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Signal transduction through activin receptors. Activin, myostatin and GDF| | signal through type Il and type | serine/
threonine kinase receptors. Type IIR is the principal ligand binding receptors, and ligand/typellR complexes recruit and associ-
ate with type IR. Type IR is phosphorylated and activated by type IIR kinase. Smad2 and 3, activin/TGF-B specific Smads, are
phosphorylated by activated type IR. In the nucleus, Smad2/3/4 complexes regulate gene expression with additional transcrip-
tional cofactors. Smad-independent pathway such as MAPK is also activated downstream of activin receptors. Inhibin acts
antagonistic to activin by forming high affinity complexes with ActRIl and betaglycan. Follistatin, myostatin propeptide and
receptor ectodomain inhibit the activities of activin and related factors in the extracellular space to prevent ligand/receptor
interaction. Chemical type IR kinase inhibitors act in the cell to disrupt receptor/intracellular signaling.

known as synaptic scaffolding protein, S-SCAM [18]. A
recent study showed that activin induces long-lasting
NMDA receptor activation by ARIP1 in hippocampal neu-
rons [19]. ARIP2 is a small protein that has one PDZ
domain [20]. Several ARIP2 splicing isoforms exist, and,
depending on the isoform, ARIP2 either augments or
inhibits activin signaling [21]. Gene trapping analysis
identified the RasGAP-binding protein Dok-1, which acts
downstream of receptor tyrosine kinases as an essential
adapter molecule for activin-induced apoptotic signaling
in B cells. Dok-1 interacts simultaneously with activin
receptors and Smads. Stimulation by activin induces asso-
ciation of Dok-1 and Smad3 [22].

Posttranslational modification of the activin/TGF-f recep-
tor is an additional important mechanism for the regula-
tion of receptor activation. The ubiquitin-proteasome
pathway tightly regulates TGF-B family signaling. HECT-
type E3 ubiquitin ligases, Smad ubiquitin regulatory fac-
tor 1 (Smurfl) and Smurf2 have been implicated in Smad

degradation. Smurfl and Smurf2 bind to TGF-B family
receptors via the inhibitory Smads, Smad6 and Smad7, to
induce their ubiquitin-dependent degradation [23]. In
addition, TGF-B type I receptor is sumoylated in response
to ligand stimulation. Posttranslational receptor sumoyla-
tion, the covalent attachment of a small ubiquitin-like
modifier (SUMO) is required for the kinase activities of
both the TGF-B type I and type Il receptors, and enhances
receptor function by facilitating the recruitment and phos-
phorylation of Smad3 [24].

Regulation of activin signaling through Smads

Smad signaling in the cytoplasm and the nucleus is under
tight control. Smads consist of an NH,-terminal MH1 and
a COOH-terminal MH2 domain. The 145 loop of type |
receptors directly interacts with the MH2 domain of recep-
tor-regulated Smad (R-Smad), and determines Smad spe-
cificity [2]. Type I receptors phosphorylate Smads at their
COOH-terminal two serine residues. Smad2 and 3, R-
Smads for activin and TGF-B undergo constant shuttling
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between the cytoplasm and nucleus, and the activation of
R-Smads triggers nuclear accumulation [2]. PPM1A may
act as a Smad COOH-terminal phosphatase [25]. Linker
regions between MH1 and MH2 domains of Smads are
phosphorylated by mitogen-activated protein kinase
(MAPK). This phosphorylation enhances the binding of
ubiquitin ligase to Smad, resulting in polyubiquitination
and degradation [26].

Smads have intrinsic DNA-binding activity [2]. However,
to fully activate target genes, Smad physically associates
with a diverse set of DNA-binding cofactors such as CBP/
p300, TGIF, c-Ski and Evi-1 [11]. This characteristic deter-
mines the cell type-specific transcription and complexity
of activin/TGF-P signaling. A number of transcription fac-
tors including forkhead proteins, bHLH family, AP1 fam-
ily, homeodomain protein family and nuclear receptors
act as Smad-interacting transcription factors [2]. Once
activated, Smad complexes recruit additional transcrip-
tional activators or repressors to regulate target genes (Fig-
ure 1).

Negative feedback regulation by the inhibitory Smads,
Smad6 and Smad7 is an important shutoff system for sig-
naling by the TGF-B family including activins [2,11].

Smad-independent activin signaling and receptor crosstalk
In addition to the canonical Smad pathway, activin sign-
aling through activin receptors regulates other intracellu-
lar pathways. p38 MAPK, ERK1/2 and JNK are activated by
activin in a cell type-specific manner [27,28]. For exam-
ple, activin synergizes with basic fibroblast growth factor
to activate tyrosine hydroxylase expression via the ERK1/
2 pathway [27]. Activin negatively regulates the pituitary
transcription factor Pit-1 through p38 MAPK-dependent
and Smad-independent pathways [28]. Independently of
Smad4, ActRIB/Smad2 acts as a co-activator of the canon-
ical Wnt signaling pathway. Upon activation, Smad2
physically interacts with Tcf4, B-catenin and the co-activa-
tor p300 to enhance transcriptional activity of B-catenin/
Tcf4 through the histone acetyltransferase activity of p300
[29]. Transactivation by Smad2 is independent of the
Smad binding element. Furthermore, recent characteriza-
tion revealed that TGF-B stimulates phosphorylation of
BMP-specific Smad1 independently of BMP receptors [30-
32]. Smad-independent activin signaling and receptor
crosstalk increase the complexity of activin/TGF-f signal-
ing.

