2011



Washida et al Effect of Telmisartan on a Vascular Dementia Model 1801

d o e T8 T 14d 300 TN -0d2he 4 Ad Td M4doa0d
Figure 2. Systolic BP (A) and CBF (B) in mice treated with various doses of telmisartan (n=10 each). Representative CBF images of the
8 groups of mice as assessed by laser speckle flowmetry 7 days before (Day —7) and immediately before (Day 0) BCAS and 30 days
post-BCAS (Day 30; C). Temporal profiles of systolic BP (D) and CBF (E) of the 6 groups of mice (n=5 each). CBF was expressed as a
percentage of baseline flow. F5 24=84.100 (D), F52,=37.441 (E), *P<0.01 versus vehicle.
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GFAP iba-1

Figure 3. Representative images of immu-
nchistochemistry for glial fibrillary acidic
protein (GFAP; A-F) and iba-1 {(I-N) in the
paramedian parts of the corpus callosum of
the BCAS-operated mice treated with vehi-
cle (A, ), vehicle+GW (B, J), Tel (Low; C, K),
Tel (Low)+GW (D, L), Tel (High; £, M), and
Tel (High)+GW (F, N) 30 days post-BCAS
{n=7 each). Insets indicate enlarged images
of astrocytes (A-F) and microglia (I-N).
Scale bar, 100 um. Histogram showing the
density of GFAP-positive astrocytes (G-H)
and lba-1-positive microglia (O-P) in the
corpus callosum (G, O) and anterior com-
missure (H, P) of the 6 groups of mice. Tel
(Low) indicates low-dose telmisartan

(1 mg/kg per day); Tel (High), high-dose
telmisartan (10 mg/kg per day); GW,
GW8662 (1 mg/kg per day).
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Figure 4. Representative images of the Kliver-
Barrera staining in the paramedian parts of the cor-
pus callosum of the BCAS-operated mice treated
with vehicle (A), vehicle+GW (B), Tel (Low; C), Tel
(Low)+GW (D), Tel (High; E), and Tel (High)+GW (F)
30 days post-BCAS (n=7 each). Insets indicate
enlarged images of oligodendrocytes. Histogram
showing the grading of the white matter lesions of
the 6 groups of mice (G-H; see Supplemental
Method Ill for details). Representative images of
immunohistochemistry for GST-m-positive oligoden-
drocytes in the medial parts of the corpus callosum
of the BCAS-operated mice treated with vehicle (})
and Tel (Low; J) 30 days post-BCAS (n==7 each).
Scale bar, 100 um. Histogram showing the density
of GST-m-positive ofigodendrocytes (K) of the 2
groups of mice. Cerebral mRNA expressions of
MCP-1 (L) and TNF-a (M) pre-BCAS and 30 days
post-BCAS in the sham-operated or BCAS-
operated mice treated with vehicle or Tel (Low; n=5
each). Tel (Low) indicates low-dose telmisartan

(1 mg/kg per day); Tel (High), high-dose telmisartan
(10 mg/kg per day); GW, GWI662 (1 mg/kg per day).
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compare SA, 5C, and 5E). Cotreatment with GW9662 did not
lead to additional histological changes in mice with vehicle
(Figure 5; compare SA and 5B) or high-dose telmisartan (Figure
5; compare SE and 5F).

Spatial Working Memory in Mice With Chronic
Cerebral Hypoperfusion Was Restored by a
Nonhypetensive Dose of Telmisartan

Finally, we analyzed spatial working memory of BCAS mice
by the Y-maze test as the final functional output. The percentage
of alternation behaviors significantly decreased in vehicle-
treated BCAS mice compared with the sham-operated mice but
significantly increased in a nonhypotensive dose of telmisartan-

Figure 5. Representative images of the immunoflu-
orescent staining for 8-OHdG (red) in the medial
parts of the corpus callosum of the BCAS-
operated mice treated with vehicle (A),
vehicle+GW (B), Tel (Low; C), Tel (Low)+GW (D),
Tel (High; E), and Tel (High)+GW (F) 30 days post-
BCAS (n=7 each). Capillaries double-positive for
CD31 (G, green) and 8-OHdAG (H, red) and merged
image (1) in vehicle-treated mice. Scale bars,

100 pm (A-F), 50 um (G~I). Histogram showing the
percentage of 8-OHdG-positive area to CD31-
positive area of the 6 groups of mice (J). Tel (Low)
indicates low-dose telmisartan (1 mg/kg per day);
Tel (High), high-dose telmisartan (10 mg/kg per
day); GW, GW9662 (1 mg/kg per day).

treated mice, Such effects of low-dose telmisartan were partially
offset by cotreatment with GW9662. Hypotensive doses of
telmisartan-treated mice manifested in further impaired working
memary (Figure 6A). There were no significant differences in
the number of entries to each arm, which was considered to
reflect locomotor activity, among the 5 groups (Figure 6B).
These results suggest that a nonhypotensive dose of telmisartan,
but not a hypotensive dose, improved spatial working memory
of BCAS-operated mice.

Blood Concentration of Telmisartan
Plasma concentration after 1 mg/kg per day administration of
telmisartan for 7 days was 142.8614.85 ng/ml. (n=4, values
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