Ligand binding proteins

Extracellular activin-binding proteins control activin sign-
aling [1]. Follistatin (FST) is a prototype of activin-bind-
ing proteins. FST is a cysteine-rich single chain
glycoprotein that does not possess sequence similarity to
the TGF-B family [33]. Structural analysis of FST with
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activin showed that two FST molecules encircle activin,
and neutralize the ligand by burying one-third of its resi-
dues and both type Il and type I receptor binding sites [34-
36] (Figure 1). FST not only binds and inhibits activins,
but also binds and neutralizes the actions of myostatin
and GDF11 [1,37]. Mice with a disrupted follistatin gene
have musculoskeletal and cutaneous abnormalities,
reflecting the abnormal signaling of activins, myostatin
and GDF11 [38]. The follistatin-related gene, FLRG, is a
follistatin domain-containing protein structurally similar
to FST [39,40]. Whereas FST has three follistatin domains,
FLRG has only two. Like FST, FLRG binds and neutralizes
activins, myostatin and GDF11 [37,39]. Proteomics anal-
yses indicate that FLRG associates with myostatin in sera
[37]. Although functionally redundant, expression and
transcriptional regulation of FST and FLRG are different
[39-41]. FLRG gene deleted mice show dysregulated glu-
cose metabolism and fat homeostasis [42](see below).

Biological activities and roles of activin signaling
as a target of therapeutic interventions

After the purification and identification of activins as reg-
ulators of follicle-stimulating hormone secretion from the
anterior pituitary, important roles of activins in the
hypothalamus-pituitary-gonadal axis have been described
[1]. However, activin activity is not limited to reproduc-
tive tissues. Activins and related factors have pleiotropic
actions in extragonadal tissues. In this section, we focus
on selective actions of activins and related growth factors
from a therapeutic point of view.

Activins and their regulators in metabolic disorders
Activin signaling is required for proper development of
the endocrine and exocrine pancreas, and dysregulation
of the activin signaling pathway contributes to the genesis
of metabolic diseases. In human embryonic stem cells,
activin B mediates the induction of homeoprotein Pdx1, a
key regulator of endocrine pancreas development [43].
ActRIIA mutant mice show hypoplasia of the pancreas
and develop diabetes [44]. ActRIIB and Smad2 activity use
the same signaling pathway to regulate pancreas islet for-
mation [45]. ALK7, a type I receptor for activin B, activin
AB and nodal, is expressed abundantly in pancreatic
cells and adipose tissues, and regulates insulin biosynthe-
sis and secretion [46-48]. Recent characterization revealed
that ALK7 transmits signals of GDF3, another TGF- fam-
ily member [49,50]. GDF3, ALK7 and co-receptor Cripto
are all expressed in adipose tissues, and Gdf3(-/-) null
mice and ALK7(-/-) null mice showed reduced fat accu-
mulation and resistance to diet-induced obesity [49,50].

The expression of activin receptors, myostatin and their
binding protein FLRG can be modulated in adipose tissue
and skeletal muscle by chronic obesity. In subcutaneous
and visceral fats, myostatin and ActRIIB mRNA levels in
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ob/ob mice are 50- to 100-fold higher than that in wild-
type mice [51]. By contrast, FLRG mRNA levels are
increased in subcutaneous fat, but decreased in visceral fat
of ob/ob mice compared to wild-type mice [51]. In
humans, myostatin was shown to increase in skeletal

muscle and plasma of obese and insulin resistant women
[52].

FLRG gene disrupted mice showed an increased pancre-
atic islet number and size, B cell hyperplasia, decreased
visceral fat mass, improved glucose tolerance, and
enhanced insulin sensitivity. This phenotype is caused
through increased signaling by activin or myostatin in a
tissue-specific manner [42].

Myostatin and activin in muscular diseases

Myostatin, the skeletal muscle specific member of the
TGF-B family, restricts muscle growth and determines
skeletal muscle mass [5]. Myostatin signals through
activin type | receptors (Alk4 and 5) and type Il receptors
[5]. Mice with a targeted deletion of the myostatin gene
have a 25-30% increased muscle mass resulting from
hypertrophy and hyperplasia [53]. Double muscling phe-
notypes upon inactivation of the myostatin gene have
been observed in cattle, sheep, race dogs, fish and even in
humans [54-59]. Myostatin is regarded as a good drug tar-
get since therapeutics that stimulate skeletal muscle
growth may be useful for muscle-wasting conditions such
as muscular dystrophy, sarcopenia and cachexia. Whereas
activins and TGF-B function in almost every cell type,
myostatin specifically affects skeletal muscle growth.
Thus, targeting myostatin is a rational therapeutic strategy
to increase skeletal muscle mass. Several myostatin inhib-
itors such as monoclonal antibodies and myostatin
propeptide, as well as FST and its derivatives are promis-
ing candidates for the treatrnent of muscle wasting disor-
ders [60-67] (Table S2; Additional file 2). Skeletal muscle
fibrosis is also ameliorated by myostatin inhibition [68].

The effectiveness of myostatin inhibition has been studied

using various muscular dystrophy animal models. Mono-
clonal antibody-mediated myostatin blockade results in
an increase of muscle mass and absolute muscle strength
in mdx mice, an animal model of Duchenne-type muscu-
lar dystrophy [60]. Musdles in mdx mice with myostatin
inhibition showed less fibrosis, reduced fatty remodeling
and an improved regeneration process [61]. Myostatin cir-
culates in the serum in a latent form complexed with mul-
tiple binding proteins. NH,-terminal myostatin
propeptide is a major myostatin-binding protein and
non-covalently associates with myostatin [5,37]. Myosta-
tin propeptide, stabilized by fusion to 1gG-Fc, has been
shown to be effective in ameliorating dystrophic patho-
physiology [62]. Muscle atrophy caused in mutant caveo-
lin-3 transgenic mice, a model of limb-girdle muscular
dystrophy (LGMD) 1C, was reduced dramatically by
crossing these mice with myostatin propeptide transgenic
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mice [63]. In calpain 3-deficient LGMD2A model mice,
both muscle mass and muscle force were recovered upon
gene therapy using myostatin propeptide [64]. Myostatin
blockage at an early stage in a model of 3-sarcoglycan-defi-
cient muscular dystrophy was effective in reducing muscle
loss and fibrosis, and in improving regeneration [65]. It is
of note that the elimination of myostatin did not suppress
the phenotype of a laminin-o2-deficient mice, but
increased postnatal lethality due to fat loss [69]. Soluble
forms of an extracellular domain of ActRIIB fused with
1gG-Fc may block myostatin effectively in vivo, and have
strong muscle mass increasing activities {70]. In addition
to myostatin, activin and GDF11 are recognized by solu-
ble forms of ActRIIB |71]. FST and FST-derived myostatin
inhibitors are also effective for increasing muscle mass
and ameliorating muscular dystrophy [66,67]. It is worth
noting that neurogenic muscle atrophy caused by amyo-
trophic lateral sclerosis and spinal muscular atrophy may
be ameliorated by myostatin inhibition either by myosta-
tin antibody or follistatin [72,73].

The expression of activin, myostatin, TGF-B, activin recep-
tors, and FST in cardiac muscle is also deregulated in path-
ological conditions such as cardiac failure and
cardiomyopathy [74,75]. However, in contrast to the
observations in skeletal muscle, myostatin does not coun-
teract cardiac hypertrophy or fibrosis |75].

Roles of activin and BMP signaling In osteoporosis and
bone formation

Although both BMP and activin regulate bone formation,
their modes of action are distinct. BMPs are potent induc-
ers of osteoblast differentiation. Activins are expressed
abundantly in bone tissues, and regulate bone formation
by controlling both osteoblast and osteoclast functions.
Different from the activity of BMP, activins enhance the
receptor activator of NF-xB ligand (RANKL)-mediated
osteoclast differentiation, and act as commitment factors
for osteoclastogenesis |76]. Both antiresorptive and ana-
bolic drugs are useful for the treatment of osteoporosis
|77]. Bisphosphonates, selective estrogen-receptor modu-
lators and estrogen are currently available antiresorptive
drugs, whereas recombinant human parathyroid hor-
mone is an anabolic drug. Intriguingly, the extracellular
domain of ActRIIA stabilized by fusion to IgG-Fc increases
bone mass and strength by activin inhibition, and is a
novel promising agent for osteoporosis in early human
trials [77,78] (Table S2; Additional file 2).

As mentioned above, the extracellular domain of ActRIIB
fused to IgG-Fc increases muscle mass. Thus, two activin
type I receptor decoys have different clinical uses. Con-
sistent with the activity of activin in bone formation,
inhibin A, an activin antagonist, works as an endocrine
stimulator of bone mass in vivo by increasing osteoblast-
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ogenesis [79]. Inhibin antagonizes activin by forming a
complex of ActRlIls and betaglycan |2,4](Figure 1).

Fibrodysplasia ossificans progressive (FOP), a genetic dis-
order of progressive heterotypic ossification, is caused by
missense mutations in ACVR1A (ALK2), a BMP type 1|
receptor, which increase BMP signaling [80]. A recurrent
activating mutation in the juxtamembrane GS domain of
ACVR1A was reported in sporadic and familial cases of
classic FOP [80]. Thus, the activin and BMP pathway are
therapeutic targets for the treatment of low bone mass.

Roles of activins and related growth factors in cancer
Inhibition of cancer cell growth is one of the activities of
activins in the early phase of cancer development. Facili-
tating activin signaling either by Cripto silencing or FLRG
silendng inhibits human breast cancer cell growth
|81,82](Table $2; Additional file 2). Mutations in several
genes involved in the activin signaling pathway have been
characterized in cancers. Two 8-bp polyadenine tracts of
the ACVR2 gene were targets for frameshift mutations in
gastrointestinal cancers with microsatellite instability
[83]. Somatic ACVR1B gene mutations have been found
in pancreatic carcinoma [84] and Smad2 and Smad4 are
mutated in colorectal and pancreatic carcinomas [85].
Thus, dysregulation of activin receptors and activin/TGF-
Smads is directly involved in carcinogenesis.

Interestingly, inhibin-deficient mice develop gonadal sex
cord-stromal tumors [86]. They develop adrenal cortical
tumors when gonadectomized. Therefore, inhibins act as
secreted turmor suppressors in gonads and adrenal glands.
Supraphysiological levels of activins in inhibin-deficient
mice are responsible for the development of tumors.
Overproduction of activins was observed in a cachexia-
like wasting syndrome that includes hepatocellular necro-
sis and metastasis [86-88]. Thus, the actions of activin in
tumor development are highly context-dependent.

Myofibroblasts present in tumor stroma facilitate tumor
development and invasion [2]. TGF-P and activin stimu-
late the differentiation of myofibroblasts from mesenchy-
mal progenitors, suggesting the facilitation of invasive
properties of cancers.

Regarding metastasis, inhibition of activin and/or TGF-
suppresses experimental metastasis to multiple organs
including lung, liver and bone [89,90](Table S2; Addi-
tional file 2). Chemical inhibitors for type I receptor
kinases for activin/TGF-B (ALK4, 5 and 7) are promising
cancer therapies [89,91]. They may offer an option for
preventing tumor angiogenesis, the motility of cancer
cells, fibrosis and metastasis [92].

TGF- and TGF-B type I receptor are upregulated at the
tumor-bone interface and modulate RANKL-dependent
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osteolysis, and TGF-f inhibition reduces mammary
tumor-induced osteclysis [93]. Since activin works as a
cofactor for RANKL, similar to TGF-B, activin may modu-
late osteoclastogenesis in the tumor-bone interaction.

TGF-B produced by cancer cells has immunosuppressive
effects, resulting in the evasion of cancers from destruc-
tion by the immune system. A novel TGF-B kinase inhibi-
tor reverses this effect, inhibits cell growth and enhances
the immunogenicity of cancer cells [94]. Whether activins
also act as regulators in immunosuppression in cancers
has not yet been determined.

Activities of activins in the brain

Activins and activin receptors are expressed highly in the
central nervous system and have crucial roles in neuronal
development [95,96]. However, compared with dassical
neurotrophic factors, our knowledge about the functions
of activins in the brain is limited. Importantly, the expres-
sion of inhibin PA mRNA, which encodes activin A, is
induced by excitatory synaptic input [97,98]. It is induced
in granule cell neurons of the hippocampus by high-fre-
quency synaptic stimuli that produce long term potentia-
tion (LTP). This induction is NMDA receptor-dependent
[97,98]. Activin increases the number of synaptic contacts
by medulating actin dynamics in the spine of the neurons,
which may be responsible for the establishment of LTP
|99]. This modulation is mediated by the classical MAP
kinase cascades via Erk1/2 [99]. Similarly, inhibin BA
mRNA is transiently induced in dentate gyrus neurons
through NMDA receptor activation after unilateral
mechanical brain injury by saline injection [100]. Inhibin
BA mRNA is also induced during amygdala kindling, and
accurately marks excitatory neurons with synaptic altera-
tions from seizures [101].

Accumulating evidence indicates that activin also has neu-
rotrophic and neuroprotective effects on selective neurons
[102]. Treatment with recombinant activin following
ischemic injury rescues neurons from damage [103].
Overexcited neurons are protected by the neurotrophic
effect of basic fibroblast growth factor, which depends on
the induction of activin A [104] (Table S2; Additional file
2). Itis also of note that activin and fibroblast growth fac-
tor act in synergy in dopaminergic neurons [27].

Neuronal-specific transgenic approaches using the olCaM-
KII promoter revealed further functions of activins
[105,106]. Hippocampal neurons in aCaMKII promoter-
driven dominant negative ActRIB transgenic mice were
more vulnerable to kainate injection [105]. These mice
also showed a reduced NMDA current with an impaired
LTP. Reciprocally, activin potentiates NMDA receptor-
mediated signaling by forming complexes with activin
receptors, NMDA receptors and Fyn on postsynaptic scaf-
folding proteins [19]. Interestingly, activins tune pre- and
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postsynaptic GABAergic transmission affecting anxiety
[107]. «CaMKII promoter-driven activin and FST trans-
genic mice are affected in their anxiety-related behavior by
modulation of their postnatal neurogenesis in the sub-
granular zone of the dentate gyrus in the hippocampus
[106]. Infusion of activin into the dentate gyrus of the hip-
pocampus produces an antidepressant-like effect in the
forced swim test. Conversely, antidepressants such as
fluoxetine and desipramine increase Smad2 phosphoryla-
tion [108}. These data suggest that the activin signaling
pathway may be a novel target for neuroprotection and
psychopharmacological therapy.

Role of activins in embryonic stem cells

Activin A is a potent mesoderm inducer in Xenopus
embryos, and numerous tissues can be differentiated from
Xenopus animal cap cells and embryonic ster cells [109].
A sophisticated strategy to differentiate mouse embryonic
stemn cells into insulin-producing cells or other cell types
by activin has been developed [110,111]. Intriguingly,
activin signaling is indispensable to maintain self-renewal
and the stemness of human embryonic stem cells [111].
Activin signaling sustains the expression of pluripotency-
associated genes such as nanog and inhibits BMP signal-
ing, which promotes self-renewal in human embryonic
stem cells [112].

Conclusion

Activin signaling as a target for therapeutic intervention
Although activins were first discovered as powerful factors
to stimulate follicle-stimulating hormone production
from the anterior pituitary, activins act on almost all cell
types and have diverse roles. Furthermore, activin recep-
tors are shared by other TGF-f family members such as
myostatin, GDF11, nodal and a subset of BMPs. The TGF-
B family members are key regulators of myogenesis, neu-
rogenesis and organogenesis, left-right asymmetry and
bone formation. Actions of activins through activin recep-
tors and Smads are pleiotropic and context-dependent,
and alterations in signaling through activin receptors are
the cause of a variety of disorders. In this review, we
focused on recently characterized aspects of activin signal-
ing in relationship to metabolic diseases, musculoskeletal
diseases, cancers and neuroprotection.

Various strategies have been designed for the inhibition of
activin signaling through receptors. Soluble forms of the
extracellular domains of activin receptors, FST and related
ligand binding proteins, chemical kinase inhibitors for
activin receptors, and siRNAs either for ligand or signaling
molecules interfere with activin signaling. Intriguingly,
histone deacetylase inhibitors or nitric oxide have been
demonstrated to inhibit the progression of muscular dys-
trophy in a mouse mode! by transcriptional activation of
FST [113,114].

— 81
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In muscle wasting disorders, the inhibition of myostatin
is a possible therapeutic strategy. Soluble ActRIIB-Fc, FST
and its derivatives, myostatin propeptide, monodonal
myostatin antibodies and myostatin siRNA are myostatin
inhibitors that have been shown to be beneficial for pre-
venting muscle loss. Cachexia from cancers and neuro-
genic muscle atrophy are also targets for myostatin
inhibition [72,73,115](Table S2; Additional file 2).

In cancers, activins have multiple roles such as regulation
of cancer cell growth, promotion of organ-specific cancer
progression and metastasis. Soluble ActRIIA-Fc is a novel
promising drug for osteoporosis, cancer-related bone loss
and cachexia [77,78,88]. Activin also has neuroprotective
functions, and the augmentation of activins may have
favorable protective effects on neurons (Table S$2; Addi-
tional file 2).

Although targeting activin and related factors may
become part of future therapies, given the complexity of
their action, some side-effects of such therapies are cer-
tainly possible. The dysregulation of activin may affect
functions of gonads and adipose tissues [4,42]. It is also
possible that activation or targeting activin/TGF-B may in
some contexts cause uncontrollable tumor growth or det-
rimental cellular apoptosis [22,86].

Once promising proteins or chemicals targeting activin
signaling are discovered, methods of the drug delivery sys-
tem are important issues for effective treatment. The stabi-
lization of peptides by fusion with 1gG-Fc or other stable
proteins is a strategy for targeting activin signaling. Deliv-
ery of genes by adeno-associated viral vectors is also
potentially promising [64,116]. Finally, nanoparticles
such as liposomes and atellocollagen are efficient delivery
vehicles for siRNA and proteins [117], and may be useful
in delivering agents that target activin signaling.

In summary, therapeutic interventions targeted to signal-
ing through activin receptors may provide novel strategies
for the development of effective treatments against a vari-
ety of diseases.
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Table 1. Ligand/receptor combination for activin and related factors

Ligand Type Il Receptor Type I Receptor Coreceptor Smad
Activin A ActRIIA, IIB ALK4, (7) -]
Activin B ActRIIA, IIB ALK7, (4) N Smﬁl.d 2,3
Activin AB ActRIIA, IIB ALK4,7 - with
Inhibin A, B ActRIIA, IIB - Betaglycan Smad4
Myostatin  ActRIIB, (TIA)  ALKS5, (4) . Sm?{dh2,3
GDF11 ActRIIB, IIA AlLK4,5 - wit
—  Smad4
. Smad 2,3
Nodal ActRIIB, ITA ALK4,7 Cripto with
Smad4

Note: weak interaction of ActRIIA and ALK4 with myostatin.

weak interaction of ALK7 with activin A.
weak interaction of ALK4 with activin B.



Table 2. Activin signaling as a target for therapeutic interventions

Disease Therapeutic strategy Methods Ref
Monoclonal MSTN Ab [60, 65, 72]
MSTN propeptide [62, 63, 64]

Muscular dystrophy Increase of muscle mass Soluble ActRIIB-Fc [63, 70]

Muscle atrophy

by myostatin inhibition

Follistatin and its derivatives
HDAC inh

(66, 67, 73, 116]
[113]

MSTN siRNA [117]
Osteoporosis Increase of bone mass Soluble ActRIIA-Fc [78]
by activin inhibition Inhibin A (79]
Cancer
tumor growth Suppression by Cripto silencing (81]
activin activation FLRG silencing [82]
cachexia Activin inhibition Soluble ActRITIA-Fc [88]
Myostatin inhibition Follistatin, MSTN propeptide  [115]
metastasis Activin inhibition Follistatin [90]
angiogenesis Suppression by ALK4, 5, 7 kinase inhibitors ~ [89, 91, 92, 94]
and motility TGF-@/activin inhibition

Neuron damage
Depression

Recombinant Activin A
application

Activin A

[102, 103, 104, 108]

Abbreviations: MSTN, myostatin; HDAC inh, histone deacetylase inhibitor
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Fig. 1 The number of nuclei/field with fast myosin heavy
chain expressing cells in cultures
Effect of overexpression of Wnt4 on fiber-type
differentiation in cultured C2C12 myoblasts.
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Fig. 2 Immunofluorescent staining against fast myosin heavy
chain
Fast myofiber myosin heavy chain is shown in red. Cell
nuclei were counterstained with DAPI
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Effect of Wnt4 on Myogenic Differentiation and the Potential
Usefulness for Wound Healing
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Myostatin (MSTN) is transiently expressed in the developing skeletal muscle, and negatively
regulates muscle growth. A loss of function mutation of the MSTN gene is known to result in
excess muscle formation with elevated expression of Wnt4. To examine direct effect of Wnt4 on
skeletal muscle formation, Wnt4 cDNA was misexpressed in the presumptive limb field of chick
embryos using retrovirus vector. Significant increase in muscle mass was observed in the Wnt4-
treated limb compared to the control. The area for fast-type myosin heavy chain-expressing cells
showed a significant increase, suggesting the possible involvement of Wnt4 during fast-type
muscle formation after MSTN knockout.

Skin Research, Suppl. 11 :21—24, 2009
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and Normal Chickens
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The WW domain containing E3 ubiquitin protein ligase 1 (WWP1) is classified into one of ubiquitin ligases which play
an important role in ubiquitin-proteasome pathway. Previously, we identified the WWP! gene as a candidate gene of chicken
muscular dystrophy by linkage analysis and sequence comparison. However, the mechanism causing pathological changes
and underlaying gene function remains elucidated. In the present study, we analyzed the WWPI gene expression in various
muscles and tissues of normal chickens, and compared with those from muscular dystrophic chickens. Two mRNA isoforms
were detected in all tissues examined and revealed almost equal expression level. The WWPI expression of dystrophic
chickens was decreased in almost all skeletal muscles including unaffected muscles. These data indicate that there might not
be a causal relationship between the alteration of WWPI expression level and the severity of muscular dystrophy.

Key words: chicken, expression analysis, fast twitch muscle fiber, muscular dystrophy, WWP1
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Introduction

The WW domain containing E3 ubiquitin protein ligase
1 (WWPI) is classified into an ubiquitin ligase (E3) which
plays an important role in ubiquitin-proteasome pathway
(UPP) to degrade unneeded or damaged proteins
(Scheffner and Staub, 2007). E3 recognizes and catalyzes
ubiquitin (Ub) conjugation to specific protein substrates
(Liu, 2004). Comparative genome analysis reveals few
genes encoding El, tens of E2 encoding genes and hun-

"dreds of B3 encoding genes (Semple et al., 2003).

The WWPI gene is classified into HECT (homologous
to the E6-AP carboxyl terminus)-type E3 which possesses
one C2 domain, multiple WW domains and one HECT
domain (Pirozzi ef al., 1997, Flasza et al.,, 2002). The C
2 domain binds to the cellular membranes in a
Ca’*-dependent manner (Plant ef al., 1997) and mediates
interactions with other proteins (Plant et al., 2000; von
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Poser et al., 2000; Augustine, 2001). The WW domain
has two conserved tryptophan residues and binds proline-
rich region (Sudol ef al., 1985). HECT domain, similar to
E2s structurally, has a cysteine residue as an active center
that transfers the activated Ub from E2 onto first itself,
and then onto its substrates (Jackson ef al., 2000).

The muscular dystrophies are the group of inherited -
diseases with progressive weakness and degeneration of
skeletal muscle (Partridge, 1991). It is well known that
abnormalities of muscle proteins linking sarcolemma and
basal lamina lead to cause muscular dystrophies (Lisi and
Cohn, 2007), but there are a number of muscular
dystrophies and related diseases of which causes are still
unknown. We identified WWPI gene as a candidate
responsible for the chicken muscular dystrophy by the
linkage analysis (Matsumoto et al., 2007) and the se-
quence comparison between normal and dystrophic chick-
ens (Matsumoto ef al, 2008). The R441Q missense
mutation was found in WWPI gene to cause the pheno-
type of muscular dystrophy.

The WWPIs of human (Flasza et al., 2002; Komuro et
al., 2004), mouse (Dallas et al, 2006) and C. elegans
(Huang et al., 2000) were intensively studied and known
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that the WWPI gene is expressed ubiquitously, but strong-
ly in liver, bone marrow, testis and skeletal muscles
(Flasza et al.,, 2002; Komuro et al., 2004). In chicken,
however, the WWPI expression has not been studied. The
expression analysis of WWPI gene is important since it
was reported that altered expression of known responsible
gene could lead dystrophic phenotype (Smythe and
Rando, 2006).

In this study, we analyzed the mRNA expression of
WWPI in various skeletal muscles and other tissues of
normal and dystrophic chickens by using Northern blott-
ing and reverse transcription (RT)-PCR analysis to know
the differences in the general expression pattern between
them.

Materials and Methods

Chickens

A two-month-old dystrophic chicken (New Hampshire:
NH-413) and an age-matched normal chicken (White
Leghorn: WL-F) were used in this study. The New
Hampshire (NH-413) strain is a homozygous dystrophic
line introduced from University of California, Davis to
Japan in 1976 (Kondo et al.,, 1982). The disease in this
strain is transmitted co-dominantly by a single gene, but
the phenotype is modified by other background genes
(Kikuchi et al.,, 1981, 1987, Wilson et al, 1979). The
White Leghorn (WL-F) strain was established in 1970s,
and maintained as closed colony in the Nippon Institute of
Biological Science in Yamanashi, Japan. This study was
carried out according to the guidelines of Animal Experi-
mentation of Kobe University.
Expression analysis

For Northern blotting, mRNAs were isolated from M.
pectoralis superficialis (PS), M. tensor fascia lata (TFL),
M. biceps femoris (BF), M. triceps surae (TS), M. peroneus
longus (PL), heart (H), brain (B), liver (L), kidney (K)
and whole embryo (E) with PolyATtract mRNA Isola-
tion kit (Promega, Madison, WI, USA). The 2ug of
mRNAs, which were measured with NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilming-
ton, DE, USA), were resolved by 1.2% agarose gel elec-
trophoresis in the presence of formaldehyde and blotted
on to Hybond-N+membrane (GE Healthcare Bio-
Sciences AB, Uppsala, Sweden). The mRNAs were
visualized using digoxigenin (DIG) reagents, and kits for
non-radioactive nucleic acid labeling and detection system
(Roche Diagnostics, Basel, Switzerland) according to the
procedure specified by the manufacturer excepting that
the washing was done with 4 XSCC 0.1% SDS at room
temperature for 10 min, 4 XSCC 0.1% SDS at 40°C for 8
min and then 2 XSCC 0.1% SDS at 40°C for 8 min twice.
The DIG-labeled DNA probes were prepared by PCR
using DIG-dUTP using pectorals cDNA sample of a
WL-F strain female as a template. The primers applied in
this procedure were 5’-tccctcataaatgttgaaagcagaca-3’
(WWPI1p-F), 5'-gtaataacccaaggtaatatgtaaac-3’ (WWP]
p-R) (NM_001012554), 5'-ccgtgtgccaacceccaatgt ctetg-3’

(GAPDHp-F) and 5’ -cagtttctatcagecteteceaccte- 3
(GAPDHp-R) (NM_204305). The PCR was done for 35
cycles at 94°C for 30sec, 55°C. for 30sec, 72°C for 30sec
(WWPI) and for 35 cycles at 94°C for 30sec, 63°C for 30
sec, 72°C for 30sec (GAPDH) using TaKaRa Ex Tag®
Hot Start Version (Takara Bio Inc., Tokyo, Japan).
Quantitative analysis was performed with Scion Image
(Scion Corporation, Frederick, MD, USA).

In order to analyze mRNA expression of WWPI gene in
the PS, M. anterior latissimus dorsi (ALD) and H,
RT-PCR method was applied. The concentration of
cDNA derived from these muscles was calculated by
NanoDrop ND-1000 (NanoDrop Technologies) and com-
measurable cDNAs were used as template. The primers
applied were 5'-attaggaagagccactgtagact-3’ (WWP1r-F)
and 5'-tctgttgattgaggttctgctgt-3’ (WWPIr-R) (NM_
001012554). The PCR was done for 35 and 40 cycles at
94°C for 30sec, 56°C for 30sec, 72°C for 30sec using
TaKaRa Ex Tag® Hot Start Version (Takara Bio Inc.).
Histology

The PS, ALD and H were snap-frozen in liquid
nitrogen-cooled isopentane and sectioned in a cryostat
(Leica Microsystems Japan, Tokyo, Japan). The histo-
pathology was made by hematoxylin-eosin staining (HE)
method (Kikuchi et al., 1981).

Results

The mRNA expression of WWPI gene was detected by
Northern blotting in various muscles and other tissues of
normal and muscular dystrophic chickens (Fig. 1). Two
bands were detected in all tissues examined, and revealed
almost equally expression level in any muscles and tissues
observed. '

In the PS, BF, TS, PL, B and K, WWPI gene was
strongly expressed in normal than in dystrophic chickens
(Fig. 1). GAPDH was used as an internal control of WWP
1 expression analysis. In TFL, L and E, similar WWPI
expression level was observed between two phenotypes
(Fig. 1).

RT-PCR analysis indicated that WWPI gene was ex-
pressed in slow tonic ALD, not only in PS and H of both
phenotypes (Fig. 2A). Figure 2B shows histopathological
changes in PS, ALD and H of normal and dystrophic
chickens. The pathological findings in dystrophic PS were
characterized by the degenerating fibers with many vacu-
oles in cytoplasm, the fatty infiltration into connective
tissue, and the proliferation of nuclei within muscle fibers
with large variation in sizes. However, no such lesions
were observed in ALD and H from age-matched dys-
trophic chickens (Fig. 2B).

Discussion

Northern blotting with WWPI specific probe detected
two bands in all tissues and muscles examined (Fig. 1).
Northern blot analysis of WWPI expression in human
tissues also exhibited two bands (Mosser et al., 1998), and
RT-PCR analysis showed that human WWPI gene had at
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Fig. 1. . Expression of chicken WWPI in various tissues.

A WWPI cDNA probe was used to detect WWPI mRNA transcripts by
Northern blotting using blots containing 2pg of mRNAs from chicken
muscles or various other tissues. M. pectoralis superficialis (PS), M.
tensor fascia lata (TFL), M. biceps femoris (BF), M. triceps surae (TS),
M. peroneus longus (PL), heart (H), brain (B), liver (L), kidney (K)
and embryo (E) were analyzed. A doublet band is detected at variable
levels in all tissues. “d” indicates mRNAs from dystrophic chickens.
“n” indicates mRNAs from normal chickens. The numbers below the
GAPDH bands represent the relative ratios of WWP1/GAPDH.

normal
2 PS ALD H }

A) dystrophic
PS ALD H
, s

35 cycles

dystrophic

normal

Fig. 2. RT-PCR detection of WWPI gene and histo-
logical analysis for three representative muscle types.
M. pectoralis superficialis (PS), M. anterior latissimus
dorsi (ALD) and heart (H) expressed WWPI less in
muscular dystrophic chicken, but only dystrophic PS
was severely harmed. A) Expression of WWPI in PS,
ALD and H was analyzed by RT-PCR method. PCR
was performed for 35 or 40 cycles. B) The PS, ALD
and H of dystrophic (NH-413) and normal (WL-F)
chickens were analyzed with HE staining. Vacuoles
(arrows) and fatty infiltration (asterisk) are observed
in PS of dystrophic chickens. It is also remarkable
that, in dystrophic PS, many muscle fibers have many
nuclei in cytoplasm and vary widely in size. These
pathological features are not observed in ALD and H
of dystrophic chicken. Scale bar=120gm.

least six mRNA isoforms synthesized through the alterna-
tive splicing, two of which were strongly expressed and
commonly observed in various tissues (Flasza et al,
2002). The mRNA doublet bands of chicken WWPI by
Northern blot analysis might be equivalent to two bands
of human tissues, while a single band was observed by
RT-PCR analysis in chicken (Fig. 2A), suggesting that
the amplified region does not include alternative spliced
site. Flasza et al. (2002) also mentioned that the relative
ratio of these isoforms from human WWPI varied in a
tissue-specific manner, but the doublet bands of chicken
WWPI were expressed almost equally in all tissues ex-
amined.

The WWPI gene expression in M. pectoralis superficialis
(PS) of dystrophic chicken was less than that of normal
chicken (Fig. 1). The PS of chicken is a fast twitch
muscle composed of two types of fast twitch fibers (aW
and bW). TFL, BF, TS and PL muscles from wing and
leg are mixed muscles co-existing fast twitch (aW and
bW) with slow twitch fibers (bR) in a mosaic pattern
(Ashmore and Doerr, 1971a), except that the ALD and
M. adductor magnus are composed of slow tonic fibers
(ST) innervated multiply (Ashmore et al., 1978; Kikuchi
et al., 1986). In chicken muscular dystrophy, fast twitch
fibers are initially and most severely affected, while slow
twitch and slow tonic muscles persist relatively harmless
throughout the life span (Ashmore and Doerr, 1971b;
Barnard ef al., 1982). The WWPI expression in dys-
trophic BF, TS and PL showed a similar downward trend
as observed in dystrophic PS (Fig. 1). These data indicate
that there might not be a causal relationship between the
alteration of WWPI expression level and the severity of
muscular dystrophy, since not only affected muscles but
unaffected ones exhibited the same pattern. Moreover, the
alteration of WWPI expression level was observed in other
unaffected tissues, such as B and K, which reinforces our
hypothesis that the alteration of WWPI expression levels
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does not link directly to the dystrophic phenotype (Fig.
1). .

To assess the genetic influence of mutant WWPI upo:
chicken muscular dystrophy, we examined WWPI gene
expression and histological changes in three distinct
muscle types, PS as a fast twitch type, ALD as a slow tonic
type, and H as a different type of muscle. RT-PCR was
applied to this study since ALD was not enough quantity
of mRNA for Northern blotting. The WWP! mRNA
expression was confirmed in all muscles examined (Fig. 2
A).

Figure 2B shows HE stained sections of PS, ALD and
H from normal and dystrophic chicken. The dystrophic
PS was severely affected, while ALD and heart of
dystrophic chicken remained relatively intact (Fig. 2B) as
described in a previous study (Kikuchi et al., 1981). The
WWPI was expressed even in unaffected muscles and the
downward alteration of WWPI expression was observed
commonly in almost all dystrophic muscles examined
(Figs. 1, 2). The observation suggests that the alteration
of WWP1] might not be the cause of the pathological
change in chicken muscular dystrophy. Hence, the muta-
tion identified previously (Matsumoto et al., 2008) might
play a crucial role in leading the onset of chicken muscular
dystrophy. The detected mutation lay between WW
domains, highly conserved region among tetrapods
(Matsumoto et al., 2008), which has been predicted as
substrate binding region (Pirozziet al., 1997; Flasza et al.,
2002). This suggests that mutated WWPI could not
recognize its substrates,

Many HECT-type E3s with WW domains including
WWPI regulate membrane proteins (Chen and Matesic,
2007). Therefore, aberrant regulation of membrane pro-
tein may lead the onset of chicken muscular dystrophy.
For example, WWPI could bind to 8-dystroglycan, which
is one of important muscle proteins consisting of mem-
brane (Pirozzi et al., 1997). Abnormal glycosylation of
a-dystroglycan in chicken muscular dystrophy has been
reported (Saito et al., 2005). Furthermore, the fact that
some E3s can recognize sugar chain (Yoshida ef al., 2002,
2003; Lederkremer and Gliskman, 2005) leads to the hy-
pothesis that mutated WWPI might not be able to recog-
nize the sugar chain of a-dystroglycan to regulate the
glycosylated molecules, and that insufficiently glyco-
sylated a-dystroglycan accumulates and causes the dis-
ease. ‘

In the present study, we analyzed the mRNA expression
of WWPI in various skeletal muscles and other tissues of
normal and dystrophic chickens. The results suggest that
WWPI expression level lowered in dystrophic phenotype
is not directly related to the cause of disease in chicken
muscular dystrophy, whereas mutated WWPI does not
function normally to cause the onset of chicken muscular
dystrophy.
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